
CPT Pharmacometrics Syst Pharmacol. 2022;11:333–347.	 		 		 |	 333www.psp-journal.com

Received:	14	July	2021	 |	 Revised:	24	November	2021	 |	 Accepted:	25	November	2021

DOI:	10.1002/psp4.12754		

A R T I C L E

Pharmacometric modeling and machine learning analyses 
of prognostic and predictive factors in the JAVELIN Gastric 
100 phase III trial of avelumab

Nadia Terranova1 |   Jonathan French2 |   Haiqing Dai3 |   Matthew Wiens2 |   
Akash Khandelwal4 |   Ana Ruiz- Garcia5 |   Juliane Manitz3 |   Anja von Heydebreck4 |   
Mary Ruisi3 |   Kevin Chin3 |   Pascal Girard1 |   Karthik Venkatakrishnan3

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution-NonCommercial	License,	which	permits	use,	distribution	and	reproduction	in	any	
medium,	provided	the	original	work	is	properly	cited	and	is	not	used	for	commercial	purposes.
©	2021	The	healthcare	business	of	Merck	KGaA,	Darmstadt,	Germany	and	Metrum	Research	Group.	CPT: Pharmacometrics & Systems Pharmacology	published	by	Wiley	
Periodicals	LLC	on	behalf	of	American	Society	for	Clinical	Pharmacology	and	Therapeutics

1Merck	Institute	of	Pharmacometrics	
(an	affiliate	of	Merck	KGaA,	Darmstadt,	
Germany),	Lausanne,	Switzerland
2Metrum	Research	Group,	Tariffville,	
Connecticut,	USA
3EMD	Serono,	Billerica,	Massachusetts,	
USA
4The	healthcare	business	of	Merck	
KGaA,	Darmstadt,	Germany
5Metrum	Research	Group,	San	Diego,	
California,	USA

Correspondence
Nadia	Terranova,	Merck	Institute	for	
Pharmacometrics,	EPFL	Innovation	
Park	–		Building	I,	CH-	1015	Lausanne,	
Switzerland.
Email:	nadia.terranova@merckgroup.
com

Funding information
Funding	for	the	JAVELIN	Gastric	
100	trial	and	analyses	reported	here	
was	provided	by	the	healthcare	
business	of	Merck	KGaA,	Darmstadt,	
Germany	(CrossRef	Funder	ID:	
10.13039/100009945),	as	part	of	an	
alliance	between	the	healthcare	
business	of	Merck	KGaA,	Darmstadt,	
Germany,	and	Pfizer.	Medical	writing	
support	was	provided	by	Felicia	
Barklund	of	Clinical	Thinking	and	
funded	by	the	healthcare	business	of	
Merck	KGaA,	Darmstadt,	Germany,	
and	Pfizer

Abstract
Avelumab	(anti–	PD-	L1)	is	an	approved	anticancer	treatment	for	several	indica-
tions.	The	JAVELIN	Gastric	100	phase	III	 trial	did	not	meet	 its	primary	objec-
tive	of	demonstrating	superior	overall	survival	(OS)	with	avelumab	maintenance	
versus	 continued	 chemotherapy	 in	 patients	 with	 advanced	 gastric	 cancer/gas-
troesophageal	 junction	 cancer;	 however,	 the	 OS	 rate	 was	 numerically	 higher	
with	 avelumab	 at	 timepoints	 after	 12  months.	 Machine	 learning	 (random	 for-
ests,	SIDEScreen,	and	variable-	importance	assessments)	was	used	to	build	mod-
els	 to	 identify	 prognostic/predictive	 factors	 associated	 with	 long-	term	 OS	 and	
tumor	 growth	 dynamics	 (TGDs).	 Baseline,	 re-	baseline,	 and	 longitudinal	 vari-
ables	were	evaluated	as	covariates	 in	a	parametric	 time-	to-	event	model	 for	OS	
and	Gompertzian	population	model	for	TGD.	The	final	OS	model	incorporated	a	
treatment	effect	on	the	log-	logistic	shape	parameter	but	did	not	identify	a	treat-
ment	effect	on	OS	or	TGD.	Variables	 identified	as	prognostic	for	 longer	OS	in-
cluded	older	age;	higher	gamma-	glutamyl	transferase	(GGT)	or	albumin;	absence	
of	 peritoneal	 carcinomatosis;	 lower	 neutrophil-	lymphocyte	 ratio,	 lactate	 dehy-
drogenase,	or	C-	reactive	protein	(CRP);	response	to	induction	chemotherapy;	and	
Eastern	Cooperative	Oncology	Group	performance	status	of	0.	Among	baseline	
and	time-	varying	covariates,	the	largest	effects	were	found	for	GGT	and	CRP,	re-
spectively.	Liver	metastasis	at	re-	baseline	predicted	higher	tumor	growth.	Tumor	
size	after	induction	chemotherapy	was	associated	with	number	of	metastatic	sites	
and	stable	disease	(vs.	response).	Asian	region	did	not	impact	OS	or	TGD.	Overall,	
an	 innovative	workflow	supporting	pharmacometric	modeling	of	OS	and	TGD	
was	established.	Consistent	with	the	primary	trial	analysis,	no	treatment	effect	
was	identified.	However,	potential	prognostic	factors	were	identified.
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INTRODUCTION

Avelumab,	an	anti–	PD-	L1	immune	checkpoint	inhibitor,	
has	been	approved	in	various	countries	as	monotherapy	for	
metastatic	 Merkel	 cell	 carcinoma	 and	 advanced	 urothe-
lial	 carcinoma	 (first-	line	 maintenance	 and	 second-	line	
therapy)	 and	 in	 combination	 with	 axitinib	 for	 advanced	
renal	cell	carcinoma.1-	4	JAVELIN	Gastric	100	was	a	phase	
III	trial	that	compared	maintenance	avelumab	treatment	
versus	continuation	of	chemotherapy	in	patients	with	ad-
vanced	gastric	cancer	or	gastroesophageal	junction	cancer	
(GC/GEJC)	that	had	not	progressed	with	first-	line	induc-
tion	 chemotherapy	 (Figure  1).5	 This	 trial	 did	 not	 meet	
its	 primary	 objective	 of	 demonstrating	 superior	 overall	
survival	(OS)	in	the	avelumab	arm.	However,	in	Kaplan-	
Meier	analyses,	OS	curves	crossed	after	~ 12 months,	with	
numerically	higher	OS	rates	observed	in	the	chemother-
apy	arm	before	12 months	and	in	the	avelumab	arm	after	
12 months.5	These	results	raised	questions	about	whether	
a	subpopulation	exists	that	could	benefit	from	avelumab.

Machine	 learning	 (ML)	methods	are	commonly	used	
to	 identify	 potential	 prognostic	 and	 predictive	 factors	
from	trial	data,	with	increasing	application	in	the	context	
of	 pharmacometric	 covariate	 modeling.6–	10	 The	 current	
analysis	 aimed	 to	 develop	 pharmacometric	 models	 that	
applied	ML	approaches	to	JAVELIN	Gastric	100	trial	data,	
with	 the	 purpose	 of	 identifying	 prognostic	 or	 predictive	

factors	 for	 OS	 and	 tumor	 growth	 dynamics	 (TGDs;	 i.e.,	
changes	in	tumor	size	over	time).

MATERIALS AND METHODS

JAVELIN Gastric 100

The	design	and	outcomes	of	the	JAVELIN	Gastric	100	trial	
have	been	reported	previously.5	In	brief,	the	study	enrolled	
805	patients	with	unresectable,	human	epidermal	growth	
factor	 receptor	 2–	negative	 (ERBB2–	negative),	 locally	 ad-
vanced	or	metastatic	GC	or	GEJC	who	received	12 weeks	
of	first-	line	induction	chemotherapy	with	oxaliplatin	+	a	
fluoropyrimidine.	Subsequently,	499	patients	without	pro-
gressive	disease	(complete	or	partial	response	or	stable	dis-
ease)	were	randomized	1:1	to	receive	avelumab	10 mg/kg		
every	 2  weeks	 (n  =  249)	 or	 continued	 chemotherapy	
(n  =  250),	 stratified	 by	 region	 (Asia	 vs.	 non-	Asia).	 All	
patients	 received	 best	 supportive	 care	 (BSC);	 patients	 in	
the	 chemotherapy	 arm	 considered	 ineligible	 for	 further	
chemotherapy	received	BSC	only	 (n = 19).	The	primary	
end	point	was	OS	(defined	as	time	from	randomization	to	
death).	When	referring	to	study	data,	“baseline”	refers	to	
values	obtained	before	the	12-	week	induction	period	and	
“re-	baseline”	 refers	 to	values	obtained	at	 randomization	
(after	induction).

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Immune	checkpoint	inhibitors	have	limited	antitumor	activity	in	patients	with	
gastric	cancer	or	gastroesophageal	 junction	cancer	 (GC/GEJC),	but	a	subset	of	
patients	obtain	clinical	benefits.	Pharmacometric	modeling	can	identify	patient	
and	disease	factors	associated	with	outcome,	potentially	enabling	more	efficient	
selection	of	therapy.
WHAT QUESTION DID THIS STUDY ADDRESS?
This	analysis	aimed	to	identify	prognostic	or	predictive	factors	in	patients	with	
advanced	GC/GEJC	who	received	maintenance	therapy	with	avelumab	or	con-
tinued	chemotherapy	 in	 the	JAVELIN	Gastric	100	 trial.	Machine	 learning	was	
used	to	develop	improved	models	of	overall	survival	(OS)	and	tumor	growth	dy-
namics	(TGD).
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Advanced	 models	 of	 OS	 and	 TGD	 were	 generated,	 and	 potentially	 important	
baseline	and	 longitudinal	 covariates	 that	are	prognostic	 for	OS	and	TGD	were	
identified.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This	 study	 presents	 an	 innovative	 workflow	 for	 modeling	 OS	 and	 TGD	 in	 the	
presence	of	covariate	sets	during	 immune	checkpoint	 inhibitor	 therapy,	which	
may	be	applicable	to	disease	settings	beyond	GC/GEJC.
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Analysis overview

Analyses	focused	on	efficacy	outcomes	(OS	and	TGD)	for	
all	randomized	patients.	Patient	and	disease	characteris-
tics	at	baseline	or	re-	baseline	were	evaluated	as	potential	
predictors.	 Longitudinal	 values	 of	 laboratory	 biomark-
ers	 (i.e.,	 those	 assessed	 over	 time)	 were	 considered	 for	
inclusion	 in	 the	 ML	 models.	 For	 time-	invariant	 values,	
re-	baseline	values	were	included	as	covariates.	For	time-	
varying	 values,	 change	 from	 baseline	 to	 re-	baseline	 and	

individual-	predicted	 post-	randomization	 annual	 rates	 of	
change	 (model	described	 later)	were	 included	as	covari-
ates	 in	 the	 ML	 model,	 whereas	 actual	 profiles	 of	 those	
identified	as	relevant	were	considered	in	subsequent	para-
metric	 modeling.	 In	 this	 analysis,	 we	 screened	 32	 time-	
invariant	covariates	and	19	time-	varying	covariates.	This	
yielded	 a	 total	 of	 89	 and	 52	 covariates	 entering	 the	 ML	
models	for	OS	and	TGD,	respectively.	Modeling	method-
ology	 and	 software	 are	 described	 in	 the	 Supplementary	
Methods.

F I G U R E  1  JAVELIN	Gastric	100	trial	overview.	(a)	Study	design	schematic.	(b)	Primary	analysis	of	OS.5	Borrowed	with	permission	
from	Moehler	M,	et	al.	Phase	III	trial	of	avelumab	maintenance	after	first-	line	induction	chemotherapy	versus	continuation	of	chemotherapy	
in	patients	with	gastric	cancers:	results	from	JAVELIN	Gastric	100.	J Clin Oncol.	2021;39(9):966–	977.	https://ascop	ubs.org/doi/full/10.1200/
JCO.20.00892	©	American	Society	of	Clinical	Oncology.	1L,	first	line;	5-	FU,	5-	fluorouracil;	BOR,	best	overall	response;	BSC,	best	supportive	
care;	CI,	confidence	interval;	GC/GEJC,	gastric/gastroesophageal	junction	cancer;	HER2,	human	epidermal	growth	factor	receptor	2;	HR,	
hazard	ratio;	IV,	intravenous;	OS,	overall	survival;	PD,	progressive	disease;	PFS,	progression-	free	survival;	PRO,	patient-	reported	outcome;	
Q2W,	every	2 weeks;	QOL,	quality	of	life;	R,	randomization;	RECIST,	Response	Evaluation	Criteria	in	Solid	Tumors
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Stability assessment of covariate  
candidates

Both	time-	invariant	and	longitudinal	covariates	were	in-
cluded	in	the	ML	models.	To	assess	longitudinal	covariate	
stability	over	time,	a	linear	mixed	effect	model	was	fitted	
to	post-	randomization	values	 (Supplementary	Methods).	
A	covariate	was	considered	time	invariant	if	50%	or	more	
patients	in	each	treatment	arm	had	no	meaningful	trend	
over	time	(defined	as	an	individual-	specific	annual	rate	of	
change	larger	than	the	estimated	residual	error	standard	
deviation).	 For	 time-	invariant	 biomarkers,	 re-	baseline	
values	were	used	as	covariates	in	subsequent	models.	For	
time-	varying	variables,	baseline,	change	from	baseline	to	
re-	baseline,	and	individual-	specific	annual	rate	of	change	
were	used	as	covariates	(features)	in	subsequent	ML	mod-
els.	Time-	invariant	demographic	covariates	used	baseline	
values.

Identification of prognostic and predictive 
markers for OS

To	evaluate	the	relationship	between	candidate	covariates	
and	 OS,	 exploratory	 graphical	 analysis	 was	 performed.	
Prognostic	 markers	 were	 identified	 using	 random	 for-
ests	 (RFs)	 with	 tuned	 parameters.11	 Missing	 data	 were	
imputed	to	the	median	for	continuous	covariates	and	the	
mode	for	discrete	covariates,	stratified	by	treatment	arm.	
No	imputation	was	performed	for	time-	varying	covariates.

Predictive	markers	were	identified	using	methods	ap-
propriate	for	exploratory	subgroup	discovery.12	In	partic-
ular,	 the	 SIDEScreen	 procedure	 (a	 two-	stage	 algorithm	
for	identifying	combinations	of	predictors,	i.e.,	regions	in	
the	covariate	space13)	was	used	to	identify	subpopulations	
showing	significant	treatment	effects.

For	 prognostic	 models,	 covariate	 importance	 was	 as-
sessed	using	a	 combination	of	 the	Boruta	method,14	 the	
permutation	 method,	 and	 a	 random	 splits	 method.	 The	
assessment	 criteria	 aligned	 with	 the	 overall	 hypothesis-	
generating	 strategy;	 therefore,	 the	general	approach	was	
to	 include	 covariates	 that	 one	 method	 deemed	 import-
ant,	while	discarding	those	that	neither	method	selected.	
The	Boruta	method	 is	a	strategy	 in	RF	models	 in	which	
randomly	permuted	copies	of	 the	original	covariates	are	
introduced	 as	 candidate	 predictors	 in	 addition	 to	 the	
original	covariates.	Because	the	permuted	variables	have	
no	 relationship	 to	 the	 outcome,	 the	 original	 covariates	
that	are	selected	more	frequently	 than	the	permuted	co-
variate	 are	 considered	 to	 be	 important	 predictors.	 The	
Boruta	method	classifies	covariates	into	three	categories:	
confirmed,	 tentative,	and	rejected.	 If	not	 rejected	by	 the	
Boruta	method,	a	covariate	was	considered	important	and	

included	in	the	parametric	model	if	the	importance	deter-
mined	by	either	the	permutation	or	random	splits	method	
was	greater	 than	or	equal	 to	25%	of	 the	most	 important	
variable	 identified	 (relative	 importance).	 If	 the	covariate	
was	rejected	by	the	Boruta	method,	then	to	be	included	in	
the	parametric	model,	the	relative	importance	determined	
by	the	permutation	and	random	splits	methods	needed	to	
be	10%	or	greater	for	both	methods	and	25%	or	greater	for	
one	method.	For	further	evaluations,	this	process	was	re-
peated,	excluding	the	slopes	of	time-	varying	covariates	to	
assess	variables	present	only	at	baseline	or	re-	baseline.	For	
evaluating	predictive	markers,	the	SIDEScreen	procedure	
had	a	built-	in	measure	of	covariate	importance.

Development of a parametric time- to- 
event model

A	parametric	time-	to-	event	(TTE)	model	for	OS	was	con-
structed	 with	 re-	baseline	 and	 time-	varying	 factors.	 Four	
structural	 models	 for	 the	 baseline	 survival	 distribution	
were	 evaluated:	 exponential,	 Weibull,	 log-	logistic,	 and	
Gompertz.	 Time-	invariant	 and	 re-	baseline	 covariates	
were	 evaluated	 for	 whether	 they	 modified	 the	 scale	 pa-
rameter	of	each	model,	and	time-	varying	covariates	were	
evaluated	for	whether	they	modified	the	baseline	hazard	
proportionally.	 Two	 choices	 for	 how	 covariates	 entered	
the	 model	 were	 considered:	 nonparallel	 hazard	 func-
tions	to	reproduce	the	crossing	of	survival	curves	through	
covariate	effects	on	 the	 scale	parameter,	 and	ensuring	a	
continuous	 cumulative	 hazard	 function	 by	 using	 pro-
portional	 hazards	 effects	 for	 time-	varying	 covariates.15	
Equations	 describing	 such	 relationships	 are	 reported	 in	
the	Supplementary	Methods.

Covariate	 effects	 on	 the	 shape	 and	 scale	 parameters	
were	 assumed	 to	 be	 log-	linear.	 Nonlinear	 associations	
were	evaluated	if	model	diagnostics	indicated	that	the	lin-
ear	association	was	not	appropriate.	A	treatment	effect	on	
the	shape	parameter	was	also	explored	based	on	model	di-
agnostic	and	exploratory	plots.	Uninformative	priors	were	
used	 in	 the	 Bayesian	 modeling.	 Credible	 intervals	 were	
derived	from	percentiles	of	the	posterior	distributions	of	
parameters	or	quantities	of	interest.

Clinical	 trial	 simulations	 were	 used	 to	 predict	 land-
mark	 survival,	 accounting	 for	 variability	 in	 the	 study	
population	 and	 uncertainty	 in	 model	 parameters.	 One	
thousand	clinical	trials	were	simulated	by	resampling	the	
patient	population	and	sampling	the	parameters	from	the	
posterior	distribution.	The	OS	simulations	accounted	for	
administrative	 censoring	 at	 the	 end	 of	 the	 trial	 but	 not	
patient	discontinuations.	Arms	of	equal	size	to	the	origi-
nal	arms	were	created.	Differences	in	survival	probability	
were	computed	for	landmarks	of	12,	18,	and	24 months.
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Identification of prognostic and predictive 
markers for TGD

The	 fundamental	 approach	 for	 identifying	 prognostic	
and	predictive	markers	for	TGD	was	to	use	ML	(RFs	and	
variable	 importance	 metrics)	 approaches	 on	 the	 empiri-
cal	Bayes	estimates	(EBEs)	of	structural	parameters	 in	a	
tumor	 dynamic	 model	 to	 identify	 important	 covariates	
via	 three	 steps.	 First,	 a	 nonlinear	 mixed-	effects	 model	
was	 constructed	 for	 longitudinally	 measured	 TGD	 data.	
Different	tumor	dynamic	models	using	ordinary	differen-
tial	 equations	 were	 explored.	 The	 base	 structural	 model	
did	 not	 include	 any	 drug-	induced	 decay	 process;	 thus,	
the	net	growth	characterized	by	a	constant	rate	of	growth	
accounted	 for	 natural	 tumor	 growth	 and	 any	 tumor	 in-
hibition	by	therapy.	Model	evaluations	utilized	standard	
procedures	in	population	pharmacology	modeling.16,17

In	the	second	step,	RF	methods	were	used	to	identify	
prognostic	and	predictive	factors	associated	with	TGD	pa-
rameters	 from	a	set	of	52	covariates.	The	outcome	mod-
eled	was	individual-	predicted	(EBE)	parameters	from	the	
TGD	 model.	 An	 RF	 model	 for	 each	 outcome	 was	 used.	
Variables	were	considered	prognostic	on	a	random	effect	
if	 the	 estimated	 Shapley	 importance	 was	 greater	 than	
5%	of	the	interquartile	range	(IQR)	of	the	random	effect.	
The	predictive	importance	of	each	covariate	was	assessed	
using	a	differential	effect	of	the	Shapley	values.	Each	co-
variate	was	discretized	 into	quartiles	 if	 there	were	more	
than	four	distinct	values.	Shapley	values	for	each	quartile	
within	each	arm	were	averaged	to	calculate	a	differential	
treatment	 effect	 of	 the	 covariate	 in	 each	 quartile.	 If	 the	
greatest	differential	treatment	effect	across	the	four	quar-
tiles	was	greater	 than	10%	of	 the	IQR,	 the	covariate	was	
considered	predictive.

Finally,	the	base	model	was	updated	to	include	the	fac-
tors	identified	in	the	ML	step,	resulting	in	the	“final”	TGD	
model.	Both	scientific	understanding	of	 the	mechanistic	
effect	of	covariates	and	visual	inspection	of	the	relation-
ship	between	the	sampled	EBEs	and	covariates	guided	se-
lection	of	parameter-	covariate	relationships.

RESULTS

Identification of prognostic and predictive 
markers for OS and development of a 
parametric TTE model

Of	 23	 longitudinal	 laboratory	 values	 assessed,	 six	 were	
determined	 to	 be	 time	 invariant	 and	 17	 time	 varying	
(Table S1).	Although	large	changes	were	recorded	at	the	
last	assessment	for	many	patients,	these	time	points	had	
minimal	effects	on	the	cumulative	hazard	in	subsequent	

modeling.	 When	 stratifying	 by	 event	 time	 quartile,	
changes	in	the	laboratory	values	from	baseline	were	much	
larger	in	the	first	quartile	than	in	the	fourth	quartile,	sug-
gesting	that	changes	in	laboratory	values	were	associated	
with	OS.	Variables	concluded	to	be	time-	varying	(at	least	
one	 arm	 containing	 >50%	 of	 patients	 with	 more	 than	
one	 standard	 deviation	 change	 per	 year)	 were	 albumin	
(ALB),	alkaline	phosphatase	(ALP),	alanine	aminotrans-
ferase,	 aspartate	 aminotransferase	 (AST),	 C-	reactive	
protein	 (CRP),	 gamma-	glutamyl	 transferase	 (GGT),	 lac-
tate	 dehydrogenase	 (LDH),	 hemoglobin,	 lymphocytes,	
lymphocyte-	leukocyte	 ratio,	 neutrophils,	 platelets,	 leu-
kocytes,	 estimated	 glomerular	 filtration	 rate	 (eGFR),	
platelet-	lymphocyte	 ratio,	 neutrophil-	lymphocyte	 ratio,	
and	inflammation	index.

ML	covariate	screening

Important	covariates	identified	by	ML	as	prognostic	were	
mostly	 the	 estimated	 slopes	 from	 time-	varying	 labora-
tory	 values.	 Among	 variables	 observable	 at	 re-	baseline,	
Eastern	 Cooperative	 Oncology	 Group	 performance	 sta-
tus	 (ECOG	 PS)	 and	 age	 were	 identified	 as	 important	
(Figure 2a	and	Table S2).	To	focus	on	time-	invariant	co-
variates	observable	before	maintenance	 therapy,	 the	 im-
portance	of	variables	available	only	at	re-	baseline	was	also	
considered.	Additional	variables	were	shown	to	be	impor-
tant;	 however,	 the	 importance	 of	 re-	baseline	 ECOG	 PS	
and	age	remained,	suggesting	that	the	selection	was	con-
sistent	(Figure 2b).	The	importance	of	the	identified	vari-
ables	was	confirmed	by	visual	inspection	of	Kaplan-	Meier	
curves	 for	 OS,	 given	 the	 stratification	 of	 variables	 into	
quartiles.	The	important	time-	varying	covariates	included	
in	 the	parametric	model	were	ALB,	ALP,	AST,	CRP,	 in-
flammation	 index,	 LDH,	 lymphocyte-	leukocyte	 ratio,	
neutrophil-	lymphocyte	 ratio,	 and	 platelet-	lymphocyte	
ratio.	 The	 important	 time-	invariant	 covariates	 included	
in	the	parametric	model	were	age,	re-	baseline	ECOG	PS,	
baseline	sum	of	longest	diameters	(SLDs),	creatine	kinase	
(CK),	days	since	diagnosis,	eGFR,	GGT,	heart	rate,	prior	
gastrectomy,	 systolic	 blood	 pressure,	 triglycerides,	 and	
tumor	response	at	re-	baseline.

Several	 of	 the	 time-	varying	 laboratory	 value	 slopes	
were	 highly	 correlated.	 In	 particular,	 absolute	 correla-
tions	 between	 the	 slopes	 of	 platelet-	lymphocyte	 ratio,	
neutrophil-	lymphocyte	ratio,	lymphocyte-	leukocyte	ratio,	
and	 inflammation	 index	 were	 greater	 than	 0.70.	 Thus,	
based	on	clinical	considerations,18–	21	only	the	neutrophil-	
lymphocyte	ratio	was	retained	for	the	parametric	model.

The	 SIDEScreen	 algorithm	 analysis	 did	 not	 identify	
any	potentially	predictive	covariates.	Initially,	simple	sub-
group	 analysis	 identified	 suggested	 treatment-	modifying	
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effects,	but	 these	did	not	withstand	adjustment	 for	mul-
tiplicity.	 As	 an	 additional	 method	 to	 assess	 predictive	
factors,	 prognostic	 factors	 were	 assessed	 separately	 for	
each	 arm;	 however,	 identified	 variables	 were	 consistent.	
Although	 the	 order	 of	 variable	 importance	 among	 the	
three	 data	 sets	 (avelumab	 arm,	 chemotherapy	 arm,	 and	
both	 arms	 combined)	 differed,	 no	 difference	 in	 ranking	
was	large	enough	to	suggest	a	predictive	effect.

Parametric	TTE	model

The	log-	logistic	model	provided	the	best	fit	to	the	OS	data.	
Exploration	 of	 the	 baseline	 hazard	 function	 showed	 that	
the	log-	logistic	model	best	fit	the	nonmonotonic	estimated	
hazard	curve	for	trial	arms,	both	combined	and	individu-
ally.	 Maximum	 likelihood	 fits	 for	 the	 log-	logistic	 model	
suggested	 no	 treatment	 effect	 on	 median	 OS.	 Because	
the	 nonparametric	 kernel	 hazard	 estimator,	 with	 an	
Epanechnikov	kernel	and	local	optimization	of	the	band-
width,	 suggested	 different	 shapes	 of	 the	 hazard	 function	
for	treatment	type,	a	parameter	for	this	effect	was	also	in-
cluded.	ML	screening	 identified	both	 time-	invariant	 (on-	
scale	 parameter/accelerated	 failure	 time:	 treatment,	 age,	
CK,	 days	 since	 diagnosis,	 re-	baseline	 ECOG	 PS,	 eGFR,	
heart	rate,	GGT,	peritoneal	carcinomatosis,	prior	gastrec-
tomy,	systolic	blood	pressure,	SLD	at	baseline,	triglycerides,	
and	tumor	response	at	re-	baseline)	and	time-	varying	(on-	
hazard/proportional	 hazards	 using	 longitudinal	 values:	
ALP,	 AST,	 CRP,	 LDH,	 ALB,	 and	 neutrophil-	lymphocyte	
ratio)	 covariates	 (Table  S3).	 The	 visual	 predictive	 check	
(VPC)	for	the	model	showed	close	alignment	to	observed	
Kaplan-	Meier	curves	(Figure	S1)	and	hazard	ratio	(Figure	
S2).	In	a	substantial	 fraction	of	 the	posterior	draws,	both	
the	 mean	 hazard	 function	 and	 survival	 curves	 exhibited	
crossing	of	 curves	during	 follow-	up,	 replicating	observed	
OS	data.	Different	shape	parameters	and	covariate	distri-
butions	contributed	to	the	crossing	of	the	survival	curves.	
Asian	versus	non-	Asian	region	was	not	identified	as	a	co-
variate;	VPCs	stratified	by	region	are	shown	in	Figure	S3.

Estimated	parameters	suggested	that	the	effect	of	treat-
ment	 on	 median	 OS	 (i.e.,	 effect	 on	 scale	 parameter)	 was	
negligible	 because	 the	 point	 estimate	 was	 close	 to	 zero	
and	 the	 credible	 intervals	 extended	 to	 both	 positive	 and	

negative	 effects	 (Figure  3).	 Furthermore,	 the	 credible	 in-
terval	 for	 the	 treatment	 effect	 on	 the	 shape	 parameter	
excluded	 zero;	 thus,	 the	 probability	 of	 a	 non-	negligible	
difference	 in	 the	 shape	of	 the	hazard	 function	was	high.	
The	magnitude	of	effects	on	OS	of	covariates	identified	as	
prognostic	via	ML	were	evaluated	further.	Specifically,	the	
effects	 of	 covariates	 were	 scaled	 to	 the	 effect	 on	 median	
OS	between	the	5th	and	95th	percentiles	of	continuous	co-
variates,	or	a	reference	value	of	zero	or	false	for	categorical	
covariates.	 Among	 time-	invariant	 covariates,	 the	 largest	
relative	effect	was	for	GGT,	with	a	median	difference	of	17%	
longer	OS	(1.42	vs.	1.21 years;	95th	percentile	to	median).	
Among	time-	varying	covariates,	 the	 largest	effect	was	for	
CRP,	with	median	hazard	ratios	of	0.699	for	a	CRP	of	0.50	
versus	2.0 mg/L	(5th	percentile	to	median)	and	2.01	for	a	
CRP	of	34.9	versus	2.0 mg/L	(95th	percentile	to	median).	
Reference	and	comparison	values	for	the	time-	varying	co-
variates	were	derived	from	observed	data	at	re-	baseline.

Time-	varying	covariates	were	evaluated	using	percen-
tiles	 at	 re-	baseline	 for	 comparison.	 Important	 variables	
included	 neutrophil-	lymphocyte	 ratio,	 LDH,	 CRP,	 albu-
min,	peritoneal	carcinomatosis,	and	age	(Figure 3).	Model	
fit	 was	 also	 assessed	 through	 stratified	 VPCs	 for	 time-	
invariant	covariates.	A	possible	lack	of	model	fit	was	seen	
only	in	the	VPC	for	heart	rate,	whereas	the	others	showed	
the	observed	data	within	the	95%	credible	interval	range	
for	predicted	OS	curves.

When	 evaluating	 the	 effect	 size	 and	 importance	 for	
time-	varying	covariates,	trajectories	were	meaningful,	and	
extreme	laboratory	values	and	events	were	correlated.	The	
effect	for	CRP	and	neutrophil-	lymphocyte	ratio	is	shown	
in	Figure 4	and	Figure	S4,	respectively.	The	rapid	changes	
in	laboratory	values	close	to	event	times	were	also	demon-
strated	by	stratifying	by	first	versus	fourth	quartile	of	ob-
served	 event	 time	 and	 assessing	 median	 trajectory.	 The	
first-	quartile	(shorter	OS)	had	more	rapid	changes	in	lab-
oratory	values	than	the	fourth-	quartile	(longer	OS)	group.	
Changes	were	similar	between	treatment	arms.

The	predicted	effect	of	avelumab	on	long-	term	OS	was	
evaluated	through	clinical	trial	simulation.	The	probabil-
ity	of	longer	OS	in	the	avelumab	arm	increased	over	time,	
from	 47%	 at	 12  months	 after	 randomization	 to	 76%	 at	
24 months.	Indeed,	estimated	differences	between	the	ave-
lumab	and	chemotherapy	arms	were	predicted	to	increase	

F I G U R E  2  ML	variable	importance	for	OS.	(a)	Relative	variable	importance	per	methodology.	Covariates	included	in	this	plot	are	
filtered	to	those	covariates	that	the	Boruta	method	does	not	reject,	or	those	covariates	where	the	mean	of	the	relative	importance	of	the	other	
two	methods	is	greater	than	or	equal	to	0.05.	(b)	Variable	importance	for	those	covariates	measurable	at	re-	baseline	or	baseline,	relative	to	
the	most	important	covariate	for	each	method.	Covariates	included	in	this	plot	are	filtered	to	those	covariates	that	the	Boruta	method	does	
not	reject,	or	those	covariates	where	the	mean	of	the	relative	importance	of	the	other	two	methods	is	greater	than	or	equal	to	0.05.	In	both	
(a)	and	(b),	the	vertical	bars	show	the	10%	and	25%	relative	importance	thresholds.	*Variables	meeting	the	criteria	for	consideration	in	the	
parametric	TTE	model.	ECOG,	Eastern	Cooperative	Oncology	Group;	ML,	machine	learning;	MSI,	microsatellite	instability;	OS,	overall	
survival;	SLD,	sum	of	the	longest	diameter	of	target	lesions
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over	 time	 (median	 difference:	 12  months,	 −0.40%,	 95%	
confidence	interval	[CI],	−0.13	to	0.12;	18 months,	3.2%,	
95%	 CI,	 −0.088	 to	 0.16;	 and	 24  months,	 4.0%,	 95%	 CI,	
−0.060	to	0.15);	however,	all	included	the	null	value	and	
were	well	below	the	10%	difference	considered	clinically	
meaningful	(Figure 5	and	Figure	S5;	Table S4).

Identification of prognostic and predictive 
markers for TGD

The	 goodness	 of	 fit	 and	 stability	 of	 different	 models	 for	
TGD	were	evaluated.	The	Gompertzian	equation	was	the	

most	parsimonious	model	for	providing	a	good	description	
of	the	data.	The	base	model	generally	predicted	the	central	
tendency	in	TGD	data	across	patients.	During	the	estima-
tion	process,	a	high	correlation	was	observed	between	in-
terindividual	variability	(IIV)	on	Kg	and	Kd	(rate	constants	
of	growth	and	deceleration/decline,	respectively;	the	decel-
eration	rate	relates	to	natural	death	of	tumor	cells).	Thus,	
Kd	 was	 reformulated	 as	 a	 parameter	 proportional	 to	 Kg	
with	a	slope	and	 intercept,	which	allowed	the	simplifica-
tion	of	the	dimensionality	of	the	omega	structure	restrict-
ing	the	correlation	between	Kd	and	Kg	to	be	1.22

The	 relationship	 between	 the	 two	 estimated	 ran-
dom	effects	 (Kg-	Kd	and	baseline	 tumor	 size)	 suggested	

F I G U R E  3  Estimated	covariate	effects	on	OS.	(a)	Estimated	covariate	effects	on	median	survival	for	baseline,	re-	baseline,	and	stable	
covariates	(dots)	and	70%	(thick	line)	and	95%	(thin	line)	credible	intervals	for	each	time-	invariant	covariate	effect	parameter	estimated	in	
the	model.	Larger	estimates	correspond	to	longer	survival.	For	continuous	covariates,	the	2.5th	and	97.5th	percentiles	are	compared	with	the	
median.	For	treatment,	the	reference	is	chemotherapy.	For	the	tumor	response	covariate,	the	effects	are	compared	with	patients	who	had	
neither	stable	disease	nor	response.	For	re-	baseline	ECOG,	the	effect	is	compared	with	a	re-	baseline	ECOG	score	of	0.	For	prior	gastrectomy,	
the	baseline	reference	is	no	prior	gastrectomy.	For	peritoneal	carcinomatosis,	the	reference	is	no	peritoneal	carcinomatosis.	The	dashed	
lines	are	at	zero,	for	no	effect,	and	the	bounds	at	±15%	for	the	posterior	median	to	classify	the	variable	as	having	a	meaningful	effect.	(b)	
Estimated	covariate	effects	on	the	hazard	ratio	for	time-	varying	covariates	(dots)	and	70%	(thick	line)	and	95%	(thin	line)	credible	intervals	
for	each	time-	varying	(longitudinal	data)	covariate	effect	parameter	estimated	in	the	model.	Smaller	estimates	correspond	with	longer	
survival.	The	percentiles	for	reference	and	comparison	values	were	calculated	using	the	values	of	the	covariate	at	re-	baseline	only.	The	
dashed	lines	are	at	one,	for	no	effect,	and	the	bounds	±1.2	for	the	posterior	median	to	classify	the	variable	as	having	a	meaningful	effect.	CR,	
complete	response;	ECOG,	Eastern	Cooperative	Oncology	Group;	OS,	overall	survival;	PR,	partial	response;	SD,	stable	disease;	SLD,	sum	of	
the	longest	diameter	of	target	lesions
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minimal	 correlation;	 thus,	 the	 two	 univariate	 models	
would	 not	 lead	 to	 nonidentification	 of	 interactions	 be-
tween	the	random	effects.	The	RF	had	modest	predictive	
power	 (19%	 variance	 explained)	 on	 the	 baseline	 TGD	
random	effect	and	weaker	predictive	power	(4%	variance	
explained)	 on	 the	 growth-	deceleration	 random	 effect,	
but	 this	 was	 sufficient	 to	 compute	 variable	 importance	
scores.	 All	 variables	 considered	 in	 the	 model	 were	 as-
sessed	with	Shapley	values,	 the	permutation	algorithm,	
and	the	random	splits	algorithm.	The	last	 two	methods	
did	not	suggest	any	covariates	that	were	not	already	cap-
tured	 with	 Shapley	 values	 (Figure	 S6).	 No	 treatment-	
covariate	 interactions	were	 included	 in	 the	 final	model	
because	 each	 of	 the	 differential	 treatment	 effects	 was	
much	less	than	10%	of	the	IQR.

Covariate	effects	on	the	random	effects	of	the	growth-	
deceleration	 rate	 were	 liver	 metastasis	 and	 time	 since	

diagnosis.	For	the	random	effect	of	baseline	TGD,	covari-
ates	identified	were	number	of	metastatic	sites	and	tumor	
response	at	re-	baseline.

Identified	 prognostic	 and	 predictive	 markers	 on	 TGD	
dynamics	 by	 ML	 were	 incorporated	 to	 the	 base	 model	
(Table S5)	as	described	in	Supplementary	Methods	to	gen-
erate	the	“final”	TGD	model	(Table S6).	The	objective	func-
tion	value	for	the	“final”	TGD	model	was	~ 121	points	lower	
than	for	the	base	TGD	model.	The	effect	of	liver	metastasis	
is	illustrated	in	Figure	S7.	The	mean	percentage	change	in	
TGD	at	the	end	of	the	study	(Table S7)	was	calculated	by	
averaging	 shrinkage	 (<0%)	and	growth	 (>0%).	Consistent	
with	the	OS	model,	Asian	versus	non-	Asian	region	was	not	
identified	as	a	covariate	for	the	TGD	model	(Figure	S8).

Parameter	estimates	from	the	final	model	and	median	and	
mean	values	from	the	nonparametric	bootstrap	appeared	to	
agree	for	Kg	and	tumor	size	at	baseline	and	covariate	effects	

F I G U R E  4  Analysis	of	C-	reactive	
protein	(CRP)	in	relation	to	overall	
survival.	(a)	Estimated	survival	curves	for	
smoothed	10th	percentile,	median,	and	
90th	percentile	CRP	levels	over	time.	All	
other	variables	held	constant	at	reference	
levels.	Increases	in	CRP	are	estimated	
to	have	increased	risk.	Bands	are	95%	
credible	intervals.	(b)	Observed	data	for	
CRP.	The	first	and	fourth	quartiles	of	
known	event	times	are	compared	to	show	
the	trajectories	of	CRP	for	short-	term	
versus	long-	term	survivors
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on	tumor	baseline	(Table 1).	However,	estimates	for	covariate	
effects	on	Kg/Kd	seemed	to	present	very	high	uncertainty,	
with	a	point	estimate	that	differed	between	final	model	es-
timate	and	median	bootstrap	analysis.	Stratified	VPCs	were	
generated	 using	 the	 final	 model	 parameters	 to	 determine	
if	 observed	 data	 were	 consistent	 with	 model-	simulated	
median,	 2.5th,	 and	 97.5th	 percentiles,	 which	 indicated	 ac-
ceptable	performance	of	 the	model	 in	all	 covariate	groups	
(Figures	S9–	S13).	Similar	to	the	base	model,	the	low	percent-
age	of	patients	remaining	on	trial	after	~ 300 days	(<20%)	re-
sulted	in	overprediction	of	tumor	size	profiles,	with	observed	
percentiles	being	below	simulated	trends.

Covariate	 effects	 and	 uncertainty	 in	 parameter	 esti-
mates	were	presented	using	 forest	plots,	with	 ratios	and	
95%	CIs	constructed	using	1000	bootstrap	parameter	sets	
over	the	reference	value	from	the	model	fit	for	each	fixed	
covariate	 effect	 (Figure	 S14).	 Additionally,	 a	 forest	 plot	
displaying	 the	 relative	 change	 in	 tumor	 shrinkage	 was	
constructed	using	the	same	method.	The	reference	patient	
had:	three	metastatic	sites,	no	liver	metastasis,	and	treat-
ment	 53  days	 after	 diagnosis.	The	 time	 duration	 for	 the	
tumor	shrinkage	calculation	was	133 days,	which	was	the	
approximate	time	during	maintenance	when	50%	or	more	
of	 the	 initial	 patient	 population	 remained	 in	 the	 study.	
Consistent	with	previous	observations,	forest	plots	showed	
high	 uncertainty	 on	 Kg/Kd	 effects.	 Figure  6	 shows	 sim-
ulated	tumor	profiles	over	time	for	the	reference	patient	
compared	with	patients	having	selected	characteristics.

DISCUSSION

This	longitudinal	pharmacometric	analysis	did	not	iden-
tify	any	significant	 treatment	effects	of	avelumab	versus	
chemotherapy	in	the	maintenance	treatment	of	advanced	
GC/GEJC,	 consistent	 with	 the	 primary	 analysis	 of	 the	
JAVELIN	 Gastric	 100	 trial.	 Disease	 models	 of	 OS	 and	
TGD	were	developed	by	integrating	covariates	efficiently	
informed	 by	 ML	 methods,	 and	 covariates	 potentially	
prognostic	of	OS	and	TGD	were	identified.	However,	no	
predictive	factors	associated	with	OS	or	TGD	during	ave-
lumab	treatment	were	found.

The	analyses	presented	provide	an	example	of	incor-
porating	ML	approaches	into	a	traditional	pharmacom-
etric	 workflow.	 Specifically,	 separate	 RF	 models	 were	
used	 to	 identify	 prognostic	 factors	 for	 OS	 and	 tumor	
size	 end	 points,	 which	 were	 then	 added	 to	 paramet-
ric	 TTE	 and	 population	 TGD	 models,	 respectively.	
Supplementing	 ML	 with	 parametric	 methods	 resulted	
in	 more-	interpretable	 final	 models	 than	 the	 RF	 alone,	
particularly	for	noisy	time-	varying	covariates	and	given	
the	multistage	trial	design	(induction	and	maintenance	
phases).	 Furthermore,	 in	 comparison	 to	 parametric	
modeling	alone	and/or	using	stepwise	regression	or	hy-
pothesis	 testing,	 the	 ML	 approach	 was	 faster	 and	 was	
performed	using	a	single	pass	over	the	data.	One	poten-
tial	limitation	of	this	workflow	arises	in	the	translation	
of	the	nonlinear	and	interacting	effects	inherent	in	ML	
models	into	parametric	forms.	We	started	with	linear	ef-
fects	and	used	diagnostic	plots	to	guide	refinement	of	the	
model.	Alternative	approaches	could	also	be	considered	
to	 guide	 the	 initial	 choice	 of	 covariate-	effect	 relation-
ships,	such	as	using	partial	dependence	or	accumulated	
local	effect	plots.23

Most	 parameters	 selected	 by	 ML	 exhibited	 large	 ef-
fects	 in	 the	 parametric	 model,	 and	 those	 with	 a	 smaller	
effect	 may	 also	 be	 relevant	 for	 future	 clinical	 consider-
ation.	 For	 several	 parameters	 selected	 by	 ML,	 the	 effect	
on	the	estimated	mean	was	small	and	affected	the	tail	or	
variance	 of	 event	 times,	 and	 not	 the	 mean,	 median,	 or	
central	 tendency.	 However,	 considering	 the	 number	 of	
covariates	 screened,	 the	 plausibility	 of	 misspecification	
from	random	variability	in	the	data,	especially	when	deal-
ing	 with	 smaller	 covariate	 effects,	 cannot	 be	 ruled	 out.	
Accordingly,	the	results	presented	here	should	be	consid-
ered	hypothesis	generating.	Nevertheless,	the	longitudinal	
models	developed	using	covariates	for	OS	and	TGD	pro-
vide	a	quantitative	framework	that	can	be	leveraged	as	a	
disease	model	for	GC	in	the	maintenance	setting.	In	con-
junction,	the	parametric	model	estimated	linear	relation-
ships,	 and	 no	 model	 misspecification	 was	 evident	 based	
on	 diagnostic	 plots.	 Strong,	 very	 nonlinear	 relationships	
could	 have	 been	 important	 predictors	 in	 ML	 models	 for	

F I G U R E  5  The	posterior	distributions	of	survival	differences	
between	the	avelumab	arm	and	the	chemotherapy/best	supportive	
care	arm.	The	probability	of	the	avelumab	arm	having	longer	
survival	increased	with	time,	but	there	was	non-	negligible	
probability	of	the	avelumab	arm	having	shorter	survival	at	all	
landmark	times

Landmark
1 year 1.5 years 2 years
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a	small	subset	of	patients	with	extreme	values	and	would	
have	manifested	as	tail	effects.

The	assessment	of	which	covariates	were	stable	over	
time	 was	 based	 on	 models	 that	 evaluated	 linear	 trends	
in	time.	Although	this	approach	can	identify	linear	and	
monotonic	nonlinear	trends,	it	is	possible	that	longitudi-
nal	trends	that	were	nonmonotonic	were	missed.	Based	
on	 the	 study	 design	 and	 relatively	 sparse	 collection	 of	
data	 (median	number	of	observations	ranged	 from	4	 to	
8	across	19	time-	varying	covariates),	the	ability	to	detect	
nonmonotonic	 longitudinal	 trends	 was	 limited.	 Future	
applications	 of	 this	 methodology	 should	 consider	 the	
possibility	 of	 identifying	 nonmonotonic	 longitudinal	
trends.

Time-	invariant	 (older	 age,	 higher	 GGT	 levels,	 ab-
sence	 of	 peritoneal	 carcinomatosis,	 complete	 or	 partial	
response	 at	 re-	baseline,	 and	 re-	baseline	 ECOG	 PS	 of	 0)	
and	 time-	varying	 (lower	 neutrophil-	lymphocyte	 ratio,	
lower	 LDH,	 lower	 CRP,	 and	 higher	 albumin)	 covariates	
predicting	 longer	 OS	 were	 identified.	 Age,	 CRP,	 LDH,	
and	neutrophil-	lymphocyte	ratio	have	been	reported	pre-
viously	as	strong	prognostic	biomarkers	 in	patients	with	
solid	tumors.18,19,24–	30	In	contrast	to	our	results,	GGT	has	
been	reported	previously	as	a	marker	for	poor	prognosis	in	
patients	with	GC.31,32	Clinical	trial	simulations	suggested	
a	benefit	with	avelumab	 treatment	at	milestone	survival	
times	greater	than	1 year;	however,	these	differences	were	
estimated	 to	 be	 less	 than	 10%	 and	 were	 not	 considered	
clinically	meaningful,	and	the	probability	of	exceeding	the	
10%	threshold	was	small	at	all	landmark	times	considered.	
Predicted	differences	beyond	the	median	OS	(e.g.,	2 years)	
were	driven	primarily	through	the	treatment	effect	on	the	
log-	logistic	 shape	 parameter.	 In	 the	 log-	logistic	 model,	

the	shape	parameter	influences	the	variance	and,	hence,	
the	 tails	 of	 the	 survival	 distribution.	 The	 inclusion	 of	 a	
treatment	effect	on	the	shape	parameter	was	necessary	to	
characterize	the	data,	even	after	incorporating	the	effects	
of	 time-	varying	covariates.	This	 further	 suggests	 that	no	
factor	included	in	the	parametric	model	was	sufficient	to	
identify	a	subset	of	patients	likely	to	survive	longer	with	
avelumab	versus	chemotherapy.

Tumor	growth	inhibition	was	also	modeled	with	a	com-
bination	of	parametric	models	and	ML.	The	analysis	was	
limited	by	the	modest	change	in	tumor	size	during	main-
tenance	 treatment	 and	 the	 high	 percentage	 of	 patients	
who	discontinued	before	median	tumor	shrinkage	in	the	
population	data	set	was	observed.	Furthermore,	because	
of	the	shared	IIV	for	tumor	growth	and	deceleration	rate	
in	 the	 TGD	 model,	 interpretation	 of	 some	 identified	 ef-
fects	was	complex.	The	negative	slope	relating	Kg	and	Kd	
indicates	 that	effects	 reducing	Kg	will	 increase	Kd,	with	
an	overall	effect	on	tumor	shrinkage	that	is	greater	than	
expected	compared	with	an	isolated	effect	on	Kg.	Tumor	
size	during	maintenance	was	stable.	Although	time	since	
diagnosis	was	 identified	as	a	covariate	on	 tumor	growth	
rate	constant	by	ML,	simulations	from	the	resulting	para-
metric	TGD	model	that	included	all	ML-	identified	covari-
ates	 did	 not	 reveal	 a	 meaningful	 association,	 indicating	
that	the	effect	was	likely	not	clinically	relevant.	Baseline	
characteristics	identified	by	ML	as	predictors	of	TGD	were	
liver	 metastasis	 for	 tumor	 growth	 and	 deceleration	 con-
stant	rates.	The	reduced	tumor	shrinkage	associated	with	
the	presence	of	liver	metastasis,	which	was	more	marked	
in	the	avelumab	arm,	is	consistent	with	previous	reports	
of	reduced	efficacy	with	immunotherapy	in	patients	with	
liver	metastases.33	Number	of	metastatic	sites	and	stable	

F I G U R E  6  Simulated	tumor	profiles	
over	time	for	identified	covariates	effects.	
Blue:	Reference	patient	with	three	
metastatic	sites,	no	liver	metastasis,	time	
since	diagnosis	of	53 days,	and	re-	baseline	
response	of	complete	response.	Red:	
Simulated	scenarios	as	described	in	each	
panel.	The	95%	prediction	intervals	using	
the	nonparametric	bootstrap	results	are	
presented.	CR,	complete	response;	PR,	
partial	response;	SD,	stable	disease;	SLD,	
sum	of	the	longest	diameter	of	target	
lesions

Response at re-baseline: CR or PR Response at re-baseline: SD
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disease	at	re-	baseline	were	associated	with	baseline	tumor	
size.

JAVELIN	Gastric	100	was	a	multiregional	clinical	trial,	
including	 countries	 in	 the	 Eastern	 Asian	 region	 (Japan,	
Republic	of	Korea,	Taiwan,	and	Thailand)	where	GC	has	
its	 highest	 prevalence.34	 An	 important	 finding	 was	 that	
Asian	 versus	 non-	Asian	 region	 was	 not	 identified	 as	 a	
covariate	 in	 OS	 or	 TGD	 models.	 Assessment	 of	 conser-
vation	of	disease-	related	intrinsic	and	extrinsic	factors	is	
an	important	consideration	when	applying	International	
Council	for	Harmonisation	of	Technical	Requirements	for	
Pharmaceuticals	 for	 Human	 Use	 guidelines	 E5	 and	 E17	
for	ethnic	sensitivity	assessment	to	support	Asia-	inclusive	
clinical	 development	 strategies.35–	39	 The	 results	 of	 our	
analyses	 indicate	 the	 lack	 of	 discernable	 differences	 in	
disease	progression	or	outcomes	between	Asian	and	non-	
Asian	populations	and	are	valuable	to	inform	the	design	
of	Asia-	inclusive	trials	in	GC	in	the	postinduction	setting.

In	conclusion,	our	analyses	established	an	innovative	
workflow	supporting	ML-	enabled	pharmacometric	mod-
eling	of	OS	and	TGD.	No	significant	 treatment	effect	on	
OS	was	found	within	the	JAVELIN	Gastric	100	population,	
consistent	with	the	primary	analysis;	thus,	no	subpopula-
tion	 for	 which	 avelumab	 was	 superior	 to	 chemotherapy	
was	 identified.	 However,	 a	 disease	 model	 for	 GC	 in	 the	
postinduction/maintenance	 setting	 was	 developed,	 and	
potential	 prognostic	 factors	 for	 both	 OS	 and	 TGD	 were	
identified.	These	require	further	confirmation	but	may	in-
form	future	studies	in	this	setting.
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