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Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural 
development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment 
is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent 
stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop 
relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on ame-
lioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem 
cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
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Introduction

Since their discovery, pluripotent stem cells and their differen-
tiated progeny served as models for studying mechanisms of 
human neural development in vitro. Since the advent of induced 
pluripotent stem cell (iPSC) technology and CRISPR/Cas9 gene 
editing, they have become an excellent and unique tool to not 
only model human CNS-related diseases in the dish but also 
served as a resource for the drug discovery effort. This is an 
especially relevant feature for the field of Alzheimer's disease 
(AD), where this treatment remains unavailable. Notably, over 

60 studies have thus far been published that used iPSC-derived 
neural models to study AD in vitro. This review summarizes 
these studies and provides a unique view of AD-iPSC-based 
studies from the "differentiated cell type" perspective. Specifi-
cally, we provide a comprehensive summary of currently used 
approaches of differentiation of iPSCs to neural stem cells, neu-
rons, glia, and organoids, including direct transdifferentiation 
approaches. At the same time, we summarize in vitro iPSC-
based studies performed thus far on AD and highlight their key 
findings. Additionally, our review also contains a comprehensive 
table where all studies are listed based on the cell type, the type 
of mutation studied, and the main outcomes of the study. It could 
thus be used as a useful resource for researchers studying AD.

Current Neurodifferentiation Strategies

The development of the central nervous system in vivo is 
governed by a tightly regulated balance between neural 
stem/progenitor/precursor cell (NPC) proliferation and dif-
ferentiation towards mature cell types (reviewed in [1, 2]). 
During early embryonic development in vivo (for details on 
the concept of neural induction, see BOX 1), the neural tube 
forms via primary and secondary neurulation (reviewed in 
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[3]). During primary neurulation, a process via which the 
neural tube is formed in the head and trunk regions of the 
body, ectoderm becomes sequentially specified to give rise 
to the epidermis, the neural plate (neuro-ectoderm), and 
the neural tube. During the secondary neurulation, which 
occurs specifically in the caudal region in all vertebrates, 
including humans, condensed mesoderm directly transitions 
to (neuro)epithelium and forms a neural tube. Irrespectively 
of the means of differentiation, the neural tube is, at this 
stage, composed of multipotent NPCs, which further in the 
development become more restricted. With respect to their 
potency to generate neurons, astrocytes, or oligodendro-
cytes, they are referred to as “neuronal “, “astrocyte “, and 
“oligodendrocyte “ precursors, respectively. Importantly, 
in vitro isolation and propagation of NPCs from the devel-
oping and adult rodent CNS has provided an essential tool 
to study the biology of NPCs and lineage differentiation 
potential (rat models reviewed in [4, 5], mouse models 
reviewed in [6]). Additionally, it also served as a basis for 
the induction of neural differentiation from pluripotent ES 
cells.

Currently, numerous differentiation protocols exist for 
the differentiation of neural cell types from human iPSCs, 
and these methods are comprehensively summarized in 
Fig.  1. They employ several strategies, which usually 
aim to mimic the in vivo developmental steps: the for-
mation of the neuroepithelium, specialization of neural 
stem cells, which further differentiate towards neural pro-
genitors and more mature cell types. The differentiation 
is usually achieved via the combination of specific cell 
culture media, growth factors, and small molecule inhibi-
tors sequentially added to the culture media. Additionally, 
there are also differentiation protocols that are based on 
inducible overexpression of specific transcription factors 
that direct the differentiation towards a specific cell type. 
These are becoming increasingly common as they gener-
ate a relatively uniform population of the differentiated 
cell type of interest. Additionally, all in vitro strategies 
can also be divided into 2D and 3D methods, where 2D 
generate relatively simple and easy to characterize cell 
populations. On the other hand, 3D differentiation mod-
els are more functionally complex and more adequately 
mimic the developmental processes [7]. In the following 
chapters, we will summarize the necessary steps that are 
followed in each differentiation strategy. A special chapter 
is also dedicated to direct transdifferentiation strategies that 
might be especially important to consider when mimicking 
neurodegenerative diseases in vitro.

BOX 1: Concept of neural induction in vivo

In the developing embryo, cell fate determination represents the 
ultimate decision to initialize the formation of a specific struc-
ture. The pivotal experiments studying the onset of the nervous 
system development were carried out by Spemann and Mangold 
in amphibian embryos nearly 100 years ago. In their work, they 
introduced a concept of induction, which shows that the develop-
ing ectoderm relies on mesodermal signals to induce neurula-
tion [8]. The mediators of the induction were studied by Saxén 
and Toivonen, who defined two gradients of “neuralizing” and 
“mesodermalizing substances” in the inductor tissue that influence 
the formation of the neural tube [9]. Later on, molecules NOGGIN, 
FOLLISTATIN, and CHORDIN were identified to play a role dur-
ing neurulation [10–12]. The follow-up studies indicated that the 
function of these molecules lies in the inhibition of the bone mor-
phogenic protein (BMP) signaling pathway and the suppression 
of BMP was found to be the key primary step in the neural-fate 
acquisition of the early ectoderm (reviewed in [13])

Differentiation of Pluripotent Stem Cells Towards 
Neuroectoderm and Neural Stem Cells

Early methods to direct the differentiation of iPSCs to neural 
fates used less defined approaches than currently used protocols. 
Treatment of human embryonic stem cells with retinoic acid—
RA [14], sequential culture in serum and serum-free media [15], 
or co-culture with specific stromal cell lines such as PA6 [16] 
were commonly used techniques to gain a population of NPCs. 
These NPCs were further maintained under conditions opti-
mized for adult neural progenitors, such as three-dimensional 
spheroids (neurospheres) in the presence of Fibroblast growth 
factor 2 (FGF2) and Epidermal growth factor (EGF). All these 
approaches eventually led to the formation of cells with neural 
phenotype. However, the population of cells was always het-
erogeneous, conditions undefined, and the production of NPCs 
inefficient and time-consuming. In contrast, new approaches 
were designed to make the process of neural differentiation 
well defined, robust, and possibly exploitable by regenerative 
medicine in the future [17–20].

The initiation of neural differentiation in iPSCs leads to 
a series of morphogenic events resulting in the formation of 
radially organized cellular structures called neural rosettes [18, 
21–23]. These structures are regarded as an early stage of neu-
ral development in vitro. Resembling the neural tube, neural 
rosettes function as a reservoir of NSCs. At this stage, NSCs 
can be isolated and further propagated in vitro without losing 
their characteristics. They can also be directed to differentiate 
into both neuronal and glial cell types [18]. Their constancy 
in differentiation potential and self-renewing capacity during 
in vitro cultivation has been evaluated in depth [19, 24].
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The majority of protocols that have been established to 
generate NSCs rely on the formation of neural rosettes as a 
source of NSCs [17–20, 25, 26]. Initially, the typical approach 
builds on the growth of 3D cellular structures called embryoid 
bodies (EB). EBs are left to differentiate in a defined medium 
with FGF2 until neural rosettes appear or eventually become a 
predominant and distinguishable part of the EB [20]. In adher-
ent conditions, a highly reliable protocol to generate NSCs 
introduces dual inhibition of SMAD signaling in iPSCs as the 
initial step ([25], See BOX 2 for further details). In this proto-
col, the inhibition of SMAD by both Noggin and SB431542 
together with a specific initial density of cells leads to suc-
cessful neural differentiation and formation of neural rosettes 
within 11 days [25]. This method generates a high number of 
PAX6 + neural cells competent of rosette formation in as short 
as 11 days. However, in most cases, the neural conversion of 
iPSCs yields heterogeneous populations of NSCs and other 
neural cell types. Therefore, the isolation of NSCs from their 
niche remains a challenging and critical step in their further 
propagation. So far, few approaches have been introduced to 
address this problem. Selective enzymatic digestion has been 
used to separate neural rosettes and NSCs from EBs [20]. 

Another approach achieved the enrichment of the population 
of NSCs by fluorescent activated cell sorting (FACS) based on 
the characteristic combination of cell-surface markers [27, 28]. 
Interestingly, a different combination of these surface markers 
can be used to sort neurons or glia. Other protocols reached 
the homogenous population of NSCs by manually picking and 
re-plating neural rosettes until a colony of morphologically 
identified NSCs was established and expanded [17, 19, 24]

Besides the protocols that recapitulate the developmental 
processes of differentiation, direct conversion of somatic cell 
types into induced NSCs (iNSCs) has also been explored to 
gain self-renewing populations of NSCs. The initial repro-
gramming of fibroblast into iNSCs was achieved using 
transient expression of four reprogramming factors (OCT4, 
SOX2, KLF4, C-MYC) in mouse embryonic fibroblasts under 
neural inductive conditions [29] or by using just three of 
these factors (SOX2, KLF4, and C-MYC) while limiting the 
expression of OCT4 [30]. Another study described a set of 
nine transcription factors (SOX2, KLF4, C-MYC, BRN2, 
ASCL1, NGN2, HES1, ID1, PAX6) to be efficient in con-
verting mouse fibroblasts and Sertoli cells into iNSCs [31]. 
Eventually, the list of transcription factors narrowed to three 

Fig. 1   Differentiation protocols. Summary of neurodifferentiation 
strategies to generate specific cell types of the central nervous system 
from stem cells. For each strategy, we list major growth factors, small 
molecules, and other reagents that must be added to the cell culture 

media. Media also often contain N2 and B27 Supplements. Thus, for 
complete protocols, refer to the respective references listed in the last 
column
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(SOX2, FOXG1, and BRN2), or to SOX2 alone, respectively 
[32, 33], which have been demonstrated to assure the deriva-
tion of iNSCs from both mouse and human fibroblasts. Addi-
tionally, studies on human cord blood-derived CD133 + cells 
confirmed that overexpression of SOX2 alone, or in com-
bination with C-MYC leads to the derivation of neuronal 
cells [34]. A small fraction of these cells then represented 
self-renewing neural progenitors. Lastly, two direct conver-
sion protocols for iNSCs from peripheral blood mononuclear 
cells were recently reported [35, 36]. Both approaches are 
based on transient overexpression of two (SOX2, C-MYC) 
or four (OCT4, SOX2, KLF4, and C-MYC) transcription fac-
tors in combination with a set of small molecule inhibitors, 
cytokines, and hypoxic conditions. Taken together, tran-
scription factor SOX2 seems to be inevitable for the direct 
conversion of iNSCs and maintenance of their phenotype 
from both mouse and human somatic cells. However, for 
successful derivation of iNSCs, its overexpression should 
be always complemented by either other mentioned tran-
scription factors, small molecules, cytokines, and/or hypoxic 
conditions.

BOX 2: BMP signaling and the “Dual SMAD” inhibition.

BMP signaling pathway is one of the major morphogenic regulators 
of embryonic development. As part of the TGF-ß superfamily, the 
role of the BMP protein family in this development is extensive. 
Studies of neural induction in vivo have shown that inhibition of 
BMP signaling is critical for the ectoderm to initiate the program 
of neural development. The binding of BMPs (especially BMP4) 
to the BMP receptor leads to the phosphorylation of SMAD1,5,9 
proteins. Phosphorylated SMAD protein associates with SMAD4 
and, translocated to the nucleus, acts as a transcription factor 
for genes driving epidermal differentiating programs. However, 
activation of TGFβ receptors leads to the phosphorylation of 
SMAD2,3 and their binding to SMAD4. In the nucleus, this com-
plex induces mesodermal gene expression (reviewed in [13]). In 
the so-called “Dual SMAD” inhibition protocol, which is widely 
used to induce neural differentiation of iPSCs, both BMP and 
TGFβ signaling are inhibited simultaneously. Inhibitors and small 
molecules such as NOGGIN or LDN193189, and SB431542, 
respectively, drive the differentiation of iPSCs specifically towards 
neuroectoderm [25]

Neurons

In the context of neurodegenerative diseases, neurons are 
naturally the primary interest of the main research focus. 
Thus, to generate neurons in vitro, several methods can 
be employed depending on the experimental question that 
needs to be answered. The most straightforward approaches 
implement the fact that isolated neural rosettes or NSCs/
NPCs will, under non-self-renewing conditions, differenti-
ate towards neurons spontaneously [17, 19, 22]. Therefore, 
either isolated rosettes or NSCs/NPCs are kept in the cell 

culture media without growth factors such as FGF2 or EGF. 
This strategy can be modified by adding specific growth 
factors/small molecules to enhance the speed of the dif-
ferentiation towards neurons or to direct the differentiation 
towards specific neuronal subtypes [17, 19, 37] (See BOX 
3 for further details). Usually, factors such as brain-derived 
neurotrophic factor (BDNF), glial cell line-derived neuro-
trophic factor (GDNF), cyclic adenosine monophosphate 
(cAMP), Forskolin, or RA are used. Additionally, a cocktail 
of small molecules that activate or inhibit developmental 
signaling pathways, such as dual SMAD inhibitors with 
Sonic hedgehog (SHH) and WNT signaling activators, are 
used in the case of forebrain dopamine neurons [38, 39]. 
It is also of note that the intrinsic level of Wnt signaling 
in iPSCs significantly influences the spatial and regional 
axes of neuronal development in vitro, and the effects of 
signaling differences can be rescued by exogenous pathway 
activation [40]. However, these differentiation methods all 
generate a mixed population of neurons and glia in a rela-
tively lengthy process of at least 60 days in in vitro culture. 
For the neurons to become really mature and electrophysi-
ologically active, the period of differentiation could be as 
long as > 100 days [41]. Additionally, if pure neuronal cul-
ture is necessary for the final analysis, subsequent isolation 
of mature neurons via selection methods must be employed. 
Such selection methods could include FACS sorting [28] 
or selective isolation based on regulated cellular adhesion 
and suppression of growth of proliferating glial cells by 
AraC [42].

Additionally, some protocols directly stimulate iPSCs to 
form neurons without going through the stage of rosettes/NSCs/
NPCs. These either use small molecule inhibitors that, when 
added sequentially every (other) day to the cell culture medium, 
will predominantly transform the iPSCs towards a specific type 
of neurons within 16–20 days [43]. Alternatively, the transient 
overexpression of specific transcription factors became widely 
used to generate so-called “induced neurons” (iNs). The first 
successful generation of iNs from iPSCs was performed by 
forced expression of BRN2, ASCL1, and MYT1L transcription 
factors [44]. Eventually, it has been shown that overexpression 
of NGN2 alone is sufficient to generate iNs that were morpho-
logically mature in two weeks [45]. Following this research, the 
repertoire of protocols describing differentiation into various 
subtypes of neurons has widened. For example, forced expres-
sion of ASCL and DLX2 transcription factors in iPSCs has been 
shown to lead to the production of GABAergic iNs [46, 47]. A 
combination of both approaches, such as programming with 
transcription factor NGN2 and inhibition of SMAD and SHH, 
generated functional glutamatergic neurons [48].

The strategy of iNs, as described by Zhang and col-
leagues, has recently developed into a robust protocol that 
drives the differentiation of iPSCs into cortical neurons, 
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referred to as the “i3N—i3neuron system” (i3 standing for 
integrated, inducible, isogenic). Based on the study of Zhang 
et al., where it has been shown that lentivirus-mediated 
expression of a single transcription factor NGN2 is suffi-
cient to induce rapid neurodifferentiation of iPSCs, a study 
by Wang et al. introduced an improved strategy where NGN2 
transgene was stably integrated under doxycycline-inducible 
promoter into a safe-harbor locus in iPSCs. After 3–4 weeks 
of differentiation, generated i3Ns were mature and physi-
ologically active when co-culturing with glia [49].

With all these available protocols, it is essential to ade-
quately consider the research question asked as the differen-
tiation method can influence the study results. For example, if 
the development-related question needs to be answered, it is 
more appropriate to let the neurons differentiate spontaneously 
without specific growth factors. These growth factors/small 
molecules could help neurons overcome possible problems that 
they would have if they were differentiating spontaneously. On 
the other hand, if the analysis requires a pure population of neu-
rons or if the study is only done on the terminally differentiated 
neuronal population, then the homogenous population of sorted 
or induced mature neurons is likely the adequate model to use. 
However, it is essential to note that the absence of glia in such 
a model system might influence the experimental results if the 
studied mechanism also affects other cell types.

BOX 3 Small molecules and transcription factors in neu-
ronal differentiation in vitro.

The most commonly used factors for neuronal differentiation 
in vitro are BDNF, GDNF, cAMP, Forskolin, and RA, all of 
which execute their functions via different mechanisms. BDNF 
binds TrkB receptor kinase and promotes the differentiation of 
progenitor cells into neurons [50]. GDNF acts as an activator of 
the ERK-1/2 and P13K/AKT pathways to support the survival of 
neurons [51]. cAMP activates CREB-mediated gene transcription 
associated with the dendritic length and the morphological matu-
rity of the young neurons in a level-dependent manner [52]. The 
cellular level of cAMP can be raised by Forskolin, which activates 
the cAMP pathway [53]. RA, a powerful morphogene, activates 
RA receptor signaling and acts as an essential regulator in neural 
induction, proliferation, and differentiation [54]. Expression of 
BRN2, ASCL1, MYT1L transcription factors establishes and 
specifies the neural identity. Overexpression of the key transcrip-
tion factor NGN2 rapidly affects complex mRNA and miRNA 
expression profile and mediates regulatory network mediating 
neurogenesis from stem cells in days [55]

Astrocytes

Astrocytes are the largest and most abundant glial cells within the 
human brain. Astrocytes were initially viewed as a predominantly 
supportive modulator of brain processes that engage in fundamental 
homeostatic processes, specifically in trophic, metabolic, protec-
tive, and detoxification functions. Specifically, these include the 

production of antioxidants, maintenance of the blood–brain barrier, 
synapse modulation, cytokine release, and metabolism of neuro-
transmitters, especially GABA and glutamate (reviewed in [56]). 
In contrast to these essential roles promoting neuronal functional-
ity, reactive states of astrocytes induced upon cellular injury were 
repeatedly reported as toxic for neurons. Indeed, evidence of early/
late astrocytic reactivity has been repeatedly reported in numerous 
neurodegenerative diseases (review in [57]).

Over the last ten years, various protocols have been devel-
oped to differentiate iPSCs into astrocytes [41, 58–61]. Current 
iPSC-based methods for the differentiation of astrocytes typi-
cally rely on either NSCs/NPCs [61–65] or the oligodendrocyte 
progenitor cell [66] intermediates to form astrocytes via a cock-
tail of growth factors and small molecules (See BOX 4 for fur-
ther details). These iPSC-differentiated astrocytes were shown 
to be functional also for cell-based models of neuropsychiatric 
disorders in vitro [61, 62, 64, 65] or engraftment in vivo [62, 63, 
66, 67]. Naturally, existing methods are slow (up to 6 months) 
[61, 63, 66] or require sorting to reduce heterogeneity [28, 68]. 
To overcome this complication, Tcw et al. (2017) identified a 
faster 30-day differentiation protocol adequate for the assays 
for a neuroinflammatory response, phagocytosis, and spontane-
ous calcium activity [41]. Additionally, protocols for induced 
astrocytes (iA) have also been published. Developed methods 
efficiently generate astrocytes in 4–7 weeks using the inducible 
expression of NFIA or NFIA and SOX10 in iPSCs [69–71].

Importantly, after the derivation of astrocytes from iPSCs, 
several studies also aimed to prove that they are functional 
and active correspondingly to their counterparts in vivo, thus 
usable for neurodegenerative disease modeling. Santos and 
co-workers compared a specific response to interleukin 1β 
(IL-1β) and tumor necrosis factor-alpha (TNF-α) between 
iPSCs-derived astrocytes and human primary astrocytes. 
Both evoked pro-inflammatory responses with similar gene 
expression changes [72]. Furthermore, iPSCs derived astro-
cytes were also able to sequester Aβ-plaques, exhibit altered 
Ca2+ homeostasis [73], display defective lipid metabolism 
[74], or switch into reactive astrocytes [72, 75].

BOX 4 Astrocytic differentiation and NFIA/SOX9.

Astrocytes can be differentiated from iPSCs, NSCs, or OPCs by 
exposure to a set of mitogens and morphogens such as Ciliary 
neurotrophic factor (CTNF), BMP, FGF2, Leukemia inhibitory 
factor (LIF), and Fetal bovine serum (FBS) in a manner mimick-
ing physiological developmental stages [41, 76]. Canonically, 
CNTF, FGF2, and LIF activate the JAK/STAT pathways and 
BMPs signal primarily through SMAD pathways, eventually 
converging in the regulation of GFAP expression [77, 78]. Addi-
tionally, direct reprogramming of astrocytes is based on a transient 
expression of a transcription factor NFIA [71]. The acquisition of 
glial competency is associated with the lengthening or arrest of 
the G1 phase upon upregulation of CDKN1A in high NFIA levels. 
Similar results have been obtained by upregulation of NFIB and 
SOX9 [69]
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Oligodendrocytes

During development, oligodendrocyte progenitor cells (OPCs) 
give rise to mature oligodendrocytes, both of which are found 
in the mature CNS [79]. The key function of oligodendrocytes 
is to produce myelin and thus assure neuronal connectivity 
and axonal protection. Importantly, demyelination of neurons 
is often seen in neurodegenerative diseases [80].

The first protocol to describe the directed differen-
tiation of oligodendrocytes from iPSCs was introduced 
by Nistor et al. in 2005 [81]. They used a combination 
of neurosphere formation followed by culturing cells 
in “glial restriction medium” and manual selection of 
OPCs. Their transplantation to shiverer mice resulted in 
integration, oligodendrocyte differentiation, and com-
pact myelin formation, demonstrating that these cells 
display a functional phenotype [81]. Indeed, this proto-
col later led to the first human clinical trials of human 
embryonic stem cells (hESCs) derived OPCs for the 
treatment of acute spinal cord injury. Later, Izrael et al. 
(2007) differentiated oligodendrocyte progenitors from 
hESCs by firstly inducing the level of BMP by RA and 
its subsequent inhibition by NOGGIN. These cells were 
able to myelinate axons in mice brains as well as dif-
ferentiate into mature oligodendrocytes [82]. Notably, 
Hsieh et al. (2004) published an important finding that 
Insulin growth factor-I (IGF-I) stimulates the differen-
tiation of multipotent adult rat hippocampus-derived 
neural progenitor cells into oligodendrocytes [83]. This 
finding then stimulated the use of IGF-I in the differ-
entiation protocols for iPSCs (See BOX 5 for further 
details) [84–88].

However, these initial protocols based on the recapitula-
tion of the neural development of hESCs or iPSCs using 
growth factors alternation (such as RA, EGF, FGF2, SHH, 
or platelet-derived growth factor (PDGF)), cell culture 
adaptations with regards to extracellular matrix protein 
composition, and usage of small molecules like dual SMAD 
inhibitors, and ROCK inhibitor, have been dealing either 
with low yields or an exceptionally long differentiation pro-
cedure. New protocols, therefore, introduced shortened dif-
ferentiation times due to forced expression of transcription 
factors. Notably, SRY-Box Transcription Factor 10 (SOX10) 
and Oligodendrocyte transcription factor (OLIG2) were 
identified as superior in oligodendrocyte cell-fate specifi-
cation. Therefore their combination was used in protocols 
describing differentiation of iPSCs and NPCs into first oli-
godendrocyte progenitor cells followed by maturation into 
oligodendrocytes [46, 89–92]. Later, the overexpression 
of stably integrated single transcription factor SOX10 was 
demonstrated sufficient to convert iPSCs into myelinating 
oligodendrocytes in only 22 days [93]. Additionally, a com-
bination of IGF-I with promyelinating drugs ketoconazole 

and clemastine has been used to promote oligodendrogen-
esis in 3D cortical spheroids, offering another approach to 
the generation of oligodendrocytes in complex differentia-
tion strategies [94].

BOX 5: Pathways involved in oligodendrocyte 
differentiation.

Oligodendrocyte derivation often involves the generation of 
OPCs that serve as common precursors to both oligoden-
drocytes and astrocytes. OPCs can be produced from iPSCs 
through the use of various mitogens (e.g., FGF2, PDGF, and 
EGF) [95–98] and morphogens (like RA) or small molecules 
that promote SHH signaling (e.g., Smoothened agonist) or 
repress WNT/β-catenin signaling [99, 100]. Oligodendrocyte 
maturation from OPCs is often facilitated using IGF1 and 
triiodothyronine (T3). IGF1 seems to act through inhibition 
of BMP signaling (which induces maturation of OPCs into 
astrocytes) or through activation of ERK1/2 kinases [83, 101]. 
On the other hand, T3 was shown to upregulate transcription 
factor KLF9, which is likely involved in oligodendrocyte mat-
uration [102]. Additionally, promyelinating drugs clemastine 
and ketoconazole inhibit enzymes for cholesterol biosynthesis, 
leading to the accumulation of sterol intermediates that pro-
mote maturation of OPCs into oligodendrocytes [94, 103]

Direct differentiation of NPCs into oligodendrocytes is achieved 
via overexpression of transcription factors such as SOX10, 
OLIG2, and NKX6.2 [104]. These directly or indirectly 
affect the expression of genes involved in oligodendrocyte 
differentiation, such as PDGF receptor alpha (PDGFRA) or 
negative regulator of hedgehog signaling SUFU [105–108]. 
SOX10 was identified as a key transcription factor that was 
successfully used alone for oligodendrocyte differentiation. 
However, care must be taken when selecting the protocol for 
NPC generation as it may potentially affect the success rate of 
oligodendrocyte differentiation using SOX10 only [93]

Microglia

Microglial cells are part of the innate immune system and 
represent the mesoderm-derived cell type present in the 
human brain. Specifically, microglial cells originate from 
c-Myb-independent primitive macrophages present in 
embryonic yolk-sack. These primitive macrophages then 
migrate through embryonic vasculature, finally reaching 
primitive neuroepithelium and subsequently colonizing 
developing brain parenchyma [109]. They play numerous 
vital roles in brain development, homeostasis, and regulation 
of neuroinflammation [110].

The first microglia differentiation protocol was not pre-
sented until 2016 by Muffat et al. [111]. Since then, many 
protocols have been introduced and recently reviewed (See 
BOX 6 for further details) [112]. Interestingly, two strate-
gies to gain microglia arose out of the published protocols. 
The first relies on the formation of yolk sack EBs, which 
are further differentiated into microglia-like precursor cells 
and microglia-like cells [111, 113]. Another differentiation 
scheme produces microglia-like cells through the stage of 
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hematopoietic precursors [114, 115]. In these protocols, a 
cocktail of growth factors including BMP4, FGF2, vascular 
endothelial growth factor A (VEGF-A) together with dif-
ferent types of interleukins is supplemented to direct the 
differentiation. Also, co-culture with supportive cell lines, 
either astrocytes [116] or neurons [117], which provide the 
cells with essential factors, represent another possible and 
faster approach in deriving a mixed population of microglia-
like cells.

It is of note that the results of in vitro differentiation into 
microglia are referred to as “microglia-like” cells since 
broad consensus on phenotypic and genotypic markers of 
these cells regarding their in vivo counterparts has not yet 
been fully established.

BOX 6 Inducible microglia.

Differentiation towards microglia in vitro is achieved by the addition 
of growth factors and interleukins such as Stem cell factor (SCF), 
Cell survival factor (CSF), and Interleukin 34 (IL34) (reviewed 
in [112]). Microglia are in vivo derived from precursor cells 
localized in the yolk-sac through a process dependent on PU.1 and 
interferon regulatory factor 8 (IRF8) [118]. Those two transcrip-
tion factors were shown to be upstream of CSF-receptor (CSFR) 
signaling [119–122], which is the critical pathway for microglia 
establishment as the CSFR −/− mice entirely lack the micro-
glia cells [123]. CSFR signaling can be induced by its primary 
activators CSF and IL34 [123]. Further promotion of microglia 
proliferation, migration, and phagocytosis is supported by SCF 
[124, 125]

Transdifferentiation Strategies

Over the last years, the accuracy of iPSCs-derived cellular 
models of neurodegenerative diseases has been questioned. 
This concern was mainly because the generation of iPSCs 
from somatic cells is accompanied by the juvenilization of 
these cells into an embryonic-like state. This juveniliza-
tion can be traced in epigenetic modifications, telomerase 
length, and other aspects, including mitochondria condition 
[126–128]. Therefore, the aging phenotype of the differen-
tiated cells derived from iPSCs seems not to correspond 
to their in vivo counterparts. Even though these properties 
make iPSCs-derived neural cell types great candidates for 
transplant therapies, their ability to recapitulate pathologi-
cal features of age-associated neurodegenerative diseases 
with late-onset in vitro is considered limited (reviewed in 
[129–131]).

As a possible strategy to bypass this limitation, overex-
pression of progerin, a truncated form of lamin A associated 
with premature aging, has been shown to trigger neuronal 
aging phenotypes in iPSCs-derived neurons [132]. Further-
more, telomerase inhibition in iPSCs and subsequent neural 
differentiation has effectively shortened telomeres and thus 
provoked age-related phenotype in dopamine neurons [133]. 

Additionally, the application of chemical factors resulted in 
increased stress and, by consequence, the aging phenotype 
in cultured neuronal cells. Notably, in some cases, only after 
additional aging promoting elements were added was the 
studied neurodegenerative disease fully manifested [134].

A different way to preserve age-associated features in 
cells is the transdifferentiation of somatic cells directly to the 
desired cell type (reviewed in [130, 131, 135]). This method 
has caught emerging attention in neurodegenerative disease 
modeling. The first conversion of human fibroblasts has been 
carried out by overexpression of BRN2, ASCL1, MYT1L, 
and NEUROD1 [44]. These factors have also been used to 
reprogram human hepatocytes into iNs [136]. Since then, 
protocols have introduced alternative combinations of repro-
gramming transcription factors and microRNAs to direct 
somatic cells into neuronal lineage [137–139]. So far, many 
protocols to generate dopaminergic, glutamatergic, cholin-
ergic, GABAergic, and other neurons have been developed 
(reviewed in [130]). Importantly, avoiding the iPSCs stage, 
transdifferentiated iNs were shown to conserve the age-
related epigenetic landscape and other cellular properties 
from the cell of origin [138, 140]. Therefore, deriving aged 
neural cell types adequately without the need to induce aging 
in vitro is undoubtedly beneficial for neurodegenerative dis-
ease modeling. However, recent work shows extensive de 
novo DNA methylation occurs in mouse fibroblasts directly 
converted to neurons using BAM factors [141]. While this 
study suggests that this epigenetic remodeling promotes a 
neuronal epigenetic landscape, a more detailed analysis of 
epigenome remodeling that may occur in directly converted 
human neurons in aged or disease states is warranted.

3D Brain Organoids

Cerebral organoids are iPSCs derived self-assembled 3D 
cellular aggregates mimicking human fetal brain develop-
ment [7, 142]. They display multiple relevant cell types that 
undergo intrinsic developmental patterns of a particular 
modeled organ. Additionally, an organoid’s ability to obtain 
specialized functions ordinarily present in a modeled organ 
proved to be a novel tool for studying the human brain. A 
3D cerebral organoid organ-like organization can be subse-
quently used to investigate human fetal brain development, 
tissue organization, aging, metabolic processes, drug screen-
ing, and disease modeling (reviewed by [143]).

Derivation of human cerebral organoids nowadays relies 
on both guided and unguided methods (reviewed by [144]). 
Initially, protocols were dependent on stem cells’ intrinsic 
ability to assemble and differentiate towards the neuronal 
fate. This approach led to the formation of whole-brain 3D 
organoids with different regions within the organoid [142]. 
Subsequent protocols modified the original procedure to 
form region-specific cerebral organoids. Those “guided” 
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organoids are directed by region-specific growth factors, 
differentiation factors, and specific cellular inhibitors. For 
this reason, region-specific cerebral organoids are more 
representative of cellular composition, structural features, 
and molecular processes of particular brain regions modeled 
[144]. Since then, region-specific organoids such as cortical 
spheroids [145], cerebellar organoids [146], hippocampal 
organoids [147], and midbrain organoids [148] were estab-
lished, contributing to our understanding of brain region 
specificities.

Notably, refinements of 3D cerebral organoid cultures 
opened new possibilities for investigating human brain dis-
orders in vitro and possibly overcoming the gap between 
in  vitro human cell-based systems and animal models. 
Indeed, animal models often fail to reproduce human-
specific pathology. However, even 2D human cellular cul-
tures are misrepresentative of complexly interacting in vivo 
environments. Therefore, the intricate 3D organization of 
cerebral organoids, especially considering the extracellu-
lar deposition of pathological proteins in vast neurodegen-
erative diseases, proves to open new research possibilities. 
Another well-addressed advantage of cerebral organoids is 
their potential to establish patient-derived models with the 
principal characteristic of a patient’s genetic information. 
Indeed, first patient-derived 3D cerebral are starting to be 
used, for instance, in drug-screening (reviewed by [149]) and 
glioblastoma research [150], thus opening new possibilities 
in personalized medicine. Despite current advancements in 
cellular biology, several limitations (e.g., heterogeneity, lack 
of vascularization, aging) need to be addressed to match all 
principal aspects of human brain physiology. Despite these 
limitations, cerebral organoids hold the promising potential 
to establish fresh new insights into neurodegenerative dis-
ease modeling.

Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative 
disease characterized by loss of neurons in the cerebral 
cortex and subsequent cortical dysfunction. It is the most 
common form of dementia, with 60–80% of all dementia 
cases significantly contributing to morbidity/mortality rates 
in the elderly population worldwide. There are two forms 
of AD—familial (fAD; 5%) and sporadic (sAD; 95%). 
The vast majority of fAD is associated with mutations in 
the Amyloid Precursor Protein (APP), Presenilin 1 and 2 
(PSEN1 and PSEN2) genes [151]. However, since most AD 
cases are considered sporadic, sAD is presumably triggered 
by the interplay of genetic and environmental factors with 
unclear etiology [151]. One of the major risk factors associ-
ated with sAD is the APOE4 allele, with almost 65–80% of 
AD patients. In contrast, the APOE2 allele is considered 

a protective factor. Apart from APOE, genome-wide asso-
ciation studies have identified more than 20 AD risk genes, 
including SORL1 or TREM2, and detailed studies of these 
in the field of iPSCs are beginning to emerge [152–154].

Clinically, AD-associated progressive memory loss is 
underlaid by two main pathological features present in the 
AD brain: 1) extracellular beta-amyloid plaques and 2) intra-
neuronal Tau-containing neurofibrillary tangles. Hallmarks 
of the first feature include the accumulation of insoluble 
deposits of amyloid β peptides (i.e., "Aβ plaques") cleaved 
from APP protein. APP is critical to neural stem cell devel-
opment, neuronal survival, neurite outgrowth, and neuronal 
repair. It is, under physiological conditions, cleaved to short 
peptides by alpha, beta, and gamma secretases to perform 
its function. Gamma-secretase then consists of PSEN1 and 
PSEN2 subunits. Produced Aβ peptides are under physio-
logical conditions predominantly 40-mers (Aβ40), but in the 
case of pathological mutations in APP or PSEN1/2 genes, 
the 42-residue peptides (Aβ42) are overrepresented [155]. 
These Aβ42 peptides have a markedly higher propensity to 
aggregate in comparison with Aβ40, causing the formation 
of dense, mostly insoluble deposits of Aβ plaques in the 
extracellular matrix. According to this “Amyloid hypoth-
esis”, the deposition progressively leads to synaptic dysfunc-
tion, inflammation, neuronal loss, and, ultimately, dementia 
[156].

The second feature leading to AD pathology is “Neu-
rofibrillary tangles”, insoluble aggregates of hyperphospho-
rylated microtubule-associated protein Tau. Tau protein is 
phosphorylated by a number of kinases (e.g., CDK5, GSK3, 
and others), and its abnormal phosphorylation promotes the 
polymerization and formation of insoluble filaments. Tan-
gles then accumulate intracellularly within neuronal soma, 
resulting in the collapse of the axonal transport system 
[156]. However, the process of aggregation of hyperphos-
phorylated Tau (P-TAU) in the absence of causative muta-
tion is unknown, and the exact relationship between P-TAU 
and Aβ has been elusive so far. Moreover, numerous clinical 
trials aiming to prevent P-TAU and/or Aβ deposition failed 
to demonstrate the effectiveness of disease-modifying treat-
ments. This suggests that our understanding of the molecular 
basis of AD is incomplete and implies that protein aggre-
gation is perhaps not a cause but rather a consequence of 
unknown mechanism(s) that eventually lead to AD pathol-
ogy. Taken together, despite a rising number of publications 
and data, the exact pathophysiologic mechanisms underlying 
AD is still mostly unknown.

The broad applicability of different AD-based iPSCs sig-
nificantly contributed to the current understanding of AD. 
Still, an increasing number of AD-iPSCs in repositories 
from patients with sAD or fAD or genetically manipulated 
cell lines [158–160] in combination with precisely refined 
cellular differentiation protocols into neurons, all central 
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glial cells and microglia represent an efficient method for 
examination of AD. This may not be limited to etiopatho-
genesis, pathophysiology, molecular pathology, and drug 
testing of Alzheimer’s disease. Here we provide an over-
view of major iPSCs-derived cellular AD models in vitro 
and summarize the significant findings from these models 
in Fig. 2. Additionally, we also encourage readers to explore 
other relevant reviews on this topic as they provide a differ-
ent perspective on AD development and in vitro modeling 
[161–168].

NSCs and Progenitor Cells

Although the majority of the AD-iPSC studies focused on 
studying neurons, there are, to this date, six reports that, at 
least to some extent, addressed the phenotype, behavior, and/
or molecular changes coupled to AD specifically in NSC/
NPCs [169–175]; see Table 1 for details). In the first study, 
Koch et al. [170] used lentiviral transgenesis and introduced 
fAD-causing mutations in PSEN1 (L166P, D385N) to long-
term self-renewing NSCs derived from hESCs. The study 
shows that the expression of APP and Aβ secretion is mat-
uration-dependent. They detected very low levels of APP 
and Aβ in self-renewing NSCs while the expression of both 
proteins increased to detectable levels only after three weeks 
of neuronal differentiation in vitro. Upon introducing mutant 
PSEN1 variants to NSCs, they showed no effect on apopto-
sis, but significant downregulation of proliferation compared 
to wild-type PSEN1 transduced NSCs [170].

However, the next two studies did not find any specific 
aberrations in NSCs that would be related to AD phenotype. 
Sproul et al. [173] generated iPSCs from affected and unaf-
fected individuals from two families carrying PSEN1 muta-
tions (A246E and M146L). PSEN1 mutant NPCs had greater 
ratios of Aβ42 to Aβ40 relative to their control counterparts 
but did not show any aberrations in proliferation. Molecular 
profiling identified only 14 genes differentially expressed in 
PSEN1 NPCs relative to control NPCs, including NLRP2, 
ASB9, and NDP [173]. Later, Jones et al. [169] reported the 
generation of human iPSCs from healthy individuals and 
patients with either early-onset fAD (PSEN1 M146L) or the 
late-onset sAD (carrier of APOE4/4). They also report no 
significant differences in NPC growth rates or NPC marker 
expression (PAX6 and NESTIN). No significant difference 
was detected in the efficiency of early neuronal induction 
(measured by the proportion of β-III-tubulin + neurons) 
between any individual. Both sAD and fAD NPCs retained 
their characteristic morphology, expression of canonical 
markers and were able to generate mature cortical neurons 
with the same efficiency as control NPCs [169].

Interestingly, a recently published (and perhaps the most 
detailed) study was performed by Meyer et al. [171]. They 
generated iPSCs from a larger cohort of sAD patients and 

age-matched controls. Gene expression analysis of sAD-
NPCs showed a marked increase in the expression of neural 
differentiation-related genes (including ASCL1/MASH1, 
DCX, MAPT, CD24, and STMN2), premature neuronal 
differentiation (a finding supported by the study of Yang 
et al. [174]) and reduced NPCs self-renewal. Importantly, 
this phenomenon was not caused by the APOE4/4 genotype 
as APOE3/3 sAD cell lines showed the same trend [171]. 
Functional analysis of the transcriptome of sAD NPCs (and 
neurons) suggested that upregulated genes were regulated 
by the transcriptional repressor REST (repressor element 
1-silencing transcription factor). Indeed, sAD NPCs showed 
reduced nuclear REST levels and REST-RE1 site binding. A 
similar differentiation phenotype and involvement of REST 
were observed in isogenic neural cells generated from iPSCs 
that were gene-edited to express APOE4. Conversely, gene 
editing of APOE4 to the neutral allele APOE3 reversed the 
phenotype. Finally, they were able to show that the loss of 
function of REST in sAD and upon APOE4 expression was 
due to reduced nuclear translocation and chromatin binding 
and was associated with disruption of the nuclear lamina. 
These findings suggest that REST dysfunction and epige-
netic dysregulation emerge in sAD and APOE4 NPCs and 
persist in differentiated neurons, potentially contributing to 
the onset of AD [171].

Taken together, it would seem that while some fAD caus-
ing mutations in PSEN1 might not affect the properties of 
NPCs [169, 173], there are at least some fAD and sAD-
patient’s derived NSCs that show a significant decrease 
in proliferation, downregulation of NSC-specific markers, 
upregulation of early neuronal markers and show signs of 
premature differentiation [170, 171, 174]. Meyer et al. fur-
ther show that in sAD, this is due to the inactive REST com-
plex and the disruption of the nuclear lamina. These findings 
raise the possibility that a developmental perturbation, such 
as the depletion of NSCs or altered neural circuit formation, 
may occur early in life in individuals predisposed to develop 
sAD. Moreover, while this may not significantly compro-
mise cognitive function in young adults, it may increase the 
risk of neurodegeneration and cognitive decline when com-
bined with chronic stressors later in life [171].

Neuronal Models

To this date, over 50 studies were published that focused 
on studying AD and AD-related phenotypes using iPSC-
derived neurons (See Table 1 for details). These reports 
mainly focus on studying fAD mutations in APP, PSEN1, 
and PSEN2 or employ the strategy of iPSCs generation from 
sAD patients, although CRISPR/Cas9 gene-edited cell lines 
are being used more and more often. Several studies then 
specifically focused on addressing the role of APOE4 geno-
type, other risk factors (SORL1 or TREM2), or mutant TAU 
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on AD development. Methodologically, they employ a large 
variety of differentiation protocols for neuronal derivation 
ranging from glutamatergic [176], GABA-ergic [177], and 
dopaminergic subtypes to basal forebrain cholinergic neu-
rons [178, 179], and several studies also use direct transdif-
ferentiation, generating iNs [140, 180].

In general, initial studies using iPSCs-derived neurons 
demonstrated the presence of typical AD pathological fea-
tures in these cultures. They described 1) Aβ accumulation 
in cell cultures; 2) altered secretion of Aβ40 and/or Aβ42 
peptides; 3) the presence of protein inclusions; 4) activation 
of glycogen synthase kinase 3 beta (GSK3β); and 5) TAU 
hyperphosphorylation (summarized in Table 1). Subsequent 
studies validated that AD-iPSC-derived neurons can also 
demonstrate 6) loss of synapses and decreased synaptic 
plasticity [181, 182], 7) altered electrophysiological activity 
[93], 8) increased oxidative stress and reactive oxygen spe-
cies (ROS) generation [183, 184], 9) endosomal dysfunction 
[185], 10) defective autophagy, mitophagy and mitochon-
drial abnormalities [186–188], and 11) altered cholesterol 
metabolism [189]. These pathologies were found both in 
fAD and sAD-iPSC-derived neurons, albeit not all fAD/sAD 

cell lines displayed all the pathological signs. One of the 
aspects possibly playing an important role in this phenom-
enon is the finding of Muratore et al., who reported that gen-
eration of Aβ plaques and the responsiveness of TAU to Aβ 
are affected by neuronal cell type with rostral neurons being 
more sensitive than caudal neurons [190]. Nevertheless, the 
application of β- or γ-secretase inhibitors (and possibly other 
small molecule inhibitors) in majority of the studies resulted 
in the reduction of Aβ peptides secretion and downregula-
tion of P-TAU, thus confirming the possibility to use these 
in vitro models for drug discovery approaches [152, 170, 
185, 191–196].

Numerous studies also investigated the effects of Aβ oli-
gomers in AD iPSCs-derived neuronal cultures. In general, 
fAD neurons displayed a high Aβ42/Aβ40 ratio [73, 170, 
172, 192, 193, 197]. Interestingly, increased Aβ oligomers 
have been shown to induce endoplasmic reticulum stress 
and ROS generation [198]. Indeed, increased oxidative 
stress and ROS-mediated cellular dysfunction were docu-
mented in both PSEN1A246E [199] and mutant APPA693E neu-
rons [198]. Recently, Aβ42 oligomers were also reported 
to provoke mitochondrial DNA damage and decrease the 

Fig. 2   Major finding from stem-cell-based models of AD. For each cell type, we summarize significant results presented in Sect. 3. “↑” repre-
sents upregulation or increase, “↓” represents downregulation or decrease
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Table 1   List of publications utilizing human iPSC-derived neural models for studying Alzheimer’s disease
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effectiveness of DNA repair processes [183, 200]. Similarly, 
Ortiz-Virumbrales et al. observed altered electrophysiology 
of neuronal cells in case of an increased Aβ42/40 ratio [179]. 
Additionally, neuronal toxicity and disrupted functionality 
can also be obtained by exogenous Aβ administration [198, 
201]. Notably, these exogenous Aβ oligomers preferentially 
induced toxicity in glutamatergic neurons compared to 
GABAergic neurons [202]. Lastly, studies also showed that 
fAD neurons (PSEN1A246E; PSEN1L150P) were more suscep-
tible to Aβ42 than neurons derived from sAD patients or 
healthy controls [203, 204].

Interestingly, what emerges from recent studies of 
AD-iPSC-derived neurons is that the lipid and cholesterol 
metabolism and the intracellular trafficking defects may be 
an important common pathological process associated with 
AD and other neurodegenerative diseases [189, 205, 206]. A 
recent study by van der Kant showed that cholesteryl esters 
(CE), the storage product of excess cholesterol, are upstream 
regulators of P-TAU proteostasis and are independent of 
APP and Aβ [189]. Several other studies then investigated 
early endosomal-related defects in fAD [191, 193, 194], and 
a recent comprehensive iPSC-based study [185] suggests the 
presence of early endosome enlargement as a potentially uni-
fying pathological hallmark of AD. Moreover, their RNA-
seq analysis and ribosome profiling found multiple common 
endocytic/endosomal trafficking-associated genes dysregu-
lated in all analyzed fAD mutant neurons (i.e., APP-Swe, 
APP-A692G, APP-V717G, PSEN1-M146V, PSEN1-L166P, 
PSEN1-A246E, APP-KO, and PSEN1-null). Many of these 
trafficking-related genes have been previously implicated in 
late-onset AD (e.g., SORL1, CLU, APOE, etc.). This, there-
fore, suggests that a shared network of cellular and molecu-
lar changes may underlie both sAD and fAD pathogenesis 
[185].

Additionally, it is of note that neurodifferentiation mod-
els based on pluripotent iPSCs and/or direct reprogramming 
techniques are beneficial to address the differentiation pro-
pensity of disease-relevant cell types. Curiously, experi-
ments on AD neurons are now showing somewhat contra-
dictory results. On the one hand, several robustly designed 
studies bring evidence that neurons derived from both sAD 

and fAD(PSEN1)-iPSCs differentiate prematurely [170, 171, 
207]. On the contrary, a new publication by Mertens et al. 
very clearly shows that neurons induced directly from AD 
patient’s fibroblasts lack fully differentiated phenotype and 
have downregulated genes related to synaptic transmission, 
ion transport, and synaptic plasticity [180]. Thus, this study 
opens several interesting questions, including whether neu-
ronal changes in AD result from the accumulation of damag-
ing agents or rather a lack of a fully differentiated neuronal 
transcription. They also hypothesize that this “hypo-mature” 
state of AD-induced neurons might relate to the fundamental 
cell biological process of de-differentiation in response to 
injury [180].

Astrocytes

In AD, astrocytes were shown to undergo initial atrophy 
with subsequent reactive astrocytic hypertrophy ([208] and 
reviewed by [209]). Both processes are thought to be accel-
erated by an astrocytic reaction to Aβ fragments in their 
vicinity [210, 211].

Several iPSCs derived fAD [73, 169, 212] and sAD [70, 
74, 205] astrocyte models have been reported thus far (see 
Table 1 for details). In the case of fAD, Oksanen et al. dem-
onstrated that fAD PSEN1 E9 astrocytes show an increased 
release of Aβ42, cytokine profile dysregulation, altered Ca2+ 
homeostasis, increased ROS, and decreased lactate produc-
tion [73]. Fong et al. reported that APP-KO astrocytes show 
reduced cholesterol levels and an elevated expression of the 
regulatory element-binding protein (SREBP), which are both 
downstream consequences of reduced lipoprotein endocy-
tosis [212]. Jones et al. (2017) further showed that induced 
astrocytes derived from both sAD and fAD (PSEN1 M146L) 
patients exhibit a pronounced pathological phenotype. They 
showed significantly less complex morphological appear-
ance, overall atrophic profiles, and abnormal localization of 
key functional astroglial markers (no glial fibrillary acidic 
protein (GFAP) changes but decreased S100B, EAAT1, 
and GS, morphology changes, and cytosolic distribution 
of S100B) [169]. Studies on sAD-iPSC-derived astrocytes 
additionally show APOE4/4 astrocytes less effectively 
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support neuronal survival and synaptogenesis and that the 
astrocytes secrete abundant APOE with APOE4 lipoprotein 
particles less lipidated compared to APOE3 [74]. Lastly, Lin 
et al. (2018) showed impaired Aβ clearance and increased 
cholesterol content of APOE4 astrocytes [213], and a new 
study by Sienski et al. reveals disrupted intracellular lipid 
homeostasis in both astrocytes and microglia [205]. Overall, 
elucidating disease-specific cellular responses in astrocy-
topathies may be a crucial factor in AD progression and 
manifestation.

Oligodendrocytes

Oligodendrocytes generate myelin sheaths around axons. 
However, it has been shown that a subset of proliferative, 
immature oligodendrocytes may play a role in neural repair 
[214]. Studies related to AD showed that the morphology 
of oligodendrocytes is altered in AD [215]. Additionally, 
Aβ oligomers caused a decrease in myelin proteins [216] 
and were toxic to oligodendrocytes [217]. And while oligo-
dendrocytes have been successfully generated from iPSCs 
[104, 218, 219], the assessment of the role they may play 
in AD and their relevance in sAD models have, as yet, not 
been reported [166].

Microglia

Neuroinflammation is implied as one of the defining fea-
tures of neurodegenerative diseases. Under these patho-
logical conditions, microglia adopt a reactive state with 
morphological and functional changes [220]. In AD, the 
first evidence of reactive microglia in neuritic plaques was 
described by Alois Alzheimer himself [221]. Reactive glial 
cells have been since documented in numerous other studies 
[222], where they cluster around Aβ plaques highlighting 
their inability to clear Aβ [223, 224]. Microglia are also 
implicated in the neuroinflammatory component of AD eti-
ology, including cytokine/chemokine secretion, which wors-
ens disease pathology [225]. The microglial reaction was 
considered only incidental and rather a functional response 
of microglia to the deposition of Aβ and neuritic plaques 
formation. However, recent genome-wide association studies 
identified several high-risk AD loci genes, namely TREM2 
[226], Sp1, CD33 [227]. These genes are highly or even 
exclusively expressed in microglia, suggesting that micro-
glial might be crucially involved in the initial causal patho-
genesis of AD [228].

iPSCs-derived microglia (see Table 1 for details) mani-
fested the ability to phagocyte AD-related substances, 
including β-amyloid and Tau oligomers [114]. Moreover, 
once exposed to fibrilar Aβ, microglial cells expressed dif-
ferent gene expression profiles with a predominant increase 
among microglial AD risk genes [114]. In another study, 

AD-iPSCs microglia displayed higher phagocytic ability 
with limited cellular death upon lipopolysaccharide expo-
sure compared to wild-type microglia [229]. Recent studies 
also examined the role of the APOE4 allele in microglial 
cells. Generation of APOE4/4 microglial cells led to sig-
nificant dysregulation of gene expression levels and reduced 
Aβ internalization [213]. Moreover, Lin et al. applied his 
concept of APOE4/4 microglia and APOE3/3 microglia to 
study the ability to internalize Aβ peptides from diffusely Aβ 
affected 3D organoids. APOE3/3 microglial cells had higher 
activity of phagocytosis compared to APOE4/4. Compara-
tively to APOE4, additional studies with microglia-associ-
ated AD-risk factors, i.e., TREM2 [230], were conducted 
to validate the feasibility of AD modeling using the iPSCs 
microglial models.

3D Models

While 2D cellular models of Alzheimer´s disease signifi-
cantly expanded our understanding of AD, it has become 
apparent that more complex models will be needed to 
examine (1) the interaction between multiple cell types con-
nected to AD pathogenesis; (2) complex 3D transcriptom-
ics; (3) role of immune cells; (4) organization of neuronal 
populations; and (5) formation of neurofibrillary tangles 
and plaques in the complex tissue-like environment. This 
absence of cerebral complexity in 2D cell cultures has been 
recently overcome by developing 3D cerebral organoids 
from hESCs [142]. Cerebral organoids recapitulated with a 
remarkable degree of detail human CNS development and 
proved to be an excellent tool for disease modeling, includ-
ing AD [171, 181, 207, 213, 231–236]. Initially, a 3D model 
of human neural stem cells overexpressing mutant PSEN1 
and APP has been reported by Choi et al. [237]. This sys-
tem was based on the culture of neural progenitor (ReN) 
cells in a thick layer of the extracellular matrix. Cells were 
genetically engineered to carry an AD-causing mutation in 
APP or PSEN1, and upon terminal differentiation, amyloid 
plaque-like and neurofibrillary tangle-like structures were 
observed. Functional studies showed that gamma-secretase 
inhibition reduced Aβ formation and led to a decrease in the 
P-Tau level [237].

Since this initial 3D model study of AD, ten publica-
tions described the generation of cerebral organoids from 
both fAD or sAD iPSCs and from the patient with Down 
syndrome (see Table 1 for details). These publications 
report increased Aβ production, formation of Aβ oligomer 
aggregates, increased Tau phosphorylation, synaptic loss, 
and endosomal abnormalities [171, 213, 231, 232, 234, 
235]. Raja et al., as a first one, demonstrated that 3D AD 
cerebral organoids exhibit an increased Aβ42/Aβ40 ratio, 
which is considered one of the most specific biomarkers 
for AD. Following treatment of AD cerebral organoids by a 
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γ-secretase inhibitor and β-secretase inhibitor significantly 
reduced the propensity of β-amyloid accumulation and Tau 
phosphorylation [234]. Interestingly, a new study by Arber 
et al. additionally reports that selected PSEN1 mutations 
may cause premature neurogenesis confirming their data 
from 2D neurons [207]. Additionally, another study utilized 
a small-molecule approach to induce β-amyloid aggrega-
tion posttranslationally by Aftin-5 treatment [233]. Here, 
the potential was extended to non-AD cell lines with Aβ 
shift towards Aβ42 production. Hence ideal for studying 
environmental factors contributing to AD etiopathogenesis.

Interestingly, a recent report shows evidence of innate 
microglia in developing cerebral organoids [238]. Following 
several publications embellishing the proof of a variety of 
macroglia that 3D cerebral organoids display [239, 240], a 
sophisticated approach in studying AD cellular interaction 
in 3D can be adapted. However, the complexity with lim-
ited vasculature [7, 241], fetal-transcriptome [242], relative 
lack of active synapses [232], and low-reproducibility [236] 
will be needed to be addressed in the future. Still, despite 
these limitations, 3D cerebral organoids have demonstrated 
in the last few years to be a powerful toolbox with the unique 
potential to explore novel therapeutic and genetic targets of 
AD.

Conclusions

Taken together, iPSC-based models of AD have, thus far, pro-
vided numerous clues on molecular mechanisms that precede 
the development of AD pathology or confirmed those obtained 
from other model systems. While most of the studies focused 
on studying the AD-affected neurons, essential data was also 
acquired from investigations that focused on neural stem cells, 
glia, and cerebral organoids. Most importantly, the ability of 
these in vitro cultures to react to drug treatment provides hope 
that these models will be relevant on the way to finding a 
much-needed Alzheimer’s disease-modifying drug treatment. 
Finally, possible combination of iPSC-based models with vari-
ous other approaches (i.e., in vitro models, in vivo models, 
medical imaging, biomedical markers) regarding their bio-
logical, genetic, and pathological similarities opens the door 
to further improve our understanding of Alzheimer´s disease.
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