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Abstract

Background: Fluctuation-induced phenomena caused by both random and deterministic stimuli have been
previously studied in a variety of contexts. They are based on the interplay between the spectro-temporal patterns
of the signal and the kinetics of the system it is applied to. The aim of this study was to develop a method for
designing fluctuating inputs into nonlinear system which would elicit the most desired system output and to
implement the method to studies of ion channels.

Results: We describe an algorithm based on constructing the input as a superposition of wavelets and optimizing
it according to a selected cost functional. The algorithm is applied to ion channel electrophysiology where the
input is the fluctuating voltage delivered through a patch-clamp experimental apparatus and the output is the
whole-cell ionic current. The algorithm is optimized to aid selection of Markov models of the gating kinetics of the
voltage-gated Shaker K+ channel and tested by comparison of numerically obtained ionic currents predicted by
different models with experimental data obtained from the Shaker K+ channels. Other applications and optimization
criteria are also suggested.

Conclusion: The method described in this paper can be useful in development and testing of models of ion
channel gating kinetics, developing voltage inputs that optimize certain nonequilibrium phenomena in ion
channels, such as the kinetic focusing, and potentially has applications to other fields.
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Background
Ion channels in cellular membranes are proteins that
form gated pores to allow passive transport of ions down
their electrochemical potential gradient [1]. They open
and close in response to an appropriate gating stimulus,
such as transmembrane voltage, ligand binding, or me-
chanical stress. In this paper we concentrate on voltage-
gated ion channels. Their gating can be mathematically
described as a Markov chain with voltage-dependent
transition rates between a small set of discrete states.
Such a model corresponds to a microscopic picture of
the channel as a macromolecular assembly undergoing
conformational changes. The gating is a generalized mo-
tion in a certain “energy landscape” and the discrete
Markov states correspond to local energy minima. The
transition rates reflect thermally-activated jumps over
energy barriers separating the minima. In practice, both
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reproduction in any medium, provided the or
the topology (the number and connectivity of the dis-
crete states) as well as the transition parameters of such
models are developed to fit the experimental data that
comes mostly in a form of electrophysiological recor-
dings [2-9].
The technique of patch-clamping in ion channel elec-

trophysiology allows measurements of currents flowing
through the channels in cellular membranes [10]. When
a glass micropipette containing a recording electrode
touches the cell membrane it forms a tight seal (a gi-
gaseal) around a patch of the membrane. Thus clamped
patch can be ruptured, creating a direct electrical con-
nection with the cytoplasm and allowing measurements
of ionic currents through the entire cell surface (the
whole-cell mode), or maintained. In the latter case the
recording is of currents flowing through this small patch
only, which contains very few, or even just a single chan-
nel (the single-channel mode). Typical recordings are
performed under the voltage-clamp conditions, where
the membrane potential is controlled by a patch-clamp
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amplifier and the resultant current measured. A specific
form of the applied voltage depends on the details of the
channel gating kinetics that the protocol is intended to
probe. For instance, the activation protocols are based
on a voltage step up from a hyperpolarized value, at
which channels are closed, to various depolarized values.
These protocols test the activation of channels at differ-
ent voltages. In contrast, the tail protocols are designed
to observe channel closing (deactivation) due to a re-
polarizing voltage step. The channels are subjected to a
depolarizing prepulse of a certain duration, the result of
which is the opening of a number of channels. It is then
followed by a re-polarizing voltage step and the channel
deactivation (closing) can be observed.
These two protocols illustrate the current paradigm on

which a vast majority of electrophysiological experi-
ments are based: the voltage protocols are piecewise
constant and consist of only few voltage steps at discrete
times [2-9]. From a physical point of view this corre-
sponds to observing an ensemble of ion channels under
equilibrium or near-equilibrium conditions. For a cons-
tant voltage, the distribution of channels among discrete
Markov states reaches an equilibrium form. Following a
voltage step, this equilibrium is disturbed, but the en-
semble simply relaxes to a new equilibrium distribution
corresponding to the new voltage value. An entirely dif-
ferent approach, where the voltage fluctuates on a time
scale comparable to the relaxation times of the chan-
nel kinetics has been discussed [10-17]. This approach
forces the channels into nonequilibrium distributions
which may lead to new phenomena not observable un-
der equilibrium conditions. These types of fluctuation-
induced effects in nonlinear systems are well known in
various other areas of physics and in recent years there
has been a growing interest in investigating such phe-
nomena in biological systems, including ion channels.
One of the most studied examples is the stochastic res-
onance [17-22], where a noise, either intrinsic or added
to the system, improves the system response to weak
time-dependent signals. Other examples include ratchets
[23,24], resonant activation [25-28], or the nonequili-
brium kinetic focusing [29-31].
Several of these effects can be very promising in inves-

tigating and controlling the kinetics of ion channels. For
instance, one of the main goals of ion channel research
is to develop a model of channel gating kinetics. Most
commonly used are the discrete Markov chains, however
even the basic features of these models are still disputed,
e.g. cooperativity or Markovian character of gating. It
has been suggested [10,11,16,17] that this ambiguity re-
sults partially from a very incomplete set of experimental
data and by expanding the data we can develop better
and more unique models. In essence, if we have several
models that adequately reproduce the existing set of
experimental data, these models can be tested and dis-
proved by comparing to new experimental data until
one or more models fail to match them. One of the
ways the available data sets can be expanded is by using
fluctuating voltages in voltage-clamp electrophysiological
experiments, contrary to a currently preferred method
of applying piecewise constant voltages. The problem
with this approach is in deciding what type of fluctuating
voltage input would be most useful. In the previous
studies the dichotomous noise has been used [10,11] but
the exact properties of the noise (amplitude, frequency,
temporal asymmetry) have been chosen arbitrarily. What
is needed is a systematic method of selecting a fluctua-
ting voltage input that would generate maximally differ-
ent responses from channel models, thus allowing us to
efficiently select the model most compatible with all
existing experimental data.
A related issue is that of controlling the gating of ion

channels. It has an enormous practical importance in
biology and medicine. So far the dominant approach is
to use pharmacological agents (drugs and toxins) or glo-
bal electric fields (defibrillator shocks) to modify channel
behavior. A much more subtle approach, aimed at for-
cing ion channels into a specific conformational state
has been also proposed [29]. Known as the nonequili-
brium kinetic focusing, the method is based on applying
fluctuating voltage to ion channels in order to enhance
transitions into a selected state and suppress transitions
out of that state. As a result, in the ensemble of ion
channels, i.e. in a cell, most channels will occupy a se-
lected state. This is also a nonequilibrium effect and is
not achievable in standard electrophysiology protocols.
The kinetic focusing has been studied numerically and
analytically [29,31] using the dichotomous noise stimula-
tion but it is entirely unclear what type of stimulation
would be optimal to achieve the maximum focusing in a
desired state. These are two examples of problems in ion
channel research where one needs a systematic method
of selecting a fluctuating voltage for use in patch-clam-
ping experiments which would optimize the experime-
ntal output, either by producing maximally divergent
responses from kinetic models of gating, thus facilitating
model selection, or by focusing ion channels into a spe-
cific conformational state.
In this paper we describe in detail such a method of

designing an input to a system that maximizes a desired
output. It is based on constructing a fluctuating signal as
a superposition of wavelets in a dyadic wavelet basis and
optimizing the wavelet coefficients for a specific system
response. We developed the method for use with the ex-
perimental technique of patch-clamping but it could be
applied in a variety of contexts where fluctuating system
inputs are used. We concentrate in this paper on appli-
cations to ion channel electrophysiology, in particular
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since our method represents a radical departure from
the current paradigm. We show how one can synthesize
a signal with desired properties and implement it in a
voltage-clamp experiment with ion channels.
We illustrate the method by applying to one of the

two problems mentioned earlier in the introduction, i.e.
by developing voltage protocols that maximize the dif-
ference between various Markov models for the same
ion channels. The numerical results are compared to ex-
perimental data obtained from Shaker K+ channels. The
idea of this method was mentioned in our previous work
on the nonequilibrium response spectroscopy technique
[17]. A version of this method was also used to analyze
ionic currents in human heart sodium channels [16]. A
related method, where a pulse composed of wavelets is
designed to maximize a response of nonlinear systems
has been also proposed recently in engineering [32].

Methods
Markov models of ion channels
Ion channel gating results from rearrangements of the
tertiary structure of the channel proteins, i.e. transitions
between certain meta-stable conformational states of the
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Figure 1 Examples of Markov models for Shaker IR K+ channels.
molecule, in response to changes in trans-membrane po-
tential. These molecular states can be either conducting
(open – O) or non-conducting (closed – C or inactivated
– I). Examples of Markov models for the Shaker K+

channels are shown in Figure 1. Transitions between the
states are thermally activated and, in case of voltage-
gated channels, are voltage-dependent according to [33]:

α Vð Þ ¼ α 0ð Þexp qV=kTð Þ ð1Þ

where α is a generic transition rate, V – is the mem-
brane voltage, k – the Boltzmann constant, and T – the
absolute temperature. q is the so-called gating charge
characterizing the molecule’s sensitivity to external elec-
tric fields. Such a description is only a coarse approxi-
mation and more precisely the channel gating should
be viewed as a motion of a “gating particle” in a certain
energy landscape, subject to thermal fluctuations and
governed by the Langevin or Fokker-Planck equation
[29,31,34-36]. However, a picture of channel gating as a
discrete Markov chain with the discrete states corre-
sponding to the minima in this energy landscape has
been very successful. It disregards the internal structure
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of each energy well, but there is very little evidence that
this structure has any significant effect on macroscopic-
ally observable quantities in most applications. In prac-
tice, the main task in functional ion channel studies is to
determine the topology of Markov models (i.e. the num-
ber, type and connectivity of discrete states) as well as
the parameters for the state transition rates (the gating
charges q and the rates at 0 mV membrane potential).
The model topology and model parameters are deter-
mined by fitting model responses to various sets of ex-
perimental data. As we argued in the past [17], the data
used for model development is usually incomplete, since
it consists mostly of responses to piecewise-constant
voltage stimulation. The result is that several distinct
models can be developed for the same kinetic data.

Wavelet decomposition of voltage inputs
The purpose of this paper is to describe and implement
a method of constructing fluctuating voltage inputs for
ion channel electrophysiology to obtain a certain type of
response from ion channels. The method exploits the
interplay between spectro-temporal patterns of the sig-
nal and the gating kinetics of the channel molecules. It
requires simultaneous control over temporal and spec-
tral properties of the voltage pulse. A tool that offers this
kind of time-frequency localization is the wavelet ana-
lysis, developed in the last two decades [37,38]. Wavelets
are “localized waves”, i.e. oscillating functions ψ concen-
trated around a certain region in the argument space
with zero mean:

Z1
�1

ψ tð Þdt ¼ 0 ð2Þ

and finite “energy”:

E ¼
Z1
�1

ψ tð Þj j2dt < 1 ð3Þ

There are many different families of wavelets, some
with compact support. In essence, the wavelet analysis is
similar to Fourier analysis, however it has certain advan-
tages. In Fourier transform the testing functions (trig-
onometric) have infinite support hence they are not very
well suited to analysis of nonstationary signals. Fourier
transform provides spectral information about the signal,
however temporal information, although not lost, is hid-
den in the phases of the sines and cosines. By proper
translation and dilation of the testing wavelet, the wave-
let transform can provide both spectral and temporal in-
formation, i.e. it shows not only what frequencies are
present, but also when they are present in a nonsta-
tionary signal.
Wavelet analysis begins with a mother wavelet, i.e. a
function satisfying conditions (2)-(3). The simplest is the
Haar wavelet:

ψ tð Þ ¼
1 0≤t < 1

2

�1 1
2≤t < 1

0 elsewhere

8<
: ð4Þ

which is also the first member of the Daubechies family
of wavelets. By varying the dilation parameter a and the
translation parameter b we obtain from the mother
wavelet a set of normalized wavelets of the form:

ψa;b tð Þ ¼ 1ffiffiffi
a

p ψ
t � b
a

� �
ð5Þ

The continuous wavelet transform CWT is the convo-
lution of the signal x(t) with the members of this wavelet
set:

T a; bð Þ ¼ 1ffiffiffi
a

p
Z1
�1

x tð Þψa;b tð Þdt ð6Þ

The CWT coefficients T(a,b) can be plotted versus the
dilation and translation parameters (a and b). More
common are plots of the wavelet energy density E(a,b) =
|T(a,b)|2, known as the scalograms. The coefficients
T(a,b) (or the energy E(a,b)) carry the information about
how much the signal is compatible with the wavelet at
scale a, at location b. One may also notice that since the
wavelet is a function with oscillation within a certain,
relatively narrow, frequency range, then moving to a dif-
ferent scale amounts to changing the dominant fre-
quency of the wavelet. This can be expressed in terms of
the mean wavelet frequency f0 [38]. In that sense a scalo-
gram shows spectro-temporal patterns in the signal.
In principle, the CWT is an expansion of a signal x(t)

into an uncountable set of wavelets {ψa,b}. Some wave-
lets, such as the Daubechies family, have been designed
so that a countable subset of dilated and translated
wavelets, of the form:

ψm;n ¼ 2�m=2ψ 2�mt � nð Þ ð7Þ

constitutes an orthonormal basis in L2(ℜ). In other
words, every signal x(t) with finite “energy”, defined as

E ¼
Z1
�1

x tð Þj j2dt ð8Þ

can be approximated arbitrarily well by a finite super-
position of basis elements ψm,n. Such a basis is called the
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dyadic wavelet basis. Using wavelets (7) we can define
the discrete wavelet transform (DWT) as:

Tm;n ¼ 2�m=2
Z1
�1

x tð Þψm;n tð Þdt ð9Þ

Just like for the CWT, the DWT coefficients can be
plotted versus the scale and translation indices (m and n),
yielding the discrete transform plot. Since on the axes one
has discrete indices, the plot has a block form. Knowing
the DWTcoefficients, a signal can be synthesized using:

x tð Þ ¼
X
m;n

Tm;nψm;n tð Þ ð10Þ

One of the applications is the so-called multiresolution
analysis (MRA). It is an iterative procedure where a
given signal is separated into a coarse approximation
and the detail. The latter is expressed as a superposition
of wavelets at a certain level m (with a given scale par-
ameter m), while the former is expressed in terms of the
companion function – the scaling function. Next the
level-m approximation is separated into a coarser, level-
m+ 1 approximation and the detail. The latter is again a
superposition of wavelets at scale m+ 1. Ultimately, the
signal can be written as a sum of the scaling function
and a combination of wavelets at different scales. The
orthogonality of wavelets assures that the signal details
at different scales are uncorrelated. The DWT given by
equation (9) is discrete in scale and position, but still is a
continuous function of time. In practice signals are dis-
cretely sampled. In this case in each iteration of the
MRA both the approximation and the details are sub-
sampled by a factor of 2. The process can continue until
the “coarsest” level (i.e. the mean value) is reached.
The technique we use to construct signals (voltage in-

puts) with desired properties is based on the inverse
DWT (10) and is essentially the opposite of the MRA
we just described. For a chosen wavelet type (we tested
the Haar wavelets since they most closely resemble cur-
rently used voltage step protocols and the Daubechies 8
wavelets for their compact support and the degree of
smoothness) we synthesized the signal using (10) and in-
cluding a finite number of levels. This number of MRA
levels was determined by physiological considerations
and the bandwidth of the recording apparatus. The latter
was typically of the order of 5–10 kHz, and from previ-
ous studies [10-17] we expected the effect of the fluctu-
ating voltages to be concentrated in the 1–2 kHz region,
hence we considered voltage waveforms composed of
8–10 MRA levels. Rather than imposing a finite energy
requirement in the form (8) we put a constraint on the
amplitude of the voltage fluctuations not to exceed
a physiologically reasonable value. We chose 200 mV
peak-to-peak since larger oscillations resulted in a quick
loss of a gigaseal.

Channel model response and input optimization
In the previous paragraph we described how a signal
with desired properties can be synthesized in a dyadic
wavelet basis. We should also specify what these “de-
sired” properties are. The voltage input is selected to
elicit a certain response from ion channels. The method
we are describing in this paper is flexible enough for a
variety of purposes. It can be used to synthesize inputs
that maximize differences in computed ionic currents
between various models, hence aiding model develop-
ment and testing, or inputs that maximize the paramet-
ric sensitivity of the model, as described in [13]. Another
possible application to ion channels would be to test for
the phenomenon called the nonequilibrium kinetic fo-
cusing, described in a numerical studies of ion channels
[29,31], and recently investigated experimentally [30].
The technique can be also used in applications to other
fields [32].
In order to determine the model output, let us con-

sider an n-state Markov model for an ion channel
(see e.g. Figure 1). The current state of the channel
can be described as an n—component normalized
vector P(t) of probabilities {Pi(t)} of finding a channel
in various Markov states. For a large ensemble of
channels, e.g. in whole-cell mode patch-clamping ex-
periments, these equal the state occupancies. The time
evolution of the system is described by the master
equation:

dP tð Þ
dt

¼ W V tð Þ½ �P tð Þ ð11Þ

where the W[V(t)] is the transition matrix consisting
of the transition rates (1) between various states. For
a variable voltage input a formal solution to (11) can
be written in a form:

P tð Þ ¼ expf
Z t

0

W V 0ð Þ½ �dsgP 0ð Þ ð12Þ

where P(0) is the equilibrium probability distribution
at the holding potential. We compute (12) numeric-
ally by iteration:

P tiþ1ð Þ ¼ exp Wtið ÞP tið Þ ð13Þ

with a sufficiently small time step. P(t) represents the
time evolution of the probability distribution. If the
goal is to get a model output that is comparable with
the experimentally measurable quantities, such as ionic
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currents, then the model current can be computed from
the probability distribution using the Ohm’s law:

i tð Þ ¼ g0g Vð Þ V � Vrð ÞO⋅P tð Þ ð14Þ
Here g0g(V)O·P(t) is the total conductance, where O·P(t)
is the projection of the probability vector onto the open
state(s), g(V) - the nonlinear, voltage dependent part of
the conductance, and g0 is the overall scaling factor
dependent on the number of channels in the ensemble
and the conductance of an open channel.

Genetic algorithm
The algorithm for voltage input synthesis is an op-
timization procedure. Depending on the goals we define
the “cost functional” for the model output and then
modify the inputs to optimize this functional. We use a
version of a genetic algorithm applied in other contexts
previously [10-17]. We begin with a first generation volt-
age pulse obtained from (10) with a set of randomly
chosen wavelet coefficients Tm,n. From this set of coeffi-
cients we obtain a number, typically 10–20, of second
generation sets by random perturbations according to:

Tdaughter ¼ Tparent 1þ E0exp �Rnð Þ X � 0:5ð Þð ð15Þ

where T is one of the wavelet coefficients, n numbers
the generations of the algorithm, E0 and R are conver-
gence parameters characterizing the initial range of the
random perturbations (E0) and the rate at which the
search narrows down with each generation (R), and X is
a uniformly distributed random number from the inter-
val (0,1). In practice X was generated using the pseudo-
random number generator in Matlab, and for a run of
15,000 generations we used E0 = 0.5 and R = 0.0004. For
each of the daughter sets we synthesize the input
according to (10), compute the model output using (13),
and evaluate the cost functional. The daughter set that
optimizes the cost functional is chosen as the parent for
the following generation. The procedure is iterated but
as eq. (15) shows at each generation the range of ran-
dom perturbations used to generate the daughter sets
decreases. There are different possible variations of this
scheme, where for instance the input is optimized level
by level or all levels at once. Other methods are also
possible for constructing the new daughter sets, for in-
stance in [32] a differential evolution is described where
the new generation inputs are obtained not by multipli-
cative random perturbation of the chosen “parent”, but
according to a simple additive formula involving the
“parent” and several randomly chosen intermediate sets.
As mentioned in the previous section, there are practical
constraints on this optimization procedure. For instance,
the maximum amplitude of voltage fluctuations must be
restricted to a certain range.
Channel electrophysiology
As an illustration of this numerical scheme we cons-
tructed voltage inputs designed to maximize the differ-
ence in model outputs between different Markov models
for the Shaker K+ channels shown in Figure 1. The
simulated data were compared to experimental currents
recorded from the channels stably expressed in tSA201
cells. The details of experimental design were described
previously [12-14]. Our electrophysiology apparatus con-
sists of the Axopatch 200B amplifier with a CV 203 BU
headstage (Axon Instruments Inc., Union City, CA),
Nikon TS100 inverted microscope Nikon Instruments
Inc., Lewisville, TX), Sutter MP-285 micromanipulator
(Sutter Instrument Co., Novato, CA). The experiments
were performed at 12°C, maintained by Physitemp
temperature controller (Physitemp Instruments Inc.,
Clifton, NJ). Fluctuating voltage inputs were prepared as
binary files with Matlab (Mathworks Inc., Natick, MA),
read into the Pulse program (HEKA Electronik Gmbh,
Lambrecht, Germany) and converted to analog form by
ITC18 AD/DA converter (Instrutech Corp., Great Neck,
NJ). The ionic currents were digitized at a rate between
50 and 200 kHz and stored on a hard disk. All analysis
was performed with custom programs written in Matlab.
We studied a mutant Shaker channel (Shaker K Sk1),

stably expressed in tsA201 cells (gift from D. Hanck).
The cells were cultured in 35 mm Corning Petri dishes
(Corning) in DMEM medium (ATCC, Manassas, VA)
supplemented with 10% FBS (ATCC, Manassas, VA), 1%
penicillin/streptomycin (Gibco BRL, Gaithersburg, MD)
and 200 μg/ml Zeocin (Invitrogen, Carlsbad, CA) at
37°C in 5% CO2 in a CO2 incubator (Fisher Scientific,
Pittsburgh, PA). Patch clamping pipettes were pulled
from borosilicate capillary glass (Warner Instruments
LLC, Hamden, CT) on a Sutter pipette puller (Sutter
Instrument Co., Novato, CA).

Results
Models for Shaker K+ channels
As an illustration of the proposed method we consider
one of the main goals in ion channel studies – the de-
velopment of kinetic models of channel gating. Such
models are developed by fitting to various types of ex-
perimental data (mostly various ionic current recor-
dings). If the set of experimental data is small, the
number of models compatible with it is typically very
large. Model refinement is achieved by introducing new
types of data (e.g. gating currents) and by increasing the
number of different voltage protocols. The paradigm of
electrophysiology is to use voltage protocols consisting
of static voltages changing only stepwise at few discrete
times. Typical examples are the activation and tail proto-
cols. Very few studies used randomly fluctuating voltages
such as the dichotomous noise [10-12].
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Several models have been developed for the Shaker K+

channels. We consider here the Bezanilla-Peroso-Stefani
(BPS) [3], Schoppa-Sigworth (SS) [6], and the Zagotta-
Hoshi-Aldrich (ZHA) [9] models (Figure 1). The BPS
model is a simple linear chain of 8 states and was de-
veloped based on the activation and deactivation (tail)
protocols, as well as “on” and “off” gating currents. The
model contains 5 independent pairs of transition rates
(forward α and backward β). According to (1) there are
two model parameters (the rates at 0 mV and the gating
charges) per transition. Zagotta et al. proposed several
models in a series of 3 papers [7-9] describing a number
of experiments based on stepped voltage protocols. The
ZHA A and D models, which we analyze here, also take
into account basic knowledge of the channel structure.
Namely, it is believed that the Shaker channel consists
of four symmetrical subunits, each of which undergoes
an activation process. It is mostly postulated that the
subunit activation is independent from each other and
the channel becomes open when all four subunits are
activated. The ZHA A model is the simplest possible
such topology. The four subunits can exist in two states
only (resting R, and activated A) and the activation of all
of them is equivalent to the opening of the channel. The
transition rates between the R and A states are the same
for all subunits. This topology can also be represented in
its expanded form where states C1 to C4 describe the
channel conformations with different number of sub-
units in the A state (0 for C1, 1 for C2, 2 for C3, 3 for
C4). The conformation with all four subunits activated is
the open (O) state of the channel. The transition rates in
the expanded topology follow directly from the rates in
the abbreviated version hence the model involves only 1
pair of transition rates (4 model parameters). The ZHA
D model introduces two complications. First, the subunit
kinetics now involves two resting states, so it is itself a
linear chain of three states. Second, there is another
closed state (Cf ) accessible only from the open state.
Both corrections were introduced to improve the model
fit to a variety of available experimental data. The ex-
panded version of this topology is no longer linear and
involves 16 distinct channel states, however the number
of model parameters is the same as for the abbreviated
version (three pairs of transition rates, i.e. 12 parame-
ters). In that respect the BCS model is significantly more
complex and computationally demanding, with 20 pa-
rameters. Finally, the SS model is the most complex [6].
Like the ZHA D model, it is rooted in the idea of 4
subunits undergoing a number (three in this case) inde-
pendent transitions followed by two additional transi-
tions that describe the concerted motion of the subunits.
It also has three inactivated states reachable from the
open state only. In the fully expanded form (not shown)
this model has 38 states.
For all the models shown in Figure 1 we can write the
transition matrices, according to (11). For instance the
matrices for models ZHA A and BPS are as follows (for
the ZHA D and SS models the matrices are 16 × 16 and
40 × 40, respectively, and are shown in the sample pro-
grams, see Additional files 1 and 2):
Model ZHA A:

�4α β 0 0 0
4α �β� 3α 2β 0 0
0 3α �2β� 2α 3β 0
0 0 2 �3β� α 4β
0 0 0 �4β

0
BBBB@

1
CCCCA
ð16Þ

Model BPS:

�α0 β0 0 0 0 0 0 0
α0 �β0 � α1 β1 0 0 0 0 0
0 α1 �β1 � α1 β1 0 0 0 0
0 0 α1 �β1 � α1 β1 0 0 0
0 0 0 α1 �β1 � α2 β2 0 0
0 0 0 0 α2 �β2 � α3 β3 0
0 0 0 0 0 α3 �β3 � α4 β4
0 0 0 0 0 0 α4 �β4

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð17Þ

Voltage protocols optimized for maximal divergence of
model responses
The primary criterion for a model selection is its ability
to accurately reproduce various types of data. It is the
choice of the type of data and the number of different
data sets that determine how good and how unique the
model is. The models described in the preceding sec-
tions were all developed using mostly different voltage-
step protocols. As such they reproduce the experimental
ionic current for any similar voltage-step protocol very
well. Figure 2 shows model currents and the experimen-
tal current for the four models. Model parameters are
listed in Table 1. Model ZHA A is a notable exception
and it clearly fails even such simple test. Of the remai-
ning three it is impossible to tell based on the typical
activation and tail protocols which is the best approxi-
mation of the underlying molecular kinetics.
We used these models with the parameters optimized

for the fit to standard activation and tail protocols. Our
goal was to construct new fluctuating voltage waveforms
that produce maximal differences in model responses
(i.e. model currents) and thus could be used to select
one of the models over the others. We used the numer-
ical procedure described in Methods to construct the
new voltage input as a superposition of wavelets. After
computing the model response to this voltage input, i.e.
the model ionic current, using eq. (14), we defined the
difference in model response as the χ2 error between the
corresponding model currents (see Additional file 3).



Figure 2 Comparison of model currents (triangles) and experimental ionic currents (solid line) for activation protocols for four Markov
models of Shaker K+ channels. The voltage protocol consisted of holding potential of −90 mV followed by a series of steps to potentials from
−70 mV to +42 mV in 8 mV increments. Data is shown for models: A) ZHA A, B) ZHA D, C) BPS, D) SS.
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The voltage input was then iteratively optimized through
the genetic algorithm to maximize model divergence.
We have done this for different pairings of the models
(ZHA A vs. SS, ZHA D vs. BPS, etc.) and for different
number of wavelet decomposition levels. A sample
MATLAB code for ZHA D vs. SS is shown in Additional
file 4. We used the Daubechies 8 wavelets with 8, 9, and
10 levels of MRA, which corresponded to the frequency
range commensurate with the recording bandwidth of
the patch-clamping apparatus. Figure 3 shows three
samples of such voltage protocols with different number
of wavelet levels, i.e. different frequency content.

Comparison of model currents and experimental currents
Ionic currents were recorded from tSA201 cells stably
transfected with the Shaker IR potassium channels, as
described in Methods. We used the typical activation
and tail protocols. The former were obtained for voltage
steps from a holding potential of −90 mV to a series of
values from −70 mV to 42 mV in 8 mV intervals. For
the latter the protocol consisted of a 32 mV prepulse
of 30 ms duration followed by a series of voltage steps
from −120 mV to 48 mV in 12 mV intervals. The cap-
acitative transients were removed from the experimental
data using the standard P/4 method. The wavelet-based
voltage pulses, described in the previous section, were
implemented on our recording apparatus as described in
the Methods. We monitored the bandwidth by obtaining
the cell’s capacitance and the series resistance. Only cells
with bandwidth exceeding 5 kHz were considered. For
capacitative current transients we used the P/2 method,
used also in our earlier paper [15], which has been ef-
fective in removing these transients even for continu-
ously varying voltages.
Comparing model currents and ionic currents from

electrophysiological experiments is the ultimate test for
any model of channel gating. In most studies the fit is
limited to the activation and tail ionic currents. Some-
times other voltage protocols are added but they typic-
ally consist of few voltage steps at discrete times. As
noted earlier (see Figure 2) with the exception of ZHA
A all models seem to adequately fit the standard sets of
data for stepped-voltage protocols. We also computed
responses of models ZHA A, ZHA D, BPS and SS to
the wavelet-based voltage pulses using equation (14). In
Figure 4, these model currents are plotted against the
experimental ionic currents recorded for these same
voltages waveforms. As expected the ZHA A model does



Table 1 Model parameters used for current simulations using eq. (14)

Model Rate amplitudes (ms-1) Gating charges (units of e) Additional parameters

ZHA A α(0) = 0.1219 qα = 0.6232 g0 ¼ 0:9717; g Vð Þ ¼ �1:9823� 10�10 � V5 � 1:4013� 10�9 � V4

þ1:0424� 10�6 � V3 � 1:8204� 10�5 � V2 � 1:3480� 10�3 �V
þ0:07696

β(0) = 0.0342 qβ = −0.0207

ZHA D α(0) = 2.1605 qα = 1.9760 θ = 8.8660

β(0) = 0.0558 qβ = −0.0108 g0 ¼ 1:3011; g Vð Þ ¼ 3:4123� 10�11 � V5 þ 6:8293� 10�10

�V4 � 7:6790� 10�8 � V3 � 1:0646� 10�8

�V2 � 2:4698� 10�4 � Vþ 0:04219
γ(0) = 0.2642 qγ = 0.2080

δ(0) = 0.1103 qδ = −0.5311

kα(0) = 0.3505 qkα = 0.0138

kβ(0) = 0.5253 qkβ = −0.0203

BPS α0(0) = 0.2761 q0 = 0.7467 g0 ¼ 0:9386; g Vð Þ ¼ �1:2009� 10�11 �V5 � 1:5047� 10�9 � V4

þ7:1616� 10�8 � V3 þ 2:3240� 10�6 � V2

�3:2463� 10�4 �Vþ 0:03649
β0(0) = 1.2647 q1 = 1.4896

α1(0) = 1.6095 q2 = 0.7891

β1(0) = 0.1061 q3 = 0.8988

α2(0) = 1.6809 q4 = 0.8376

β2(0) = 0.2955 δ0 = 0.2082

α3(0) = 2.0483 δ1 = 0.1316

β3(0) = 0.8917 δ2 = 2.1390

α4(0) = 1.8216 δ3 = 0.3814

β4(0) = 0.3384 δ4 = 0.2731

SS α(0) = 1.0859 qα = 0.8288 g0 ¼ 0:9119; g Vð Þ ¼ �2:9371� 10�11 �V5 � 3:6458� 10�10 � V4

þ9:4630� 10�8 �V3 � 2:0430� 10�6 � V2

�1:0250� 10�4 � Vþ 0:03638
β(0) = 0.1415 qβ = −1.1574

γ(0) = 2.2983 qγ = 0.0160

δ(0) = 1.3948 qδ = −0.1893

ε(0) = 1.3100 qε = 0.0639

ζ(0) = 0.5676 qζ = −0.0584

αN-1(0) = 4.5890 qαN-1 = 0.0771

βN-1(0) = 0.1965 qβN-1 = −0.0779

αN(0) = 1.9438 qαN = 0.6513

βN(0) = 0.1431 qβN = −0.6569

c(0) = 0.0054 qc = 0.0980

d(0) = 0.3853 qd = 0

c1(0) = 0.1680 qc1 = 0

d1(0) = 3.9279 qd1 = −0.3678

c2(0) = 0.8233 qc2 = 0

d2(0) = 9.9927 qd2 = 0
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a poor job approximating the experimental data. The
new result is the BPS model which fit the activation and
tail data very well but fails to fit the wavelet-based proto-
cols. It suggests that the model has deficiencies and
should be discarded in favor of models ZHA D or SS. As
for the latter two this set of protocols still does not dis-
tinguish well between them, however, the algorithm can
be used again to develop new set of pulses that would
maximize differences in responses of these two remai-
ning models. These protocols would then need to be
implemented in another patch-clamping experiment and
we one of them would prove superior to the other.
Figure 5 shows the responses to a higher frequency volt-
age pulse constructed using 10 wavelet levels. While it
still does not entirely distinguish between models ZHA
D and SS, it shows that the former overestimates a little
the rate of activation while the latter seems to underesti-
mate steady-state currents.

Discussion
The goal of this paper is to describe a new method for
developing voltage protocols for ion channel patch-
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Figure 3 Sample voltage protocols optimized for model current difference. ZHA A vs. SS model with A) 8 wavelet levels, B) 9 wavelet
levels, and C) 10 wavelet levels.
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clamping experiments. It is expected that in order to ob-
tain new information about channel gating kinetics or to
explore new phenomena that ion channels may exhibit,
one must go beyond the typical set of stepped voltage
protocols. The method we develop allows tailoring the
voltage inputs in a patch-clamping experiment to ma-
ximize a desired output. The design is based on the in-
verse discrete wavelet transform where the voltage pulse
is constructed as a superposition of wavelets in a dyadic
wavelet basis. Each such pulse is characterized by the
corresponding set of wavelet coefficients and it can be
synthesized using a variety of available numerical pack-
ages. The desired outcome of the patch-clamping experi-
ment needs to be quantified through a suitably defined
cost functional and then the design algorithm is essen-
tially an optimization procedure where the set of wavelet
coefficients is optimized to maximize (or minimize) the
cost functional. The optimization procedure we used is a
search of the parameter space through a random genetic
algorithm. We used a method where the “daughter” par-
ameter sets are generated by randomly perturbing the
parameters of the “parent” set, with a range of random
fluctuations decreasing through the generations. This
ensures convergence but also avoids trapping in a local
extremum of the cost functional. We used this me-
thod previously e.g. for fitting of kinetic models of
channel gating. Other algorithms are possible, for in-
stance [32] mentions generating daughter sets by an
algebraic formula that combines randomly generated
intermediate sets and the “parent” set. Also, in our
application we used the Daubechies 8 wavelets, how-
ever other types, as well as wavelet packet could be
used. An interesting case would be using the Haar
wavelets as they would be a natural extension of the
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Figure 4 Model currents for wavelet-based voltage pulses. Responses of the four models to voltage pulses from Figure 3 A) are shown.
Model currents (solid line) are compared to the experimental ionic currents (dotted line). Data is shown for models: ZHA A, ZHA D, BPS, and SS.
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voltage-step protocols currently dominating ion chan-
nel experimental practice.
This method has many potential uses but we apply it

to a specific example: testing of kinetic models of ion
channel gating. It is known that the models are notori-
ously ambiguous. Different research groups propose very
different models that match available data equally well,
hence there is no way to decide which model (or maybe
none) is the best approximation of reality. It is accepted
that in order to improve the model design and testing
process, we need to include more data and that new data
should be substantially different from all existing data.
Just adding more of the same will not improve the
process. There are two approaches to this. One is to get
new data that is of different physical nature. The best il-
lustration would be to add gating currents to previously
used ionic currents, or to use single channel data in
addition to whole-cell data. This is not the focus of this
manuscript. We consider the second approach where
the new data is of the same physical nature as previously
(i.e. the same physical quantity is measured) but the
input to the system has been substantially altered. In
recent years there has been interest in using fluctua-
ting voltages as opposed to piecewise constant voltages
[10-17,29,30], as well as using conductance hysteresis
curves to differentiate between different models [39,40].
The rationale is that this new type of stimulus causes a
nonequilibrium response of the ion channel ensemble
and some models that were built based on equilibrium
(or near-equilibrium) experimental data will fail to re-
produce the nonequilibrium data. The main issue with
this approach is to decide what type of fluctuating voltage
will work best. In the previous studies on this method
(named the Nonequilibrium Response Spectroscopy)
[10,11,17] the dichotomous noise was used but there was
no systematic way to determine the properties of the noise
that would allow the most efficient model evaluation. In
fact, the choices were fairly arbitrary and amounted to
scanning a range of noise amplitudes and frequencies and
hoping to find the “right” range. The essential parameters
are the range of fluctuations and the spectro-temporal
properties, i.e. what frequencies are present in the signal
and at what times (the signal need not be stationary).
The method we described allows the selection of
these properties and is essentially an optimization
procedure. We have selected four models proposed by
leading electrophysiology labs and defined the cost
functional as the difference between the model currents
generated by these models, measured as the χ2 error. Then
we constructed several pulses that maximize that cost
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Figure 5 Model currents for wavelet-based voltage pulses. Responses of the four models to voltage pulses from Figure 3C) are shown.
Model currents (solid line) are compared to the experimental ionic currents (dotted line). Data is shown for models: ZHA A, ZHA D, BPS, and SS.
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functional, i.e. pulses which when input into these models
generate maximally divergent outputs. These model cur-
rents were then compared to the experimental currents
recorded in patch-clamping experiments, in response to
the same voltage inputs. This facilitated the selection of
the best models, and the process can be done iteratively.
A preliminary version of this method was previously
applied to models of a human heart sodium channel [16].
This is, however, only one possible application of this
method. Another putative application would be to explore
the possibility of kinetic focusing of ion channels. This
term refers to a selective enhancement of a particular
state of ion channels in response to a fluctuating
stimulus in terms of the applied voltage. In the first
paper describing the phenomenon [29] it was sug-
gested that it could be generated by a dichotomous
noise voltage and a preliminary experimental study
[30] also used that same type of voltage stimulus.
The method we describe here would make it possible
to design rapidly fluctuating voltages that would
maximize the occupancy of a particular conform-
ational state of the ion channels. Further theoretical
and experimental studies are in progress [31]. Finally,
we mention that a related method has been proposed
in engineering for optimizing outputs of nonlinear
systems subject to energy constrains, and illustrated
with examples of an aircraft model and of a bistable
potential system [32].

Conclusions
In this article we describe a new method that represents
a radical departure from the current paradigm in ion
channel electrophysiology. We propose using fluctuating
voltages through a patch-clamp apparatus. While the
use of fluctuating inputs to nonlinear systems to elicit
new types of system responses is well known and re-
searched in different areas of physics, our method has
the added advantage of allowing tailoring inputs to
achieve a particular, most desired outcome. If we quan-
tify the “desirability” of outcome through a suitable “cost
functional”, through our method one can construct an
input that optimizes this cost functional. The pulse
design is based on the wavelet decomposition. In par-
ticular, we implement the method in ion channel elec-
trophysiology where the input is the voltage applied in
patch-clamp experiments, the output – the measured
whole-cell ionic current and the “cost functional” – the
fit of various Markov models to the experimental data.
Our method can be used to aids selection and testing of
models of channel gating kinetics. We also comment on
other possible applications of this method to electro-
physiology and other fields.
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Additional files

Additional file 1: A function file which accepts the model
parameters of the SS model and the applied voltage as its inputs
and returns the transition matrix for this model.

Additional file 2: A function file which accepts the model
parameters of the ZHA D model and the applied voltage as its
inputs and returns the transition matrix for this model.

Additional file 3: A function file that accepts two discrete time
series as its arguments and returns the χ2 error between the series,
normalized to the number of sampling points.

Additional file 4: Matlab code to optimize a pulse synthesized from
wavelets. The program uses the difference between the computed
responses of models SS and ZHA D (computed as χ2 error) as the cost
functional and optimizes the pulse for maximal value of the cost
functional.
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