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Abstract
Avelumab (anti–PD-L1) is an approved anticancer treatment for several indica-
tions. The JAVELIN Gastric 100 phase III trial did not meet its primary objec-
tive of demonstrating superior overall survival (OS) with avelumab maintenance 
versus continued chemotherapy in patients with advanced gastric cancer/gas-
troesophageal junction cancer; however, the OS rate was numerically higher 
with avelumab at timepoints after 12  months. Machine learning (random for-
ests, SIDEScreen, and variable-importance assessments) was used to build mod-
els to identify prognostic/predictive factors associated with long-term OS and 
tumor growth dynamics (TGDs). Baseline, re-baseline, and longitudinal vari-
ables were evaluated as covariates in a parametric time-to-event model for OS 
and Gompertzian population model for TGD. The final OS model incorporated a 
treatment effect on the log-logistic shape parameter but did not identify a treat-
ment effect on OS or TGD. Variables identified as prognostic for longer OS in-
cluded older age; higher gamma-glutamyl transferase (GGT) or albumin; absence 
of peritoneal carcinomatosis; lower neutrophil-lymphocyte ratio, lactate dehy-
drogenase, or C-reactive protein (CRP); response to induction chemotherapy; and 
Eastern Cooperative Oncology Group performance status of 0. Among baseline 
and time-varying covariates, the largest effects were found for GGT and CRP, re-
spectively. Liver metastasis at re-baseline predicted higher tumor growth. Tumor 
size after induction chemotherapy was associated with number of metastatic sites 
and stable disease (vs. response). Asian region did not impact OS or TGD. Overall, 
an innovative workflow supporting pharmacometric modeling of OS and TGD 
was established. Consistent with the primary trial analysis, no treatment effect 
was identified. However, potential prognostic factors were identified.
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INTRODUCTION

Avelumab, an anti–PD-L1 immune checkpoint inhibitor, 
has been approved in various countries as monotherapy for 
metastatic Merkel cell carcinoma and advanced urothe-
lial carcinoma (first-line maintenance and second-line 
therapy) and in combination with axitinib for advanced 
renal cell carcinoma.1-4 JAVELIN Gastric 100 was a phase 
III trial that compared maintenance avelumab treatment 
versus continuation of chemotherapy in patients with ad-
vanced gastric cancer or gastroesophageal junction cancer 
(GC/GEJC) that had not progressed with first-line induc-
tion chemotherapy (Figure  1).5 This trial did not meet 
its primary objective of demonstrating superior overall 
survival (OS) in the avelumab arm. However, in Kaplan-
Meier analyses, OS curves crossed after ~ 12 months, with 
numerically higher OS rates observed in the chemother-
apy arm before 12 months and in the avelumab arm after 
12 months.5 These results raised questions about whether 
a subpopulation exists that could benefit from avelumab.

Machine learning (ML) methods are commonly used 
to identify potential prognostic and predictive factors 
from trial data, with increasing application in the context 
of pharmacometric covariate modeling.6–10 The current 
analysis aimed to develop pharmacometric models that 
applied ML approaches to JAVELIN Gastric 100 trial data, 
with the purpose of identifying prognostic or predictive 

factors for OS and tumor growth dynamics (TGDs; i.e., 
changes in tumor size over time).

MATERIALS AND METHODS

JAVELIN Gastric 100

The design and outcomes of the JAVELIN Gastric 100 trial 
have been reported previously.5 In brief, the study enrolled 
805 patients with unresectable, human epidermal growth 
factor receptor 2–negative (ERBB2–negative), locally ad-
vanced or metastatic GC or GEJC who received 12 weeks 
of first-line induction chemotherapy with oxaliplatin + a 
fluoropyrimidine. Subsequently, 499 patients without pro-
gressive disease (complete or partial response or stable dis-
ease) were randomized 1:1 to receive avelumab 10 mg/kg 	
every 2  weeks (n  =  249) or continued chemotherapy 
(n  =  250), stratified by region (Asia vs. non-Asia). All 
patients received best supportive care (BSC); patients in 
the chemotherapy arm considered ineligible for further 
chemotherapy received BSC only (n = 19). The primary 
end point was OS (defined as time from randomization to 
death). When referring to study data, “baseline” refers to 
values obtained before the 12-week induction period and 
“re-baseline” refers to values obtained at randomization 
(after induction).

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Immune checkpoint inhibitors have limited antitumor activity in patients with 
gastric cancer or gastroesophageal junction cancer (GC/GEJC), but a subset of 
patients obtain clinical benefits. Pharmacometric modeling can identify patient 
and disease factors associated with outcome, potentially enabling more efficient 
selection of therapy.
WHAT QUESTION DID THIS STUDY ADDRESS?
This analysis aimed to identify prognostic or predictive factors in patients with 
advanced GC/GEJC who received maintenance therapy with avelumab or con-
tinued chemotherapy in the JAVELIN Gastric 100 trial. Machine learning was 
used to develop improved models of overall survival (OS) and tumor growth dy-
namics (TGD).
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Advanced models of OS and TGD were generated, and potentially important 
baseline and longitudinal covariates that are prognostic for OS and TGD were 
identified.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This study presents an innovative workflow for modeling OS and TGD in the 
presence of covariate sets during immune checkpoint inhibitor therapy, which 
may be applicable to disease settings beyond GC/GEJC.



      |  335ML-­ENABLED DISEASE MODELING IN GASTRIC CANCER

Analysis overview

Analyses focused on efficacy outcomes (OS and TGD) for 
all randomized patients. Patient and disease characteris-
tics at baseline or re-baseline were evaluated as potential 
predictors. Longitudinal values of laboratory biomark-
ers (i.e., those assessed over time) were considered for 
inclusion in the ML models. For time-invariant values, 
re-baseline values were included as covariates. For time-
varying values, change from baseline to re-baseline and 

individual-predicted post-randomization annual rates of 
change (model described later) were included as covari-
ates in the ML model, whereas actual profiles of those 
identified as relevant were considered in subsequent para-
metric modeling. In this analysis, we screened 32 time-
invariant covariates and 19 time-varying covariates. This 
yielded a total of 89 and 52 covariates entering the ML 
models for OS and TGD, respectively. Modeling method-
ology and software are described in the Supplementary 
Methods.

F I G U R E  1   JAVELIN Gastric 100 trial overview. (a) Study design schematic. (b) Primary analysis of OS.5 Borrowed with permission 
from Moehler M, et al. Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy 
in patients with gastric cancers: results from JAVELIN Gastric 100. J Clin Oncol. 2021;39(9):966–977. https://ascop​ubs.org/doi/full/10.1200/
JCO.20.00892 © American Society of Clinical Oncology. 1L, first line; 5-FU, 5-fluorouracil; BOR, best overall response; BSC, best supportive 
care; CI, confidence interval; GC/GEJC, gastric/gastroesophageal junction cancer; HER2, human epidermal growth factor receptor 2; HR, 
hazard ratio; IV, intravenous; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PRO, patient-reported outcome; 
Q2W, every 2 weeks; QOL, quality of life; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors
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Stability assessment of covariate  
candidates

Both time-invariant and longitudinal covariates were in-
cluded in the ML models. To assess longitudinal covariate 
stability over time, a linear mixed effect model was fitted 
to post-randomization values (Supplementary Methods). 
A covariate was considered time invariant if 50% or more 
patients in each treatment arm had no meaningful trend 
over time (defined as an individual-specific annual rate of 
change larger than the estimated residual error standard 
deviation). For time-invariant biomarkers, re-baseline 
values were used as covariates in subsequent models. For 
time-varying variables, baseline, change from baseline to 
re-baseline, and individual-specific annual rate of change 
were used as covariates (features) in subsequent ML mod-
els. Time-invariant demographic covariates used baseline 
values.

Identification of prognostic and predictive 
markers for OS

To evaluate the relationship between candidate covariates 
and OS, exploratory graphical analysis was performed. 
Prognostic markers were identified using random for-
ests (RFs) with tuned parameters.11 Missing data were 
imputed to the median for continuous covariates and the 
mode for discrete covariates, stratified by treatment arm. 
No imputation was performed for time-varying covariates.

Predictive markers were identified using methods ap-
propriate for exploratory subgroup discovery.12 In partic-
ular, the SIDEScreen procedure (a two-stage algorithm 
for identifying combinations of predictors, i.e., regions in 
the covariate space13) was used to identify subpopulations 
showing significant treatment effects.

For prognostic models, covariate importance was as-
sessed using a combination of the Boruta method,14 the 
permutation method, and a random splits method. The 
assessment criteria aligned with the overall hypothesis-
generating strategy; therefore, the general approach was 
to include covariates that one method deemed import-
ant, while discarding those that neither method selected. 
The Boruta method is a strategy in RF models in which 
randomly permuted copies of the original covariates are 
introduced as candidate predictors in addition to the 
original covariates. Because the permuted variables have 
no relationship to the outcome, the original covariates 
that are selected more frequently than the permuted co-
variate are considered to be important predictors. The 
Boruta method classifies covariates into three categories: 
confirmed, tentative, and rejected. If not rejected by the 
Boruta method, a covariate was considered important and 

included in the parametric model if the importance deter-
mined by either the permutation or random splits method 
was greater than or equal to 25% of the most important 
variable identified (relative importance). If the covariate 
was rejected by the Boruta method, then to be included in 
the parametric model, the relative importance determined 
by the permutation and random splits methods needed to 
be 10% or greater for both methods and 25% or greater for 
one method. For further evaluations, this process was re-
peated, excluding the slopes of time-varying covariates to 
assess variables present only at baseline or re-baseline. For 
evaluating predictive markers, the SIDEScreen procedure 
had a built-in measure of covariate importance.

Development of a parametric time-to-
event model

A parametric time-to-event (TTE) model for OS was con-
structed with re-baseline and time-varying factors. Four 
structural models for the baseline survival distribution 
were evaluated: exponential, Weibull, log-logistic, and 
Gompertz. Time-invariant and re-baseline covariates 
were evaluated for whether they modified the scale pa-
rameter of each model, and time-varying covariates were 
evaluated for whether they modified the baseline hazard 
proportionally. Two choices for how covariates entered 
the model were considered: nonparallel hazard func-
tions to reproduce the crossing of survival curves through 
covariate effects on the scale parameter, and ensuring a 
continuous cumulative hazard function by using pro-
portional hazards effects for time-varying covariates.15 
Equations describing such relationships are reported in 
the Supplementary Methods.

Covariate effects on the shape and scale parameters 
were assumed to be log-linear. Nonlinear associations 
were evaluated if model diagnostics indicated that the lin-
ear association was not appropriate. A treatment effect on 
the shape parameter was also explored based on model di-
agnostic and exploratory plots. Uninformative priors were 
used in the Bayesian modeling. Credible intervals were 
derived from percentiles of the posterior distributions of 
parameters or quantities of interest.

Clinical trial simulations were used to predict land-
mark survival, accounting for variability in the study 
population and uncertainty in model parameters. One 
thousand clinical trials were simulated by resampling the 
patient population and sampling the parameters from the 
posterior distribution. The OS simulations accounted for 
administrative censoring at the end of the trial but not 
patient discontinuations. Arms of equal size to the origi-
nal arms were created. Differences in survival probability 
were computed for landmarks of 12, 18, and 24 months.
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Identification of prognostic and predictive 
markers for TGD

The fundamental approach for identifying prognostic 
and predictive markers for TGD was to use ML (RFs and 
variable importance metrics) approaches on the empiri-
cal Bayes estimates (EBEs) of structural parameters in a 
tumor dynamic model to identify important covariates 
via three steps. First, a nonlinear mixed-effects model 
was constructed for longitudinally measured TGD data. 
Different tumor dynamic models using ordinary differen-
tial equations were explored. The base structural model 
did not include any drug-induced decay process; thus, 
the net growth characterized by a constant rate of growth 
accounted for natural tumor growth and any tumor in-
hibition by therapy. Model evaluations utilized standard 
procedures in population pharmacology modeling.16,17

In the second step, RF methods were used to identify 
prognostic and predictive factors associated with TGD pa-
rameters from a set of 52 covariates. The outcome mod-
eled was individual-predicted (EBE) parameters from the 
TGD model. An RF model for each outcome was used. 
Variables were considered prognostic on a random effect 
if the estimated Shapley importance was greater than 
5% of the interquartile range (IQR) of the random effect. 
The predictive importance of each covariate was assessed 
using a differential effect of the Shapley values. Each co-
variate was discretized into quartiles if there were more 
than four distinct values. Shapley values for each quartile 
within each arm were averaged to calculate a differential 
treatment effect of the covariate in each quartile. If the 
greatest differential treatment effect across the four quar-
tiles was greater than 10% of the IQR, the covariate was 
considered predictive.

Finally, the base model was updated to include the fac-
tors identified in the ML step, resulting in the “final” TGD 
model. Both scientific understanding of the mechanistic 
effect of covariates and visual inspection of the relation-
ship between the sampled EBEs and covariates guided se-
lection of parameter-covariate relationships.

RESULTS

Identification of prognostic and predictive 
markers for OS and development of a 
parametric TTE model

Of 23 longitudinal laboratory values assessed, six were 
determined to be time invariant and 17 time varying 
(Table S1). Although large changes were recorded at the 
last assessment for many patients, these time points had 
minimal effects on the cumulative hazard in subsequent 

modeling. When stratifying by event time quartile, 
changes in the laboratory values from baseline were much 
larger in the first quartile than in the fourth quartile, sug-
gesting that changes in laboratory values were associated 
with OS. Variables concluded to be time-varying (at least 
one arm containing >50% of patients with more than 
one standard deviation change per year) were albumin 
(ALB), alkaline phosphatase (ALP), alanine aminotrans-
ferase, aspartate aminotransferase (AST), C-reactive 
protein (CRP), gamma-glutamyl transferase (GGT), lac-
tate dehydrogenase (LDH), hemoglobin, lymphocytes, 
lymphocyte-leukocyte ratio, neutrophils, platelets, leu-
kocytes, estimated glomerular filtration rate (eGFR), 
platelet-lymphocyte ratio, neutrophil-lymphocyte ratio, 
and inflammation index.

ML covariate screening

Important covariates identified by ML as prognostic were 
mostly the estimated slopes from time-varying labora-
tory values. Among variables observable at re-baseline, 
Eastern Cooperative Oncology Group performance sta-
tus (ECOG PS) and age were identified as important 
(Figure 2a and Table S2). To focus on time-invariant co-
variates observable before maintenance therapy, the im-
portance of variables available only at re-baseline was also 
considered. Additional variables were shown to be impor-
tant; however, the importance of re-baseline ECOG PS 
and age remained, suggesting that the selection was con-
sistent (Figure 2b). The importance of the identified vari-
ables was confirmed by visual inspection of Kaplan-Meier 
curves for OS, given the stratification of variables into 
quartiles. The important time-varying covariates included 
in the parametric model were ALB, ALP, AST, CRP, in-
flammation index, LDH, lymphocyte-leukocyte ratio, 
neutrophil-lymphocyte ratio, and platelet-lymphocyte 
ratio. The important time-invariant covariates included 
in the parametric model were age, re-baseline ECOG PS, 
baseline sum of longest diameters (SLDs), creatine kinase 
(CK), days since diagnosis, eGFR, GGT, heart rate, prior 
gastrectomy, systolic blood pressure, triglycerides, and 
tumor response at re-baseline.

Several of the time-varying laboratory value slopes 
were highly correlated. In particular, absolute correla-
tions between the slopes of platelet-lymphocyte ratio, 
neutrophil-lymphocyte ratio, lymphocyte-leukocyte ratio, 
and inflammation index were greater than 0.70. Thus, 
based on clinical considerations,18–21 only the neutrophil-
lymphocyte ratio was retained for the parametric model.

The SIDEScreen algorithm analysis did not identify 
any potentially predictive covariates. Initially, simple sub-
group analysis identified suggested treatment-modifying 
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F I G U R E  2    Legend on next page
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effects, but these did not withstand adjustment for mul-
tiplicity. As an additional method to assess predictive 
factors, prognostic factors were assessed separately for 
each arm; however, identified variables were consistent. 
Although the order of variable importance among the 
three data sets (avelumab arm, chemotherapy arm, and 
both arms combined) differed, no difference in ranking 
was large enough to suggest a predictive effect.

Parametric TTE model

The log-logistic model provided the best fit to the OS data. 
Exploration of the baseline hazard function showed that 
the log-logistic model best fit the nonmonotonic estimated 
hazard curve for trial arms, both combined and individu-
ally. Maximum likelihood fits for the log-logistic model 
suggested no treatment effect on median OS. Because 
the nonparametric kernel hazard estimator, with an 
Epanechnikov kernel and local optimization of the band-
width, suggested different shapes of the hazard function 
for treatment type, a parameter for this effect was also in-
cluded. ML screening identified both time-invariant (on-
scale parameter/accelerated failure time: treatment, age, 
CK, days since diagnosis, re-baseline ECOG PS, eGFR, 
heart rate, GGT, peritoneal carcinomatosis, prior gastrec-
tomy, systolic blood pressure, SLD at baseline, triglycerides, 
and tumor response at re-baseline) and time-varying (on-
hazard/proportional hazards using longitudinal values: 
ALP, AST, CRP, LDH, ALB, and neutrophil-lymphocyte 
ratio) covariates (Table  S3). The visual predictive check 
(VPC) for the model showed close alignment to observed 
Kaplan-Meier curves (Figure S1) and hazard ratio (Figure 
S2). In a substantial fraction of the posterior draws, both 
the mean hazard function and survival curves exhibited 
crossing of curves during follow-up, replicating observed 
OS data. Different shape parameters and covariate distri-
butions contributed to the crossing of the survival curves. 
Asian versus non-Asian region was not identified as a co-
variate; VPCs stratified by region are shown in Figure S3.

Estimated parameters suggested that the effect of treat-
ment on median OS (i.e., effect on scale parameter) was 
negligible because the point estimate was close to zero 
and the credible intervals extended to both positive and 

negative effects (Figure  3). Furthermore, the credible in-
terval for the treatment effect on the shape parameter 
excluded zero; thus, the probability of a non-negligible 
difference in the shape of the hazard function was high. 
The magnitude of effects on OS of covariates identified as 
prognostic via ML were evaluated further. Specifically, the 
effects of covariates were scaled to the effect on median 
OS between the 5th and 95th percentiles of continuous co-
variates, or a reference value of zero or false for categorical 
covariates. Among time-invariant covariates, the largest 
relative effect was for GGT, with a median difference of 17% 
longer OS (1.42 vs. 1.21 years; 95th percentile to median). 
Among time-varying covariates, the largest effect was for 
CRP, with median hazard ratios of 0.699 for a CRP of 0.50 
versus 2.0 mg/L (5th percentile to median) and 2.01 for a 
CRP of 34.9 versus 2.0 mg/L (95th percentile to median). 
Reference and comparison values for the time-varying co-
variates were derived from observed data at re-baseline.

Time-varying covariates were evaluated using percen-
tiles at re-baseline for comparison. Important variables 
included neutrophil-lymphocyte ratio, LDH, CRP, albu-
min, peritoneal carcinomatosis, and age (Figure 3). Model 
fit was also assessed through stratified VPCs for time-
invariant covariates. A possible lack of model fit was seen 
only in the VPC for heart rate, whereas the others showed 
the observed data within the 95% credible interval range 
for predicted OS curves.

When evaluating the effect size and importance for 
time-varying covariates, trajectories were meaningful, and 
extreme laboratory values and events were correlated. The 
effect for CRP and neutrophil-lymphocyte ratio is shown 
in Figure 4 and Figure S4, respectively. The rapid changes 
in laboratory values close to event times were also demon-
strated by stratifying by first versus fourth quartile of ob-
served event time and assessing median trajectory. The 
first-quartile (shorter OS) had more rapid changes in lab-
oratory values than the fourth-quartile (longer OS) group. 
Changes were similar between treatment arms.

The predicted effect of avelumab on long-term OS was 
evaluated through clinical trial simulation. The probabil-
ity of longer OS in the avelumab arm increased over time, 
from 47% at 12  months after randomization to 76% at 
24 months. Indeed, estimated differences between the ave-
lumab and chemotherapy arms were predicted to increase 

F I G U R E  2   ML variable importance for OS. (a) Relative variable importance per methodology. Covariates included in this plot are 
filtered to those covariates that the Boruta method does not reject, or those covariates where the mean of the relative importance of the other 
two methods is greater than or equal to 0.05. (b) Variable importance for those covariates measurable at re-baseline or baseline, relative to 
the most important covariate for each method. Covariates included in this plot are filtered to those covariates that the Boruta method does 
not reject, or those covariates where the mean of the relative importance of the other two methods is greater than or equal to 0.05. In both 
(a) and (b), the vertical bars show the 10% and 25% relative importance thresholds. *Variables meeting the criteria for consideration in the 
parametric TTE model. ECOG, Eastern Cooperative Oncology Group; ML, machine learning; MSI, microsatellite instability; OS, overall 
survival; SLD, sum of the longest diameter of target lesions
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over time (median difference: 12  months, −0.40%, 95% 
confidence interval [CI], −0.13 to 0.12; 18 months, 3.2%, 
95% CI, −0.088 to 0.16; and 24  months, 4.0%, 95% CI, 
−0.060 to 0.15); however, all included the null value and 
were well below the 10% difference considered clinically 
meaningful (Figure 5 and Figure S5; Table S4).

Identification of prognostic and predictive 
markers for TGD

The goodness of fit and stability of different models for 
TGD were evaluated. The Gompertzian equation was the 

most parsimonious model for providing a good description 
of the data. The base model generally predicted the central 
tendency in TGD data across patients. During the estima-
tion process, a high correlation was observed between in-
terindividual variability (IIV) on Kg and Kd (rate constants 
of growth and deceleration/decline, respectively; the decel-
eration rate relates to natural death of tumor cells). Thus, 
Kd was reformulated as a parameter proportional to Kg 
with a slope and intercept, which allowed the simplifica-
tion of the dimensionality of the omega structure restrict-
ing the correlation between Kd and Kg to be 1.22

The relationship between the two estimated ran-
dom effects (Kg-Kd and baseline tumor size) suggested 

F I G U R E  3   Estimated covariate effects on OS. (a) Estimated covariate effects on median survival for baseline, re-baseline, and stable 
covariates (dots) and 70% (thick line) and 95% (thin line) credible intervals for each time-invariant covariate effect parameter estimated in 
the model. Larger estimates correspond to longer survival. For continuous covariates, the 2.5th and 97.5th percentiles are compared with the 
median. For treatment, the reference is chemotherapy. For the tumor response covariate, the effects are compared with patients who had 
neither stable disease nor response. For re-baseline ECOG, the effect is compared with a re-baseline ECOG score of 0. For prior gastrectomy, 
the baseline reference is no prior gastrectomy. For peritoneal carcinomatosis, the reference is no peritoneal carcinomatosis. The dashed 
lines are at zero, for no effect, and the bounds at ±15% for the posterior median to classify the variable as having a meaningful effect. (b) 
Estimated covariate effects on the hazard ratio for time-varying covariates (dots) and 70% (thick line) and 95% (thin line) credible intervals 
for each time-varying (longitudinal data) covariate effect parameter estimated in the model. Smaller estimates correspond with longer 
survival. The percentiles for reference and comparison values were calculated using the values of the covariate at re-baseline only. The 
dashed lines are at one, for no effect, and the bounds ±1.2 for the posterior median to classify the variable as having a meaningful effect. CR, 
complete response; ECOG, Eastern Cooperative Oncology Group; OS, overall survival; PR, partial response; SD, stable disease; SLD, sum of 
the longest diameter of target lesions
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minimal correlation; thus, the two univariate models 
would not lead to nonidentification of interactions be-
tween the random effects. The RF had modest predictive 
power (19% variance explained) on the baseline TGD 
random effect and weaker predictive power (4% variance 
explained) on the growth-deceleration random effect, 
but this was sufficient to compute variable importance 
scores. All variables considered in the model were as-
sessed with Shapley values, the permutation algorithm, 
and the random splits algorithm. The last two methods 
did not suggest any covariates that were not already cap-
tured with Shapley values (Figure S6). No treatment-
covariate interactions were included in the final model 
because each of the differential treatment effects was 
much less than 10% of the IQR.

Covariate effects on the random effects of the growth-
deceleration rate were liver metastasis and time since 

diagnosis. For the random effect of baseline TGD, covari-
ates identified were number of metastatic sites and tumor 
response at re-baseline.

Identified prognostic and predictive markers on TGD 
dynamics by ML were incorporated to the base model 
(Table S5) as described in Supplementary Methods to gen-
erate the “final” TGD model (Table S6). The objective func-
tion value for the “final” TGD model was ~ 121 points lower 
than for the base TGD model. The effect of liver metastasis 
is illustrated in Figure S7. The mean percentage change in 
TGD at the end of the study (Table S7) was calculated by 
averaging shrinkage (<0%) and growth (>0%). Consistent 
with the OS model, Asian versus non-Asian region was not 
identified as a covariate for the TGD model (Figure S8).

Parameter estimates from the final model and median and 
mean values from the nonparametric bootstrap appeared to 
agree for Kg and tumor size at baseline and covariate effects 

F I G U R E  4   Analysis of C-reactive 
protein (CRP) in relation to overall 
survival. (a) Estimated survival curves for 
smoothed 10th percentile, median, and 
90th percentile CRP levels over time. All 
other variables held constant at reference 
levels. Increases in CRP are estimated 
to have increased risk. Bands are 95% 
credible intervals. (b) Observed data for 
CRP. The first and fourth quartiles of 
known event times are compared to show 
the trajectories of CRP for short-term 
versus long-term survivors
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on tumor baseline (Table 1). However, estimates for covariate 
effects on Kg/Kd seemed to present very high uncertainty, 
with a point estimate that differed between final model es-
timate and median bootstrap analysis. Stratified VPCs were 
generated using the final model parameters to determine 
if observed data were consistent with model-simulated 
median, 2.5th, and 97.5th percentiles, which indicated ac-
ceptable performance of the model in all covariate groups 
(Figures S9–S13). Similar to the base model, the low percent-
age of patients remaining on trial after ~ 300 days (<20%) re-
sulted in overprediction of tumor size profiles, with observed 
percentiles being below simulated trends.

Covariate effects and uncertainty in parameter esti-
mates were presented using forest plots, with ratios and 
95% CIs constructed using 1000 bootstrap parameter sets 
over the reference value from the model fit for each fixed 
covariate effect (Figure S14). Additionally, a forest plot 
displaying the relative change in tumor shrinkage was 
constructed using the same method. The reference patient 
had: three metastatic sites, no liver metastasis, and treat-
ment 53  days after diagnosis. The time duration for the 
tumor shrinkage calculation was 133 days, which was the 
approximate time during maintenance when 50% or more 
of the initial patient population remained in the study. 
Consistent with previous observations, forest plots showed 
high uncertainty on Kg/Kd effects. Figure  6 shows sim-
ulated tumor profiles over time for the reference patient 
compared with patients having selected characteristics.

DISCUSSION

This longitudinal pharmacometric analysis did not iden-
tify any significant treatment effects of avelumab versus 
chemotherapy in the maintenance treatment of advanced 
GC/GEJC, consistent with the primary analysis of the 
JAVELIN Gastric 100 trial. Disease models of OS and 
TGD were developed by integrating covariates efficiently 
informed by ML methods, and covariates potentially 
prognostic of OS and TGD were identified. However, no 
predictive factors associated with OS or TGD during ave-
lumab treatment were found.

The analyses presented provide an example of incor-
porating ML approaches into a traditional pharmacom-
etric workflow. Specifically, separate RF models were 
used to identify prognostic factors for OS and tumor 
size end points, which were then added to paramet-
ric TTE and population TGD models, respectively. 
Supplementing ML with parametric methods resulted 
in more-interpretable final models than the RF alone, 
particularly for noisy time-varying covariates and given 
the multistage trial design (induction and maintenance 
phases). Furthermore, in comparison to parametric 
modeling alone and/or using stepwise regression or hy-
pothesis testing, the ML approach was faster and was 
performed using a single pass over the data. One poten-
tial limitation of this workflow arises in the translation 
of the nonlinear and interacting effects inherent in ML 
models into parametric forms. We started with linear ef-
fects and used diagnostic plots to guide refinement of the 
model. Alternative approaches could also be considered 
to guide the initial choice of covariate-effect relation-
ships, such as using partial dependence or accumulated 
local effect plots.23

Most parameters selected by ML exhibited large ef-
fects in the parametric model, and those with a smaller 
effect may also be relevant for future clinical consider-
ation. For several parameters selected by ML, the effect 
on the estimated mean was small and affected the tail or 
variance of event times, and not the mean, median, or 
central tendency. However, considering the number of 
covariates screened, the plausibility of misspecification 
from random variability in the data, especially when deal-
ing with smaller covariate effects, cannot be ruled out. 
Accordingly, the results presented here should be consid-
ered hypothesis generating. Nevertheless, the longitudinal 
models developed using covariates for OS and TGD pro-
vide a quantitative framework that can be leveraged as a 
disease model for GC in the maintenance setting. In con-
junction, the parametric model estimated linear relation-
ships, and no model misspecification was evident based 
on diagnostic plots. Strong, very nonlinear relationships 
could have been important predictors in ML models for 

F I G U R E  5   The posterior distributions of survival differences 
between the avelumab arm and the chemotherapy/best supportive 
care arm. The probability of the avelumab arm having longer 
survival increased with time, but there was non-negligible 
probability of the avelumab arm having shorter survival at all 
landmark times

Landmark
1 year 1.5 years 2 years
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a small subset of patients with extreme values and would 
have manifested as tail effects.

The assessment of which covariates were stable over 
time was based on models that evaluated linear trends 
in time. Although this approach can identify linear and 
monotonic nonlinear trends, it is possible that longitudi-
nal trends that were nonmonotonic were missed. Based 
on the study design and relatively sparse collection of 
data (median number of observations ranged from 4 to 
8 across 19 time-varying covariates), the ability to detect 
nonmonotonic longitudinal trends was limited. Future 
applications of this methodology should consider the 
possibility of identifying nonmonotonic longitudinal 
trends.

Time-invariant (older age, higher GGT levels, ab-
sence of peritoneal carcinomatosis, complete or partial 
response at re-baseline, and re-baseline ECOG PS of 0) 
and time-varying (lower neutrophil-lymphocyte ratio, 
lower LDH, lower CRP, and higher albumin) covariates 
predicting longer OS were identified. Age, CRP, LDH, 
and neutrophil-lymphocyte ratio have been reported pre-
viously as strong prognostic biomarkers in patients with 
solid tumors.18,19,24–30 In contrast to our results, GGT has 
been reported previously as a marker for poor prognosis in 
patients with GC.31,32 Clinical trial simulations suggested 
a benefit with avelumab treatment at milestone survival 
times greater than 1 year; however, these differences were 
estimated to be less than 10% and were not considered 
clinically meaningful, and the probability of exceeding the 
10% threshold was small at all landmark times considered. 
Predicted differences beyond the median OS (e.g., 2 years) 
were driven primarily through the treatment effect on the 
log-logistic shape parameter. In the log-logistic model, 

the shape parameter influences the variance and, hence, 
the tails of the survival distribution. The inclusion of a 
treatment effect on the shape parameter was necessary to 
characterize the data, even after incorporating the effects 
of time-varying covariates. This further suggests that no 
factor included in the parametric model was sufficient to 
identify a subset of patients likely to survive longer with 
avelumab versus chemotherapy.

Tumor growth inhibition was also modeled with a com-
bination of parametric models and ML. The analysis was 
limited by the modest change in tumor size during main-
tenance treatment and the high percentage of patients 
who discontinued before median tumor shrinkage in the 
population data set was observed. Furthermore, because 
of the shared IIV for tumor growth and deceleration rate 
in the TGD model, interpretation of some identified ef-
fects was complex. The negative slope relating Kg and Kd 
indicates that effects reducing Kg will increase Kd, with 
an overall effect on tumor shrinkage that is greater than 
expected compared with an isolated effect on Kg. Tumor 
size during maintenance was stable. Although time since 
diagnosis was identified as a covariate on tumor growth 
rate constant by ML, simulations from the resulting para-
metric TGD model that included all ML-identified covari-
ates did not reveal a meaningful association, indicating 
that the effect was likely not clinically relevant. Baseline 
characteristics identified by ML as predictors of TGD were 
liver metastasis for tumor growth and deceleration con-
stant rates. The reduced tumor shrinkage associated with 
the presence of liver metastasis, which was more marked 
in the avelumab arm, is consistent with previous reports 
of reduced efficacy with immunotherapy in patients with 
liver metastases.33 Number of metastatic sites and stable 

F I G U R E  6   Simulated tumor profiles 
over time for identified covariates effects. 
Blue: Reference patient with three 
metastatic sites, no liver metastasis, time 
since diagnosis of 53 days, and re-baseline 
response of complete response. Red: 
Simulated scenarios as described in each 
panel. The 95% prediction intervals using 
the nonparametric bootstrap results are 
presented. CR, complete response; PR, 
partial response; SD, stable disease; SLD, 
sum of the longest diameter of target 
lesions

Response at re-baseline: CR or PR Response at re-baseline: SD
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disease at re-baseline were associated with baseline tumor 
size.

JAVELIN Gastric 100 was a multiregional clinical trial, 
including countries in the Eastern Asian region (Japan, 
Republic of Korea, Taiwan, and Thailand) where GC has 
its highest prevalence.34 An important finding was that 
Asian versus non-Asian region was not identified as a 
covariate in OS or TGD models. Assessment of conser-
vation of disease-related intrinsic and extrinsic factors is 
an important consideration when applying International 
Council for Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use guidelines E5 and E17 
for ethnic sensitivity assessment to support Asia-inclusive 
clinical development strategies.35–39 The results of our 
analyses indicate the lack of discernable differences in 
disease progression or outcomes between Asian and non-
Asian populations and are valuable to inform the design 
of Asia-inclusive trials in GC in the postinduction setting.

In conclusion, our analyses established an innovative 
workflow supporting ML-enabled pharmacometric mod-
eling of OS and TGD. No significant treatment effect on 
OS was found within the JAVELIN Gastric 100 population, 
consistent with the primary analysis; thus, no subpopula-
tion for which avelumab was superior to chemotherapy 
was identified. However, a disease model for GC in the 
postinduction/maintenance setting was developed, and 
potential prognostic factors for both OS and TGD were 
identified. These require further confirmation but may in-
form future studies in this setting.
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