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Abstract
Deformation imaging by echocardiography is a well-established research tool
which has been gaining interest from clinical cardiologists since the introduction
of speckle tracking. Post-processing of echo images to analyze deformation
has become readily available at the fingertips of the user. New parameters
such as global longitudinal strain have been shown to provide added diagnostic
value, and ongoing efforts of the imaging societies and industry aimed at
harmonizing methods will improve the technique further. This review focuses
on recent advances in the field of echocardiographic strain and strain rate
imaging, and provides an overview on its current and potential future clinical
applications.
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Introduction
For decades, two-dimensional (2D) and Doppler echocardiography 
were the central pillars of evaluating left ventricular (LV) function. 
For purely practical reasons, many clinicians still resort to measure-
ments of LV ejection fraction (EF) as well as the visual analysis of 
myocardial wall motion when they evaluate LV global and regional 
performance. However, these methods have a significant inter-
observer variability as they depend on the skills and experience 
of the user. The undisputed need for simple, readily accessible 
and reliable methods for evaluating function has driven industry 
towards the development of semi- or fully- automated methods and 
post-processing tools for quantifying LV function.

Starting from first experiences with tissue Doppler, velocity  
imaging was followed by deformation imaging. But with the intro-
duction of speckle tracking for analyzing images, quantitative 
analysis of myocardial function by deformation imaging had its  
breakthrough into clinical echocardiography. The recent recom-
mendations released by the European Association of Cardiovascular 
Imaging (EACVI) and the American Society of Echocardiography 
(ASE) acknowledged the additional value of deformation measure-
ments over traditional functional parameters, such as LV EF, and 
recommended the technique now for clinical use1. This review will 
discuss the most recent developments in the field of strain imaging 
and the application of the method in the clinical setting.

What is strain?
Strain is defined as the fractional change in length of a myocar-
dial segment relative to its baseline length, and it is expressed as 
a percentage. Strain rate is the temporal derivative of strain, and 
it provides information on the speed at which the deformation 
occurs. Strain is a vector and the complete description of the com-
plex deformation of a piece of myocardium requires three normal 
and six shear strain components. For practical reasons, the normal 
strains which are preferred for clinical use are oriented along the 
coordinate system of the LV; they describe radial thickening and 
thinning as well as circumferential and longitudinal shortening and 
lengthening. Lengthening or thickening of the myocardium is rep-
resented by positive strain values, whereas negative values repre-
sent shortening or thinning. The most commonly used parameter is 
longitudinal strain, which can be expected to be around 20% in all 
regions of the LV2.

Strain is ideally suited to quantify myocardial function regionally, 
but with the introduction of speckle tracking, a new parameter 
for global LV function assessment called “global strain” has been 
introduced. In the longitudinal direction, global longitudinal strain 
reflects the deformation along the entire LV wall which is visible in 
an apical image. The measurements from all three apical views are 
combined to give an average GLS value.

It must be noted that myocardial deformation is load-dependent. 
Therefore, strain and strain rate measurements must be interpreted 
considering ventricular wall thickness and shape as well as pre- and 
after-load.

How to measure strain?
Tissue Doppler imaging
Tissue Doppler Imaging (TDI) was the first method used for directly 
measuring myocardial deformation by echocardiography. Since a 
regional velocity gradient is analytically identical with the temporal 
derivative of a change in length, strain rate can be directly calculated 
from two velocity samples at a known distance apart. Integrating 
strain rate over time results in strain3. The method is well validated4 
and has been shown to provide valuable data in a wide range of 
conditions5. It benefits particularly from the high frame rate of 
echocardiographic TDI and therefore is the method of choice in all 
situations where short-lived mechanical events and fast changes in 
deformation (e.g., in diastole) have to be measured.

Speckle-tracking echocardiography
Just over a decade ago, speckle-tracking echocardiography (STE) 
was proposed6,7 and validated8–10 as an alternative tool for meas-
uring myocardial function. Observations in large patient popula-
tions showed encouraging results regarding its applicability8,11 
in the clinical setting. The tracking algorithm identifies specific  
myocardial patterns (commonly named “speckles” or “features”) 
on conventional B-mode echocardiographic images and follows the 
motion of these patterns frame-by-frame. The potential to track the 
speckles in any direction within a 2D image allows the calculation 
of myocardial velocities, displacement, strain and strain rate in any 
given direction. This multidirectional tracking ability along with its 
angle independency12 are often regarded as major advantages over 
TDI. However, STE has also been shown to depend significantly on 
good image quality and proper image geometry. Because speckle 
tracking is derived from grey-scale images which have lower frame 
rates than TDI, measurements of motion and deformation are 
most reliable for events that last longer, such as systole. Tracking-
based measurements of velocity and rate of deformation, however, 
should only be attempted with caution. The fast and user-friendly  
(semi-)automated post-processing is the biggest advantage of the 
technique.

Three-dimensional speckle-tracking echocardiography
In theory, tracking can be performed in all three dimensions 
when three-dimensional (3D) echocardiographic image data are  
available. However, the problems of frame rate and image quality as 
explained for 2D tracking are potentiated in 3D, while the advan-
tage of a fully three-dimensional deformation analysis remains a 
hypothesis. Therefore, 3D STE must currently be regarded as an 
experimental method13.

Definitions and conventions
To achieve reproducible measurements, the method of measuring 
strain needs to be defined and communicated together with the 
result. The definition comprises not only the interrogated deforma-
tion component (longitudinal, circumferential, or radial) but also 
the sampling position within the myocardium (e.g., endocardial, 
midwall, or full wall) and the temporal definition of the measured 
parameter, as conventions are lacking in this field and the defi-
nitions are dependent on the vendor of the analysis software. In  
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particular, definitions of timing can influence the measurement 
without being noticed by the user.

Myocardial deformation is a cyclical process, and the definition 
of when in this cycle the myocardium can be assumed to have 
reached its “baseline length” is completely arbitrary. However, it is 
extremely relevant for defining what “zero strain” is. In physiology 
lessons, we are taught to consider end-diastole as the reference point 
in the cardiac cycle, but this is a difficult definition as it requires 
the mitral valve closure to be measured. Therefore, most strain  
analysis softwares use surrogate parameters such as the R-peak of 
the QRS complex in the electrocardiogram. The time of the R-peak,  
however, can deviate considerably from the true mitral valve clo-
sure time, in particular when conduction delays are present14.

A similar question occurs when it comes to the definition of  
end-systole. In physiology, we use the time of aortic valve closure. 
In strain software, however, several vendors use the nadir of the 
global strain or volume curve as an approximation, since it can be 
calculated easily from the tracking data. Again, particularly in con-
duction delays or regional dysfunction, this surrogate can be very 
wrong14. Therefore, a good software should allow the measurement 
of aortic valve closure and its implementation in the strain analysis.

Figure 1 displays the impact of timing changes on strain measure-
ments. Figure 2 shows an overview of commonly used definitions, 

such as peak systolic strain, end-systolic strain, post-systolic strain 
(PSS), and peak strain. As can be seen, the definition of end-systole 
is of particular interest, as derived parameters such as post-systolic 
shortening directly depend on it.

Recent clinical applications of deformation imaging
In recent years, functional imaging based on speckle tracking has 
entered the clinical arena. Hundreds of publications have explored 
the potential of STE to improve the prognostic and diagnostic accu-
racy of echocardiography in a wide variety of cardiac pathologies 
associated with LV dysfunction.

Prognostic implications
In the general population, lower GLS was shown to be a powerful 
and independent predictor for vascular events such as stroke and 
myocardial infarction and for new onset of atrial fibrillation15,16. 
GLS also demonstrated prognostic value for adverse outcomes in 
patients with heart failure17–19, coronary artery disease (CAD)20–22, 
valvular heart disease23,24, and cardiomyopathies25.

Furthermore, GLS proved to be a superior predictor of all-cause 
mortality when compared with LV EF and myocardial wall motion 
in patients with CAD26,27 or chronic kidney disease28. Longitudinal 
strain measurements also showed encouraging results in identifying 
early LV impairment in patients undergoing chemotherapy29,30 and 
in subjects with chronic nephropathy31 or diabetes mellitus32.

Figure 1. End-systolic strain variability due to changes in timing definitions. A) Speckle tracking longitudinal strain in a dilated ventricle 
with left bundle branch block. The yellow and blue dot indicate the origin of the strain curves of the same colour in the lower panels, where in 
addition a dotted white curve represents global longitudinal strain. (B) Correct definition of end-diastole (ED) and end-systole (ES). (C) The 
definition of ES has been moved by + 4 frames (green arrow indicates initial ES; green dashed line indicates current ES). Note the impact on 
the measured systolic strain value. (D) Here, the definition of ED has been moved by + 4 frames (white arrow indicates initial ED; white dashed 
line indicates current ED). Also, in this case, the measurement of end-systolic strain is indirectly affected due to a shift in baseline.

A

B C D
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Coronary artery disease
Possibly the most valuable clinical application of strain measure-
ments is the evaluation of regional dysfunction in patients with 
CAD. Early experimental validation against sonomicrometry 
showed that both Doppler-derived4 and STE-derived33 longitudinal 
strain can detect the presence of ischemia. Additionally, encourag-
ing data were reported with respect to the ability of strain measure-
ments to predict the extent of the ischemic area34 and to differentiate 
between transmural and non-transmural scar35.

PSS, defined as the presence of regional myocardial shortening 
after aortic valve closure, is considered a hallmark for myocardial 
ischemia (Figure 3). The presence of PSS in areas with ischemic 
insult has been demonstrated in early studies by using TDI-derived 
measurements36,37. A longer persistence of the PSS after an ischemic 
event was associated with more severe coronary obstruction38. Nev-
ertheless, it is important to consider that although PSS is a very 
sensitive marker of regional dysfunction, it is never specific for a 
certain pathology; PSS always needs to be interpreted in a clinical 
or pathophysiological context or both. PSS at rest can be a sign of 
ischemia, myocardial scar, or other conditions36. PSS which occurs 
during stress echocardiography, however, is very likely to be caused 
by ischemia38, so it can improve the accuracy of detecting CAD  

during a dobutamine stress test39. Measurements of longitudinal 
strain during dobutamine stress echocardiography for detecting  
CAD were reported to be feasible in 75–100%40,41. Whether these 
numbers are realistic in a routine clinical scenario, however, remains 
doubtful.

LV functional dispersion and dyssynchrony
Strain imaging allows the assessment of asynchronous LV defor-
mation (e.g., by measuring the time to peak strain). Haugaa et al. 
demonstrated in patients with CAD that abnormalities in syn-
chronicity, referred to as mechanical dispersion and defined as the 
standard deviation of the time to peak regional shortening, could 
identify those with high risk for arrhythmias42. An example of 
larger mechanical dispersion due to the presence of ischemia when  
compared with normal myocardium is presented in Figure 4.

In past years, many indices have been suggested to identify  
potential responders to cardiac resynchronization therapy (CRT). 
Initial parameters were based on time-to-peak velocity measure-
ments and could successfully detect dyssynchrony but failed to 
show added predictive value in prospective clinical trials43–48. The 
reason can be found in the inability of velocity measurements to 
distinguish wall motion due to contraction and wall motion due to 

Figure 2. Overview and definition of commonly used strain measurements. Peak systolic strain (SS) is always measured before aortic 
valve closure (AVC). End-systolic strain (ES) is measured on AVC. Post-systolic strain (PSS) peaks after AVC.
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Figure 3. Abnormal deformation in myocardial infarction. (A) Segmental longitudinal strain curves in an apical two-chamber view of a 
patient with inferior infarction. The bold yellow curve is derived from the infarcted inferobasal segment. Note the pronounced post-systolic 
shortening (arrow). (B) Cardiac magnetic resonance imaging with delayed enhancement of the same patient. A scar is present in the basal 
inferior region (arrows). Abbreviations: AVC, aortic valve closure; GS, global strain.

Figure 4. Mechanical dispersion (MD) of the segmental peak longitudinal strain. (A) Normal heart. All strain curves peak around aortic 
valve closure (AVC). (B) Infarct patient with inducible arrhythmias in the electrophysiology lab. Note the wide dispersion of the segmental 
peak strains. Abbreviations: GS, global strain.
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tethering which prevents conclusive description of the sequence 
of wall activation. Later, deformation-based parameters have been 
suggested, focusing on the timing difference measured between 
dyssynchronous walls49–54. Such parameters are potentially useful 
but only if they identify signatures in the myocardial deforma-
tion pattern which are specific for hearts amenable to CRT. More 
recently, a new index has been proposed which is based on the 
non-invasive assessment of regional myocardial work and which  
combines regional LV deformation with an estimate of LV pressure55,56. 
It remains to be determined whether such parameters will prove to 
be superior to the more easy, direct visual or quantitative evaluation 
of the characteristic motion patterns of dyssynchronous hearts57–59. 
Both the fast early systolic inward motion and the subsequent 
stretching of the septum (septal flash), as well as the rocking motion 
of the LV apex (apical rocking), can be directly assessed and have 
been shown to successfully predict CRT response in a clinical set-
ting with both a qualitative and a quantitative approach60.

Other recent applications
Recent research has demonstrated the complementary character of 
GLS and EF. Both parameters describe global LV function, but both 
do it in a different way. Although the parameters follow a linear fit of 
EF=3|GLS| in most situations61, GLS and EF may diverge depending 
on the underlying pathology, which could offer added diagnostic 
information. Several studies have shown that GLS is more sensitive 
to subtle changes in myocardial function which, for example, could 
be used in the follow-up of patients receiving chemotherapy62,63. In 
hypertrophic pathology, GLS is frequently reduced while EF is still 
normal64. A higher EF/GLS ratio was found to differentiate cardiac 
amyloidosis from other pathologies with increased LV wall thick-
ness, such as hypertrophic cardiomyopathy65.

Advances in the standardization of strain 
measurements
Establishing the reliability of STE is a prerequisite to its clini-
cal implementation. Although STE has proved to have numerous 
advantages, such as large availability, high feasibility, and added 
clinical information, there are still debates regarding the potential 
discrepancy of strain measurements between vendors66,67.

In recognition of this problem, the EACVI has initiated a task force 
together with the ASE and industry partners. The aims of this task 
force are to identify and minimize sources of variability between 
strain measurements and to standardize definitions for strain  
measurements3,68. The first results of the initiative provide insights 
on different speckle tracking algorithms, current terminology, and 
specific technical issues such as image acquisition or timing of  
measurements3.

In a first comparative study between all major vendors of echocar-
diography machines and strain software, GLS measurements have 
been found to show considerable inter-vendor differences, whereas 
its reproducibility was consistently comparable to or even better 

than that of conventional echocardiographic parameters69. These 
findings imply that GLS measurements can be considered a reli-
able tool in the clinical routine as long as repetitive measurements 
are performed with the same equipment. On the contrary, the  
comparison of data obtained with different post-processing  
software should be avoided.

Future perspectives
The assessment of LV regional function by speckle tracking has 
not yet been intensively tested. In particular, vendor-specific differ-
ences in the tracking algorithms, such as the number and dimension 
of kernels, regional smoothing, underlying models of LV motion, or 
others, may account for more significant differences at a segmental 
level than at a global level.

Moreover, since regional function can be interpreted through  
various parameters, the most reproducible and robust for the defini-
tion of regional dysfunction remains to be determined. Given the 
potential value of regional strain measurements, the ongoing efforts 
of the EACVI/ASE Task Force focus on identifying reasons for the 
variability of regional strain parameters between vendor-specific 
software. Positive results would be a remarkable step forward in the 
process of endorsing regional strain measurements.

Conclusions
Echocardiographic deformation imaging has developed into an 
indispensable tool for the clinical assessment of a wide range of  
cardiac pathologies, and current guidelines recommend its use 
because of its feasibility and robustness. However, one should 
remain aware of the pitfalls which still exist and which are eas-
ily overlooked because of the user-friendly one-click-gives-it-all 
approach of most software solutions. Joint efforts of echocardiog-
raphy associations and industry partners to resolve these pitfalls, to 
minimize inter-vendor differences, and to standardize measurement 
definitions will provide a solid valid basis for a widespread use of 
the technique in the clinical routine.
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