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abstract

PURPOSE The optimal characteristics among patients with breast cancer to recommend neoadjuvant chemo-
therapy is an active area of clinical research. We developed and compared several approaches to developing
prediction models for pathologic complete response (pCR) among patients with breast cancer in Alberta.

METHODS The study included all patients with breast cancer who received neoadjuvant chemotherapy in Alberta
between 2012 and 2014 identified from the Alberta Cancer Registry. Patient, tumor, and treatment datawere obtained
through primary chart review. pCRwas defined as no residual invasive tumor at surgical excision in breast or axilla. Two
types of predictionmodels for pCRwere built: (1) expert model: variables selected on the basis of oncologists’ opinions
and (2) data-drivenmodel: variables selected by trainedmachine. Thesemodel types were fit using logistic regression
(LR), random forests (RF), and gradient-boosted trees (GBT). We compared themodels using area under the receiver
operating characteristic curve and integrated calibration index, and internally validated using bootstrap resampling.

RESULTS A total of 363 cases were included in the analyses, of which 86 experienced pCR. The RF and GBT fits
yielded higher optimism-corrected area under the receiver operating characteristic curves compared with LR for
the expert (RF: 0.70; GBT: 0.69; LR: 0.65) and data-driven models (RF: 0.71; GBT: 0.68; LR: 0.64). The LR fit
yielded the lowest integrated calibration indices for the expert (LR: 0.037; GBT: 0.05; RF: 0.10) and data-driven
models (LR: 0.026; GBT: 0.06; RF: 0.099).

CONCLUSION Our models demonstrated predictive ability for pCR using routinely collected clinical and de-
mographic variables. We show that machine learning fit methods can be used to optimize models for pCR
prediction. We also show that additional variables beyond clinical expertise do not considerably improve
predictive ability and may not be of value on the basis of the burden of data collection.
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BACKGROUND

Preoperative or neoadjuvant chemotherapy (NAC) was
previously reserved for locally advanced and inflam-
matory breast cancer with the goal of enabling re-
section. NAC is now used more widely in clinical
practice for earlier-stage, operable breast cancer fol-
lowing trial data that demonstrated its equivalency to
adjuvant chemotherapy in terms of event-free survival
and overall survival.1-5 Pathologic complete response
(pCR) has been shown to be predictive for superior
event-free survival and overall survival, especially in
human epidermal growth factor receptor 2 (HER2)-
positive and triple-negative disease, and has therefore
been used as the primary end point for many NAC
trials.6-11 NAC confers several potential advantages
including tumor downstaging to reduce the extent of
local surgery, using tumor response for prognostica-
tion, and determination of need for postoperative
therapies.12

Despite its potential advantages, only 20%-40% of
patients with breast cancer in observational and trial
settings achieve pCR following NAC.6,13-17 Thus, it is
important to develop decision support tools to choose
the right patients who will be more likely to benefit from
NAC. Many studies in the current literature have de-
veloped models for pCR prediction among patients on
NAC13-17; however, no clear superiormodels have been
identified because key questions on the development
of these models remain unanswered. These questions
include whether machine learning is superior to tra-
ditional regression modeling and whether routinely
collected widely available data are sufficient to accu-
rately predict pCR. These questions are imperative in
terms of the predictivity and utility of predictionmodels.

We aimed to address these gaps by comparing tra-
ditional regression-based and novel machine learning
approaches to developing prognostic prediction
models for pCR following NAC among patients with
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breast cancer in Alberta. We also aimed to quantify the gain
in predictive performance associated with increasing the
number of candidate variables in the statistical model to
identify the optimal balance between measurement burden
and predictive ability.

METHODS

This study reports the details of the development of pre-
diction models in accordance with the transparent reporting
of a multivariable prediction model for individual prognosis
or diagnosis guidelines.18 The models developed in this
study constitute type 2 models according to the transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis guidelines.

Study Cohort and Data Collection

This was a population-based retrospective cohort study,
which included all patients who received NAC and un-
derwent surgery for invasive breast cancer between Jan-
uary 1, 2012, and June 30, 2014 in Alberta, Canada.
Patients were identified through our provincial, synoptic,
web-based surgical medical record database, which is
described in detail elsewhere.19

Web-based surgical medical record and individual chart re-
view were used to obtain detailed information regarding patient
age at surgery, treatment facility, use of neoadjuvant treatment,
pathologic response to chemotherapy, types of surgery per-
formed, surgery side, the surgeon’s perception of appropri-
ateness for breast-conserving surgery (BCS), adjuvant therapy
(chemotherapy, radiation therapy, and hormonal), and pre-
treatment tumor characteristics, including tumor (T) and node
(N) stage. Estrogen receptor (ER) status, progesterone receptor
(PR) status, and HER2 status were obtained from the Alberta
Cancer Registry database, which captures all malignancies in
Alberta. pCR was confirmed by microscopic assessment of
tissue samples by a pathologist and defined as the absence of
invasive cancer in the breast and axillary nodes, irrespective of
in situ carcinoma (ypT0/is ypN0).

Modeling Approaches

Only variables gathered before the administration of NAC
were considered for inclusion in the prediction models.
We examined different methods for selection of predictors
to build two types of prediction models for pCR. (1) Expert
model: One surgeon (M.L.Q.) and two medical oncologists
(S.L. and W.Y.C.) in our study team listed all the likely
factors that may be used to predict pCR on the basis of
clinical knowledge and experience. Then, on the basis of
our data availability, we established our list of predictors
for the expert model including age at surgery (in years), T
stage (T1-T4), BCS candidate (yes v no), ER status
(positive v negative), PR status (positive v negative), HER2
status (positive v negative), and treatment facility (aca-
demic v community). (2) Data-driven model: In this
model, an automated (data-driven) variable selection
procedure was used to select a final list of predictors from
all candidate variables available with complete data.
These automated variable selection procedures were
dependent on the approach that was used to fit the model,
which is discussed in detail in the next section.

Statistical Analyses

Each of the two types of models (expert and data-driven)
were fit using multivariable logistic regression (LR),
random forests (RF), and gradient-boosted trees (GBT),
resulting in six prediction models. The associations
between pCR and predictors were presented using odds
ratios (ORs) with 95% CI for expert model when fit using
LR. The data-driven model built on LR was penalized
using least absolute shrinkage and selection operator
regularization. The method aims to minimize the pre-
diction error by shrinking the coefficient of some vari-
ables to zero and keep those variables with nonzero
coefficients after shrinking. Ten-fold cross-validation was
used to determine the penalization (λ) parameter that
minimized the mean cross-validated error.

CONTEXT

Key Objective
To compare regression-based and machine learning model fitting, as well as a priori and data-driven feature selection

approaches, to predict pathologic complete response (pCR) in patients with breast cancer following neoadjuvant
chemotherapy.

Knowledge Generated
Using clinical and pathologic variables, models fit with random forest algorithms showed better discrimination of patients with

and without pCR, whereas models fit with logistic regression showed better calibration. A priori and data-driven feature
selection did not result in differences in model discrimination or calibration.

Relevance
As artificial intelligence continues to emerge in cancer research, there is a need to compare traditional regression and novel

machine learning approaches to pCR prediction. This may improve the ability to identify patients who are more likely to
benefit from neoadjuvant chemotherapy and facilitate precision-based treatment decisions.
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For the expert and data-driven models fit with RF, the
number of trees was 500 and the number of randomly
sampled predictors chosen as split candidates in each tree

was equal to the square root of number of predictors in-
cluded in the model. The tree depth used in the RF models
was tuned to minimizing the out-of-bag error. For models fit

TABLE 1. Clinical, Tumor Pathology, and Treatment Characteristics
Variable Category Total (N = 363) No pCR (n = 277) pCR (n = 86) P

Patient age at surgery Median (IQR) 52 (44-62) 53 (46-63) 50.5 (41-56) .003

BCS candidate, No. (%) No 250 (68.9) 199 (71.8) 51 (59.3) .0283

Yes 113 (31.1) 78 (28.2) 35 (40.7)

Clinical LN status at
diagnosis, No. (%)

Negative 114 (31.4) 91 (32.9) 23 (26.7) .2864

Positive 249 (68.6) 186 (67.1) 63 (73.3)

Final stage highest, No. (%) I 16 (4.4) 12 (4.3) 4 (4.7) .9875

II 210 (57.9) 160 (57.8) 50 (58.1)

III 137 (37.7) 100 (36.1) 31 (36.0)

Missing 6 (1.7) 5 (1.8) 1 (1.2)

Initial T size, No. (%), cm ≤ 2.0 56 (15.4) 44 (15.9) 12 (14.0) .9889

. 2.0 ≤ 5.0 161 (44.4) 121 (43.7) 40 (46.5)

. 5.0 143 (39.4) 109 (39.4) 34 (39.5)

Missing 3 (0.8) 3 (1.1) 0 (0)

Tumor stage, No. (%) T1 55 (15.2) 43 (15.5) 12 (14) .8912

T2 155 (42.7) 117 (42.2) 38 (44.2)

T3 126 (34.7) 95 (34.3) 31 (36)

T4 27 (7.4) 22 (7.9) 5 (5.8)

Surgery side, No. (%) Bilateral 68 (18.7) 46 (16.6) 22 (25.6) .0624

Unilateral 295 (81.3) 231 (83.4) 64 (74.4)

Specific surgery, No. (%) BCS 101 (27.8) 71 (25.6) 30 (34.9) .0944

Mastectomy 262 (72.2) 206 (74.4) 56 (65.1)

LN surgery type, No. (%) No 26 (7.2) 23 (8.3) 3 (3.5) .0107

ALND 204 (56.2) 164 (59.2) 40 (46.5)

SLNB followed by ALND 40 (11) 30 (10.8) 10 (11.6)

SLNB 93 (25.6) 60 (21.7) 33 (38.4)

Chemotherapy, No. (%) No 27 (7.4) 27 (9.7) 0 (0) .0026

Yes 336 (92.6) 250 (90.3) 86 (100)

Radiotherapy, No. (%) No 356 (98.1) 270 (97.5) 86 (100) .2052

Yes 7 (1.9) 7 (2.5) 0 (0)

Hormonal therapy, No. (%) No 336 (92.6) 250 (90.3) 86 (100) .0026

Yes 27 (7.4) 27 (9.7) 0 (0)

ER status, No. (%) Negative 97 (26.7) 71 (25.6) 26 (30.2) .3996

Positive 266 (73.3) 206 (74.4) 60 (69.8)

PR status, No. (%) Negative 142 (39.1) 107 (38.6) 35 (40.7) .7312

Positive 221 (60.9) 170 (61.4) 51 (59.3)

HER2 status, No. (%) Negative 259 (71.3) 211 (76.2) 48 (55.8) .0003

Positive 104 (28.7) 66 (23.8) 38 (44.2)

Treatment facility, No. (%) Academic 340 (93.7) 256 (92.4) 84 (97.7) .1637

Community 24 (6.3) 21 (7.6) 2 (2.3)

NOTE. P value was determined using Student T-test for continuous variables, and chi-square or Fisher’s exact test for categorical variables.
Abbreviations: ALND, axillary lymph node dissection; BCS, breast-conserving surgery; ER, estrogen receptor; HER2, human epidermal growth factor

receptor 2; IQR, interquartile range; LN, lymph node; pCR, pathologic complete response; PR, progesterone receptor; SLNB, sentinel lymph node biopsy.

Model Building Approaches for pCR Prediction in Breast Cancer

JCO Clinical Cancer Informatics 3



with GBT, the number of trees, learning rate, and tree depth
were tuned to minimize test classification error with 10-fold
cross-validation.

The automated variable selection process for the data-
driven model when fit using RF and GBT was based on
feature importance. Feature importance for RF was based
on permutation importance measured by out-of-bag ac-
curacy and for GBT was based on gain, which represents
fractional contribution of each feature to the model on the
basis of the total gain of this feature’s splits. Higher per-
centage means a more important predictive feature.20 The
automated variable selection procedure for the data-driven
models built on RF and GBT occurred in a backward
elimination fashion. First, a model was fit with pCR as the
outcome variable and all candidate variables with
complete data as predictors of pCR. Then, feature im-
portance statistics were extracted and ranked from
highest to lowest. Finally, the least important predictor
was removed. This process iterated until eight predictors
remained, indicating the eight most important predic-
tors. Details regarding tuning parameters and feature
sets for the data-driven models are provided in the Data
Supplement.

Predictive performance of the models was compared
using discrimination and calibration measures. Dis-
crimination was measured by area under the receiver
operating characteristic curve (AUC). The DeLong
algorithm21,22 was used to compute 95% CIs of each
AUC. Calibration was measured using Emax,23 the
maximum difference between predicted and observed
probabilities, and integrated calibration index (ICI),24

the average difference between a smooth calibration
curve and the diagonal line of perfect calibration. Two
thousand bootstrap samples were used to compute
95% CIs for calibration measures. Internal validation
was performed using bootstrap resampling in which
200 bootstrap samples were used to quantify the
optimism-corrected AUC, ICI, and Emax values.25 We
performed 0.632 bootstrap resampling, developed by
Bradley Efron, for internal validation.26 The adequacy of
the sample size was evaluated using 10 events-per-
variable, which is widely used in prediction research.18

RESULTS

Cohort Characteristics

The study cohort consisted of 363 patients, with a median
age of 52 (interquartile range, 44-62) years. One hundred
thirteen (31%) patients were deemed as a candidate for
BCS, which is slightly higher than the proportion of the
patients who actually received BCS (28%, n = 101). Sixty-
eight (18%) patients received bilateral surgery and the
majority of the patients (n = 337, 93%) underwent lymph
node surgery. Overall, 86 patients (24%) patients in this
cohort achieved pCR. The univariate analysis showed that
the patient group with pCR was significantly different from

the patient group without pCR regarding age, BCS can-
didates, lymph node surgery, chemotherapy, hormone
therapy, and HER2 status (Table 1).

Predictors of pCR

When fit using LR, patient age at time of surgery
(OR = 0.97; 95% CI, 0.95 to 0.99, per 1-year increase in
age), BCS candidate (OR = 2.01; 95% CI, 1.14 to 3.55),
and HER2 status (OR = 2.72; 95% CI, 1.59 to 4.67)
remained significant predictors of pCR in the expert model
(Table 2).

Predictive Performance

Expert model. The receiver operating characteristic curves
illustrating the discriminative performance of the expert
model for the three fitting approaches are presented in
Figures 1A-1C. The RF and GBT fit yielded optimism-
corrected AUCs of 0.70 and 0.69, respectively, whereas
the LR fit yielded an optimism-corrected AUC of 0.65
(Table 3). Figures 1D-1F illustrate calibration plots for the
expert models. The LR fit resulted in an Emax of 0.10 and ICI
of 0.037. The RF resulted in an Emax of 0.19 and ICI of 0.10.
The GBT resulted in an Emax of 0.22 and ICI of 0.05
(Table 4).

Data-driven model. Figures 2A-2C present the receiver
operating characteristic curves of the data-driven model fit
with LR, RF, and GBT. The optimism-corrected AUCs for
the RF, GBT, and LR were 0.71, 0.68, and 0.64,

TABLE 2. The Associations Between Patient Characteristics and
Pathologic Complete Response in the Expert Model

Expert Model

Variable Categories OR (95% CI) P

Patient age Continuous 0.97 (0.95 to 0.99) .003

Tumor stage T1 1.00 .98

T2 1.08 (0.50 to 2.44)

T3 1.17 (0.51 to 2.80)

T4 1.01 (0.27 to 3.48)

BCS candidate No 1.00 .015

Yes 2.01 (1.14 to 3.55)

ER status – 1.00 .477

+ 0.76 (0.36 to 1.60)

PR status – 1.00 .491

+ 1.27 (0.65 to 2.58)

HER2 status – 1.00 , .001

+ 2.72 (1.59 to 4.67)

Treatment facility Academic 1.00 .151

Community 0.33 (0.05 to 1.23)

NOTE. P value was determined using Wald test.
Abbreviations: BCS, breast-conserving surgery; ER, estrogen

receptor; HER2, human epidermal growth factor receptor 2; OR, odds
ratio; PR, progesterone receptor.
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respectively (Table 3). The calibration plots for data-driven
models are presented in Figure 2D-2F. The Emax was 0.21
and ICI was 0.026 for the LR fit. For GBT fit, the Emax and ICI
were 0.19 and 0.06, respectively. The Emax was 0.20 and
ICI was 0.099 for the RF fit (Table 4).

DISCUSSION

In this study, we analyzed 363 patients with breast cancer
in Alberta and demonstrated that traditional regression and
novel machine learning models on the basis of routinely
collected patient data are able to meaningfully predict pCR
following NAC. Following internal validation, we observed
that the performance of each type of model when fit using

RF and GBT varied the most, that is, had the highest
optimism. Despite this high optimism, the RF and GBT fits
produced higher optimism-corrected AUCs than LR fit for
the two types of models. The internally validated calibration
of the models fit with LR was superior compared with RF
and GBT. However, the sample size for this study was likely
not sufficient for the RF or GBT algorithms, resulting in
statistical overfitting, miscalibration, and requiring cautious
interpretation.

Rates of pCRhave ranged between 13%-65% in randomized
trials of NAC, depending on molecular subtype.1-5,27-29 In our
population-based cohort, 24% of patients achieved pCR.
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FIG 1. (A-F) Receiver operating characteristic and calibration plot for expert models. AUC, area under the receiver operating characteristic curve.

TABLE 3. Measures of Apparent Discrimination, Optimism, and Optimism-Corrected Discrimination for Each Model and Fit

Model Fit

Expert Model Data-Driven Model

Apparent AUC (95% CI) Optimism Optimism-Corrected AUC Apparent AUC (95% CI) Optimism Optimism-Corrected AUC

LR 0.69 (0.62 to 0.75) 0.039 0.65 0.70 (0.64 to 0.76) 0.056 0.64

RF 0.83 (0.78 to 0.88) 0.13 0.70 0.84 (0.80 to 0.89) 0.13 0.71

GBT 0.83 (0.78 to 0.88) 0.14 0.69 0.84 (0.79 to 0.88) 0.16 0.68

Abbreviations: AUC, area under the receiver operating characteristic curve; GBT, gradient-boosted trees; LR, logistic regression; RF, random forests.
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Patients in the study displayed similar tumor and demo-
graphic characteristics as those in the previously published
literature.7,13 There is substantial evidence that HER2-positive
tumors are more likely to achieve pCR and similar associa-
tions were observed in our study cohort. However, predictors
found to be significant in other studies, such as negative ER
and/or PR status, clinical stage, and lymph node status, were
not observed in our analysis.7,30-33

Several different approaches have been used to develop
models for predicting pathologic response to NAC in pa-
tients with breast cancer. LR is among the most common
owing to its interpretability to a clinical audience, with in-
sight into the relative effects of predictors by ORs and in
displays, such as nomograms.34 A nomogram proposed by
Hennessy et al13 predicts pCR on the basis of patient age,
ER status, grade, and stage; however, no discriminative

TABLE 4. Measures of Emax and ICI of the Calibration Plot for Each Model and Fit

Model Fit

Expert Model Data-Driven Model

Emax ICI Emax ICI

Apparent Corrected Apparent Corrected Apparent Corrected Apparent Corrected

LR 0.098 (0.028 to 0.27) 0.10 0.025 (0.0086 to 0.049) 0.037 0.26 (0.046 to 0.38) 0.21 0.029 (0.016 to 0.053) 0.026

RF 0.32 (0.25 to 0.50) 0.19 0.11 (0.07 to 0.12) 0.10 0.32 (0.25 to 0.46) 0.20 0.11 (0.067 to 0.12) 0.099

GBT 0.35 (0.28 to 0.52) 0.22 0.06 (0.05 to 0.11) 0.05 0.29 (0.25 to 0.49) 0.19 0.07 (0.05 to 0.12) 0.06

Abbreviations: Emax, maximum absolute difference between a smooth calibration curve and the diagonal line of perfect calibration; GBT, gradient-boosted
trees; ICI, integrated calibration index, the average difference between a smooth calibration curve and the diagonal line of perfect calibration; LR, logistic
regression; RF, random forests.
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FIG 2. (A-F) Receiver operating characteristic and calibration plot for data-driven models. AUC, area under the receiver operating characteristic
curve.
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performance is reported. Another built by Pu et al35 using
Ki-67 index, NAC regimen, lymphovascular invasion, he-
moglobin level, and ER status produced an AUC of 0.76.
Other nomograms built on LR using clinicopathologic
variables had AUCs that range from 0.77 to 0.8530,36;
however, these models were built in node-positive patient
populations.

To our knowledge, our analyses are among the first to
compare regression-based and machine learning methods
to fit prediction models for pCR in patients with breast
cancer following NAC. LR is considered to be the default
modeling approach to probability estimation in medical risk
prediction.34 Although it is easily interpretable, LR is
parametric in nature and the model will not produce
consistent probability estimates if it is mis-specified, such
as ignoring nonlinearity and interactions.37 Even after
applying more modern modeling techniques to increase
the flexibility of LR, such as least absolute shrinkage and
selection operator penalization, no significant improve-
ment in model calibration was observed in our study.
Machine learning techniques are amore flexible alternative
to probability estimation as they are able to learn more
directly from data without assuming an underlying statis-
tical model.23 Tree-based methods do not make the same
additive and linear assumption as LR. RF generates pre-
dictions by running a subject through multiple decision
trees built in bootstrap data sets, with averaging of the
result. At each split in a tree, only a subset of randomly
selected predictors is considered. This process decorre-
lates the trees, thereby making the average of the resulting
trees less variable and more reliable.38 Boosting does not
involve bootstrap resampling; instead, trees are grown
sequentially using information from previously grown trees.
Boosting learns more slowly and is thought to be more
robust to overfitting.38 It appeared that the nonparametric
nature of machine learning techniques was more suitable
for pCR discrimination in our study cohort; however,
whether this is true in independent data requires further
investigation.

Despite promising discriminative ability, the models fit with
RF were the most miscalibrated. The RF models had ICI
values of approximately 0.1, suggesting that predicted
probabilities of pCR from these models are on average 10%
off from the true probability of pCR.24 Comparatively, the
models fit with LR had ICI values range between 0.026 and
0.037, suggesting that predicted probabilities of pCR from
these models are on average 2.6%-3.7% off from the true
probability of pCR.24 Therefore, improvements in calibra-
tion are needed for these RF models to be clinically useful.
Machine learning offers more flexible algorithms for out-
come prediction and thus requires large amounts of data.34

The size of our sample was likely not sufficient enough to
adequately fit the prediction models using RF, resulting in
overly optimistic discrimination measures and miscalibra-
tion owing to statistical overfitting. The GBT approach

yielded better calibration than RF and a wider range of
predicted probabilities. It is likely that the slower learning
approach of boosting makes it more robust to overfitting in
smaller data sets and better calibration than RF. Validation
of thesemodels on a larger independent data set is required
to accurately assess their performance and clinical utility.

Our study was also novel in that we compared different
variable selection techniques to find an optimal balance
between predictive ability and measurement burden. The
performance between expert and data-driven models was
similar regardless of model fit. On the basis of our data-
driven models, training a machine to automatically select a
feature set did not result in improvements in predictive
performance to offset the burden of collecting data for these
additional variables. We also report that the feature sets
selected by the trainedmachine was similar to that of expert
opinion for each model fit. To further explore how model
performance changed on the basis of the number of fea-
tures included in the data-driven RF model, we continued
the backward deletion procedure until one feature
remained. The primary observation from this procedure
was that as variables were removed from the model, cali-
bration decreased because of high counts of probability
predictions of 0. Therefore, we show that a priori variable
selection on the basis of subject knowledge allows for
sufficient predictive performance on the basis of limited
predictors. This may be desirable in clinical practice as little
data collection is required to provide reliable probability
estimates of pCR following NAC. Steyerberg23 claims it
would be ideal to prespecify a prediction model completely
as it implies that candidate predictors are selected without
studying the predictor-outcome relation in the data under
study. Subject knowledge is viewed as a useful technique to
restrict the number of candidate predictors and increase
the robustness and validity of prediction models, particu-
larly in smaller samples.23 The predictor variables con-
sidered in this analysis were those routinely collected in
clinical practice to facilitate the uptake of such prediction
tools among oncologists. As these variables are included in
the standard initial breast cancer workup, these models
may be applied to each patient before surgery, avoiding the
need for additional diagnostic procedures and their asso-
ciated costs.

There were several strengths to this analysis. This was a
population-based study—the sample of patients was de-
rived from a cohort that captures nearly all (. 93%) breast
cancer cases in Alberta, Canada, which provides real-world
evidence of current practice. These findings may be
inferred to other patients with breast cancer on NAC in this
province and potentially others, because of the universal
health system and similar patterns of care, and the simi-
larities in administrative data between provinces in Canada.
This study was not without limitations. First, there was no
independent study sample to perform external validation on
these models. Several predictive variables identified in the
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literature were not available for analysis, including bodymass
index,39,40 tumor infiltration lymphocytes,41,42 p53 status,43,44

Ki-67 status,45,46 and BRCA1 and BRCA2 status.47 Finally,
the sample size may not have been sufficient for the data-
hungry machine learning approaches, resulting in overfitting
of the models built on RF and GBT.

In conclusion, we developed and compared several ap-
proaches to modeling pCR prediction in patients with
breast cancer following NAC. As the use of NAC increases
in patients with lower burden of disease, it becomes in-
creasingly important to identify characteristics best suited
for NAC. These preliminary models are promising and may
assist clinical decision making by determining patients with
a high probability of achieving pCR to improve prognosti-
cation, limit surgical morbidity, dictate further adjuvant

treatment, and provide optimal cancer care. External val-
idation studies are needed to investigate how the models
developed in this study perform in independent data.
Furthermore, net benefit approaches, described by Vickers
et al,48 may provide a clearer understanding of the clinical
utility of these models. Our study group is collaborating with
additional external collaborators to examine external vali-
dation and implementation to accelerate the significance
and impact of these prediction models. We also plan to
abstract more chart review data to include information
regarding type and duration of NAC received in our pre-
diction models. We have developed an online prediction
tool to demonstrate proof of concept where patients or
clinicians can input readily available patient data to esti-
mate probability of pCR.49
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