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Abstract 

Background:  Differences in genetics and microenvironment of LUAD patients with or without TP53 mutation were 
analyzed to illustrate the role of TP53 mutation within the carcinogenesis of LUAD, which will provide new concepts 
for the treatment of LUAD.

Methods:    In this study, we used genetics and clinical info from the TCGA database, including somatic mutations 
data, RNA-seq, miRNA-seq, and clinical data. More than one bioinformatics tools were used to analyze the unique 
genomic pattern of TP53-related LUAD.

Results:  According to TP53 gene mutation status, we divided the LUAD patients into two groups, including 265 
in the mutant group (MU) and 295 in the wild-type group (WT). 787 significant somatic mutations were detected 
between the groups, including  mutations in titin (TTN), type 2 ryanodine receptor (RYR2) and CUB and Sushi multiple 
domains 3(CSMD3), which were up-regulated in the MU. However, no significant survival difference was observed. At 
the RNA level, we obtained 923 significantly differentially expressed genes; in the MU, α-defensin 5(DEFA5), pregnancy-
specific glycoprotein 5(PSG5) and neuropeptide Y(NPY) were the most up-regulated genes, glucose-6-phosphatase 
(G6PC), alpha-fetoprotein (AFP) and carry gametocidal (GC) were the most down-regulated genes. GSVA analysis 
revealed 30 significant pathways. Compared with the WT, the expression of 12 pathways in the mutant group was 
up-regulated, most of which pointed to cell division. There were significant differences in tumor immune infiltrating 
cells, such as Macrophages M1, T cells CD4 memory activated, Mast cells resting, and Dendritic cells resting. In terms 
of immune genes, a total of 35 immune-related genes were screened, of which VGF (VGF nerve growth factor inducible) 
and PGC (peroxisome proliferator-activated receptor gamma coactivator) were the most significant up-regulated and 
down-regulated genes, respectively. Research on the expression pattern of immunomodulators found that 9 immune 
checkpoint molecules and 6 immune costimulatory molecules were considerably wholly different between the two 
groups.

Conclusions:  Taking the mutant group as a reference, LUAD patients in the mutant group had significant differences 
in somatic mutations, mRNA-seq, miRNA-seq, immune infiltration, and immunomodulators, indicating that TP53 
mutation plays a crucial role in the occurrence and development of LUAD.
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Background
According to the study in 2020, among all cancers, the 
mortality of lung cancer ranks first, with about 1.8 mil-
lion death occurring, and the incidence of lung cancer 
ranks second, with more than 2.2 million new cases being 
diagnosed [1]. Lung adenocarcinoma (LUAD) is the most 
frequent subtype [2], accounting for more than 40% of all 
lung cancers [3]. Despite considerable progress in both 
diagnosis and treatment, the five-year survival of patients 
with lung cancer remains very poor [4].

TP53, coding the supermolecule p53, is located on 
human chromosome 17p 13.1 and plays a vital role in 
controlling cell cycle progression, aging, DNA repair and 
senescence, cell death, and cell metabolism [5–7]. This 
function is achieved through its wild-type form. Once 
the TP53 gene is mutated, it loses its position as a tumor 
suppressor gene and promotes tumorigenesis at the same 
time [5, 8]. TP53 mutation is considered to be the most 
common kind of gene-specific changes in human can-
cers and occurs in almost every type of human tumours 
[9–11]. Unlike other tumor suppressors that are usually 
inactivated by frameshift or nonsense mutation, most 
of the TP53 mutation are missense mutation, and the 
same is true in lung cancer [9, 12]. Previous studies have 
shown that TP53 mutations can promote the metastasis 
of cancer cells [13], some important somatic mutations 
can affect the effectiveness of LUAD immunotherapy [14, 
15]. In addition, abnormal TP53 is considered to be an 
important prognostic factor for no-small-cell carcinoma 
(NSCLC) [16]. However, to date, it is still unknown how 
TP53 mutation affects LUAD patients.

To study the effect of TP53 mutation on LUAD 
patients, we consistently analyzed changes in somatic 
mutation data, clinical data, immune infiltration data, 
and gene expression obtained from the TCGA data-
base. This research will enhance our understanding of 
TP53 mutation in LUAD and offer a reference for future 
studies.

Materials and methods
Acquisition of LUAD expression data set
VarScan 2-based somatic mutation data were obtained 
from the TCGA website (https://​portal.​gdc.​cancer.​gov/) 
(TCGA_LUAD), RNA and miRNA sequencing data, and 
corresponding clinical data were additionally extracted 
from this website. After matching with somatic muta-
tion data, the RNA data of 523 patients, miRNA data of 
509 patients, and clinical data of 509 patients were finally 

screened for future research between the groups with or 
without TP53 mutation of LUAD patients.

Somatic mutation analysis
According to TP53 gene mutation status, the somatic 
mutation data was divided into a wild-type group 
(WT, n = 295) and a mutant group (MU, n = 265). The 
“maftools” package in R (version 4.0.4) was applied to 
estimate the mutation rate of every gene [17]. The statis-
tical significance threshold was set to an adjusted p-value 
of 0.05.

Summary statistics of clinical features
All clinical data were analyzed using SPSS statistical anal-
ysis software (version 23.0). In the group comparison of 
categorical variables, Pearson’s chi-square was used, with 
p-value = 0.05 as the cutoff [18].

Screening for differentially expressed genes (DEGs)
The original data from the TCGA database were screened 
by removing the data whose average expression value 
was less than 1 in all samples, the remaining data were 
normalized by a weighted trimmed average based on a 
logarithmic ratio method. To obtain DEGs between the 
groups, the mRNA expression data, miRNA expression 
data, and IncRNA expression data were analyzed using 
the R package “edgeR” [19]. Taking the |log2 fold change| 
> 1.0 and an adjusted p-value < 0.05 as the critical value to 
identify differentially expressed genes. To further investi-
gate the relationship between DEGs, the protein-protein 
interactions (PPI) network, transcription factor regula-
tory network, and ceRNA network were constructed and 
analyzed [20]. Cytoscape software (version 3.7.1) was 
used to visualized all networks.

To identify the potential biological function differences 
between WT and MU, R package “clusterProfiler” was 
used to perform gene ontology (GO) analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis on the differentially expressed mRNAs [21]. 
Gene Set Enrichment Analysis (GSEA) was performed 
via GSEA (version 4.0.3), and Gene Set Variation Analy-
sis (GSVA) was performed via the GSVA software pack-
age in the R [22].

Estimation of tumor immune infiltrating cells
To systematically quantify the proportions of immune 
cells in the TCGA_LUAD samples, we uploaded a modi-
fied TCGA RNA-seq dataset with standard annotation 
to the CIBERSOPT portal, and ran the LM22 signature 
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matrix at 1000 permutations, which allows for high sen-
sitivity and specific discrimination of 22 human immune 
phenotypes [23, 24]. Each sample was screened by the 
R package “Genefilter,” and the statistical significance 
threshold was set to a p-value of 0.05. Then the final CIB-
ERSORT output was analyzed.

Analysis of immune‑related genes
In order to obtained immune-related genes differentially 
expressed between the groups, we took the intersection 
of the differentially expressed mRNAs and the immune 
genes set, downloaded from The ImmPort Shared Data 
(https://​www.​immpo​rt.​org/​home). In addition, we com-
pared the expression differences of fifteen immune 
checkpoint molecules and twenty costimulatory mol-
ecules between the groups [25]. The threshold for sig-
nificance was set as p-value < 0.05 and|log2 fold change|> 
1.0.

Results
Differences in somatic mutations
On the basis of the mutation of the TP53 gene in the 
sample tissues, we divided the somatic mutations data 
into a wild group (WT, n = 295) and a mutant group 
(MU, n = 265). We first analyzed the distribution of the 
somatic mutations between the MU and WT (Addi-
tional file 1: Figure S1). To understand the difference in 
clinical features between the WT (n = 274) and the MU 
(n = 235), we compared the age, gender, stage, and TNM 
stage of the two groups (Table 1). The results showed that 
people younger than or equal to 65 years old accounted 
for a higher proportion in the MU. However, no signifi-
cant differences were found in other aspects, such as gen-
der, stage and TNM stage. And no statistically significant 
difference in survival between the groups was observed 
(Fig.  1). We also analyzed the proportions of various 
TP53 mutation in the MU (Additional file 1: Figure S2A). 
The highest proportion of mutation was missense muta-
tion, accounting for more than half (61.9%), followed by 
nonsense mutation (19.71%) and frame_shift_del (9.32%), 
while the remaining mutation types accounted for less 
than10%. We also found that the mutation of TP53 are 
mainly concentrated in the three domains of the P53 pro-
tein, including the Pro-rich domain (PRD), the central 
DNA binding domain (DBD), and the tetramerization 
domain (TD), especially the three sites (R158L/P/AFs*12, 
G245V/S/C, R273L/G/H/C) in the DBD (Additional 
file 1: Figure S2B).

Taking FDR < 0.05 as the screening criteria, 787 sig-
nificant mutations were distinguished between the 
MU and the WT (Fig.  2). The somatic mutation rates 
of titin (TTN; WT, 29% vs. MU, 55%; p < 0.001); type 

2 ryanodine receptor (RYR2; WT,23% vs. MU,47%; 
p < 0.001); CUB and Sushi multiple domains 3(CSMD3; 
WT,23% vs. MU,46%; p < 0.001) and Xin-actin bind-
ing repeat containing 2(XIRP2; WT, 13% vs. MU, 33%; 
p < 0.001) were higher in the MU, while ataxia-tel-
angiectasia mutated (ATM; WT, 11.2% vs. MU, 3.8%; 
p = 0.011) and Kirsten rat sarcoma viral oncogene 
(KRAS; WT, 30.2% vs. MU, 18.5%; p = 0.012) were 
higher in the WT. Additionally, the mutation rate of 
the epidermal growth factor receptor(EGFR) was not 
significantly different between the groups. The somatic 
cell interactions function was performed to detect the 
correlation between the top 25 genes with different 
somatic mutation rates (Additional file  1: Figure S3). 
Except for the closely related TTN, most of the mutated 
genes are mutually exclusive, including the KRAS. The 

Table 1  Clinical features of the TCGA samples

Characteristics Mutation 
(N = 235)

Wild (N = 274) p value

N % N %

Age 0.005

 ≤ 65 127 54.04 109 39.78

 > 65 102 43.41 153 55.84

 NA 6 2.55 12 4.38

Sex 0.994

 Male 109 46.38 127 46.35

 Female 126 53.62 147 53.65

Stage 0.630

 Stage I 120 51.06 155 56.57

 Stage II 60 25.53 59 21.54

 Stage III 38 16.17 45 16.42

 Stage IV 14 5.96 11 4.01

 NA 3 1.28 4 1.46

T 0.565

 T1 75 31.91 93 33.94

 T2 131 55.74 145 52.92

 T3 19 8.09 25 9.12

 T4 8 3.40 11 4.01

 NA 2 0.85 0 0.00

M 0.190

 M0 150 63.83 195 71.17

 M1 14 5.96 11 4.01

 NA 71 30.21 68 24.82

N 0.384

 N0 146 62.13 180 65.69

 N1 50 21.28 47 17.15

 N2 33 14.04 40 14.60

 N3 2 0.85 0 0.00

 NA 4 1.70 7 2.55

https://www.immport.org/home
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results strongly indicated that these mutations might be 
involved in the occurrence and development of LUAD.

Differential genes expression (DEGs)
In order to study the impact of TP53 mutation on gene 
expression, we matched and grouped the obtained 
RNA-seq data with somatic mutation data, and then 

analyzed the differential genes expression between the 
MU (n = 231) and WT (n = 278). Using the WT as a 
standard, 542 up-regulated mRNAs and 381 down-regu-
lated mRNAs were detected from the MU. among which 
alpha-defensin 5 (DEFA5) was the most significantly 
differentially expressed gene (logFC = 7.03, p < < 0.001) 
(Fig. 3A).

Fig. 1  Survival analysis: survival time analysis of 501 patients with TP53 status

Fig. 2  Somatic mutation waterfall map grouped by TP53 status, the left group corresponded to the TP53 mutation group, and the right was the 
TP53 wild group
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To further study the relationship between DEGs, we 
established and analyzed the protein-protein interactions 
(PPIs), which was based on the top 100 DEGs. The results 
showed that INS, NPY(logFC = 5.90, p < < 0.001), and 
AFP were located in the center of the PPI map (Fig. 3B). 
We also constructed the transcription factor regulation 
network of all DEGs and found that the transcription 
factors CHX10, S8 and LHX3 were the hub in the net-
work. (Additional file  1: Figure S4). These genes might 

be associated with the mutation of TP53 between the 
groups.

The correlation between miRNAs and lncRNAs 
with the mutation of TP53
Both miRNAs and lncRNAs play vital roles in epigenetic 
regulation. The differentially expressed miRNAs and 
IncRNAs were calculated according to the above method 
of analyzing mRNAs. 57 up-regulated miRNAs and 17 

Fig. 3  A Volcano map of differential gene expression from TCGA database between the groups with or without TP53 mutation. (Red represents 
high expression in the group with TP53 mutation, blue represents high expression in the group without TP53 mutation). B Protein-protein 
interaction (PPI) network of differently expressed genes
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down-regulated miRNAs were obtained (Additional 
file  1: Figure S5A). MiR-371a-5p was found to be the 
most significant up-regulated (logFC = 7.62, p < 0.0001), 
while miR-122-5p was the most down-regulated 
(logFC = −  3.87, p < 0.0001) miRNAs. At the same time, 
298 up-regulated and 200 down-regulated lncRNAs were 
discovered between the two groups (Additional file  1: 
Figure S5B). Of these IncRNAs, LINC02106 was the most 
substantially up-regulated (logFC = 4.70, p < 0.0001), and 
AC112495.1 was the most significantly down-regulated 
(logFC=  −   4.94, p < 0.0001). Next, a ceRNA network 
composed of differential mRNAs, miRNAs, and lncR-
NAs was established. We found that DLX6-AS1 regu-
lated most miRNAs and mRNAs (Fig. S6), which may be 
related to the mutation of the TP53.

Gene functional analysis
Gene set variation analysis (GSVA) is an unsupervised 
method of gene set enrichment, which is used to evaluate 
pathway activity variation in a simple population in an 
unsupervised manner. GSVA analysis discovered 30 dif-
ferent gene sets between the MU and the WT (p < 0.05). 
Taking the WT as a reference, the expression of 12 path-
ways was up-regulated in the MU, most of which were 
associated with cell division, such as cell cycle, homolo-
gous recombination, and DNA replication (Fig.  4A). To 
understand the functions of DEGs, we performed Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses 
enrichment analysis based on GSEA analysis. Finally, 
it was found that 12 pathways were enriched in the 
MU, most of which were associated with DNA, includ-
ing homologous recombination, DNA replication, and 
mismatch repair. This indicates that the mutation of the 
TP53 gene does have a significant effect on cell division 
(Fig. 4B).

To characterize 923 differentially expressed mRNAs, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis was performed. The results showed that 
23 pathways were enriched, and the significant pathways 
were closely related to metabolism (Fig. 4C).

Immune cell infiltration landscapes in the WT and MU.
We next investigated the distinction in immune infil-

tration between the MU and WT. As shown in Fig. 5A, 
there was a significant difference in the proportion of 22 
tumor immune cell types between WT and MU. Addi-
tionally, the proportion of immune cells was weak to 
moderately correlated (Fig. 5B). We also found that Mac-
rophages M1 (p < 0.001), T cells CD4 memory activated 
(p = 0.006), Mast cells resting (p = 0.018), and Dendritic 
cells resting (p = 0.017) showed significant differences in 
expression (Fig. 5C). The distinction of immune cell infil-
tration between the MU and WT might offer new ideas 

and targets for immunotherapy, which may have a vital 
clinical significance.

Differences in immune genes.
To describe the impact of TP53 gene mutation on 

immune-related genes, we first downloaded a list of 
immune-related genes from The ImmPort Shared Data, 
took the intersection with the previously obtained differ-
entially expressed mRNAs, and performed the differen-
tial analysis of the obtained results, finally screened out 
6 up- regulated and 29 down-regulated immune-related 
genes. (Additional file  1: Figure S7). VGF was the most 
substantially up-regulated (logFC = 1.86, p < 0.0001), 
and PGC was the most significantly down-regulated 
(logFC =  -  4.19, p < 0.0001).In addition, we investigated 
the expression patterns of several immunomodulators 
between the groups, including fifteen immune check-
point molecules (Fig. 6A) and twenty costimulatory mol-
ecules (Fig.  6B). Some highly expressed costimulating 
and co-inhibitory molecules in MU were observed, such 
as PD-1, PD-L1, TNFSF13, and TNFRSF9. This suggests 
that these patients may benefit from immunotherapy.

Discussion
Despite a recent decline in incidence, lung cancer 
remains the leading cause of death by cancer [26]. Pre-
vious studies had shown that compared with the cor-
responding wild-type tumors, TP53 mutant NSCLC 
expressed higher levels of PD-L1 protein, promoted T 
cell infiltration, and enhanced tumor immunogenicity 
[27, 28]. However, the characteristics of patients with 
TP53 mutation in lung adenocarcinoma are still unclear. 
In this study, we have first clarified the effect of TP53 
mutation on the microenvironment and genetics of 
patients with LUAD, which will help us understand the 
underlying molecular mechanisms and be used clinically 
in the future.

The entire TTN gene consists of 364 exons, located 
on chromosome 2q31, and its mutation is thought to be 
related to a variety of skeletal muscle and cardiomyopa-
thy [29]. In our study, we found that the mutation rate of 
TTN was higher in the MU. The previous research has 
proved that TTN and TP53 mutations may have a com-
bined effect in LUSC, and mutation in the TTN gene 
show good predictive value in LUSC, but this effect does 
not apply to LUAD [30]. Another study indicated that the 
frequency of TTN mutation showed the highest correla-
tion with the response rate to immune checkpoint block-
ades for individual tumor types, including LUAD [31].

We also studied the associations of mutation with clini-
cal features and outcomes. We found that the TP53 gene 
had a higher mutation rate in people younger than or 
equal to 65 years old, reaching 53.8%, and it was only 40% 
in people over 65 years.



Page 7 of 13Zeng et al. BMC Pulm Med          (2021) 21:316 	

Fig. 4  A Heatmap of gene set variation analysis for microarray and RNA Seq data (GSVA). B The three most significant path ways of Gene Set 
Enrichment Analysis (GSEA). C Barplot of significantly different pathways from KEGG analysis of all aberrant genes



Page 8 of 13Zeng et al. BMC Pulm Med          (2021) 21:316 

Fig. 5  Immune cell infiltration landscapes in patients of LUAD with or without TP53 mutation. A Relative proportions of immune cell infiltration in 
the wild group and mutant group. B Correlation heat map of immune cells. C Differences in immune cell infiltration abundances between wild and 
mutant group
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old, which was consistent with the results of previous 
studies [32, 33]. We also confirmed that TP53 mutation 
did not affect the prognosis of patients with LUAD, it 
was consistent with the result of the study by Szyman-
owska, A., et  al. [34–39]. However, other studies sug-
gested that patients with mutation of the TP53 gene had 
a poor prognosis [15, 32, 33, 40, 41]. This phenomenon 
was worth studying. In fact, only the OS of patients who 
received specific treatment was considered to be related 

to the mutation of TP53. In contrast, for patients who 
had not received treatment, the mutation of TP53 did not 
affect the prognosis. In addition, we found that there was 
no difference in TP53 mutation between genders; both 
were 47%, the same was true for Marrogi, A. J., et al. [42]

At the same time, we found that the mutation had a sig-
nificant impact on gene expression, such as DEFA5 and 
NPY, which had higher expression in the MU. DEFA5 is 
an alpha-defensins [43], produced and secreted by Paneth 

Fig. 6  Expression of immune modulators (*represents P < 0.05, ** represents P < 0.01, ***represents P < 0.001). Relative expression level of immune 
co-inhibitors (A) and co-stimulators (B)
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cells [44]. It was reported that DEFA5 peptide was highly 
presented in cancers, including lung cancer [45]. In gas-
tric cancer, the overexpression of DEFA5 can inhibit cell 
proliferation and tumor growth [46]. Similarly, in esopha-
geal squamous cell carcinoma, DEFA5 can inhibit the 
growth of cancer cells by down-regulating the expres-
sion of E-cadherin [47]. All these indicated that DEFA5 
may have a specific tumor inhibitory effect. But further 
researches are needed to clarify the specific mechanisms 
of DEFA5 affecting LUAD. NPY gene was not only highly 
expressed in the MU, but also in a relatively central posi-
tion in the PPI map. NPY encoded by the NPY gene is 
a 36 amino acid neuropeptide, which is involved in the 
regulation of a large number of physiological and patho-
physiological processes in the cardiopulmonary system, 
immune system, nervous system and endocrine system 
[48]. Some studies have shown that high expression of 
NPY can affect the cell cycle and promote tumor invasion 
and metastasis [49, 50], also in LUAD [33].

We also studied the changes in the function of differen-
tially expressed genes. The results showed that the effect 
of mutation on gene function was closely related to cell 
division. For instance, after GSVA analysis, we found 
that the cell cycle and homologous recombination were 
significantly up-regulated in the MU. Regulation of cell 
cycle is a complicated biological process, and numerous 
regulatory proteins, including TP53, participate in it [51]. 
Homologous recombination repairs DNA double-strand 
breaks in S-phase post -replication or G2 in a gener-
ally error-free manner [52]. A previous study showed 
that wild-type TP53 could inhibit replication-associated 
homologous recombination [53].

Significantly upregulated and downregulated miRNAs 
were also identified, such as miR-371a-5p (logFC = 7.62, 
p < < 0.001) and miR-122-5p (logFC = −  3.87, p < < 0.001). 
Previous studies have revealed that miR-371a-5p can 
affects the MAPK signaling pathway, which is closely 
related to cell apoptosis and lipid metabolism [54, 55]. 
In contrast, the overexpression of miR-371a-5p can pro-
mote the proliferation and metastasis of cancer cells 
[56]. Research by Yue, L. and J. Guo et  al. showed that 
miR-371a-5p promoted the development of pancreatic 
cancer [57]. However, the role of miR-371a-5p in LUAD 
needs to be further investigated. The low expression of 
miR-122-5p is more common in the MU in our research. 
As a tumor suppressor gene [58], it plays a crucial role 
in inhibiting the metastasis and epithelial-mesenchy-
mal transition of NSCLC [59]. DLX6-AS1 regulated the 
most differentially expressed genes. The high expres-
sion of DLX6-AS1 is related to the disease stage, positive 
lymph node metastasis, and poor tumor differentiation in 
advanced NSCLC [60]. The low expression of DLX6-AS1 
can significantly inhibit the proliferation, migration, and 

invasion of NSCLC cells and induce apoptosis [61–63]. 
But in our study, DLX6-AS1 is highly expressed in the 
MU.

  We have also focused on the relationship between 
TP53 mutation and immunity. In terms of immune genes, 
we found that VGF and PGC are the most apparent up-
regulated and down-regulated immune genes. A study 
indicated that VGF significantly promotes the resist-
ance of human lung cancer cells to EGFR kinase inhibi-
tors and is also related to the poor survival of patients 
with LUAD [64]. Matsumoto, T., et  al. believed that 
VGF is only expressed in neuroendocrine carcinoma-
derived cells and can be used as a new serological diag-
nostic marker for pulmonary neuroendocrine tumors 
[65]. PGC-1α is a crucial transcription regulator of genes 
that control energy metabolism and mitochondrial bio-
genesis through its partner transcription factors: nuclear 
respiratory factors and PPARs [66]. Overexpression of 
PGC-1α enhanced the efficacy of PD-1 blockers in lung 
cancer [67]. Both costimulating and co-inhibitory mol-
ecules have higher expression in the MU, including PD1 
and PDL1. PD1 is located on lymphocytes, and PDL1 is 
located on antigen presenting cells. Their interaction 
leads to tolerance of the immune system to tumor cells. 
Sun, H., et  al. believed that mutant TP53 may enhance 
PD-L1 expression by activating the newly acquired func-
tion of BCL2L1 /JAK3/STAT1 signaling [68]. However, in 
several reports of anti-PD-1/PD-L1 therapy for NSCLC, 
the expression of PD-L1 in tumors has been considered 
to be a standard and predictive biomarker for poor prog-
nosis [14, 69]. Previous studies had shown that the sur-
vival outcome of patients with various types of cancer 
treated by immunotherapy was significantly related to the 
immune cells infiltrated in the tumor [70]. In our study, 
we found that macrophages M1 and T cells CD4 mem-
ory activated were comparatively upregulated in the MU, 
while mast cells resting and dendritic cells resting were 
downregulated. A report indicated that mast cells could 
promote growth and metastasis by producing IL-1β dur-
ing LUAD progression [71].

Our study also has some limitations. First, the infor-
mation from the TCGA database lacks some essential 
clinicopathological information, such as the patient’s 
treatment; secondly, to verify our results, another inde-
pendent cohort study and more in vitro or in vivo studies 
should be conducted.

Conclusions
To sum up, our study described the impact of TP53 gene 
mutations on the genome and microenvironment in 
patients with LUAD. Compared with the WT, patients in 
the MU with LUAD had different microenvironmental 
RNAs and miRNAs, including immune cell infiltration and 



Page 11 of 13Zeng et al. BMC Pulm Med          (2021) 21:316 	

immunomodulators. We hope that this study can deepen 
our understanding of the pathogenesis of TP53 mutant 
LUAD and provide a reference for further research.
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