Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(Tricyclo[3.3.1.1^{3,7}]dec-2-ylamino)ethanol hemihvdrate

Grant A. Boyle,^a Thavendran Govender,^{b*} Hendrik G. Kruger^a and Oluseye K. Onajole^a

^aSchool of Chemistry, University of KwaZulu-Natal, Durban, 4000, South Africa, and ^bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, 4000, South Africa

Correspondence e-mail: govenderthav@ukzn.ac.za

Received 19 May 2008; accepted 3 June 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.112; data-to-parameter ratio = 18.3.

The title adamantane derivative, C₁₂H₂₁NO·0.5H₂O, was synthesized as part of an investigation into the biological activities of cage amino-alcohol compounds as potential antituberculosis agents. The structure displays intermolecular O- $H \cdots N$, $N - H \cdots O$, $O - H \cdots O$ hydrogen bonding and a layered packing structure with distinct hydrophilic and hydrophobic regions. The water molecule lies on a twofold rotation axis.

Related literature

For related literature, see: Bogatcheva et al. (2006); du Pont de Nemours and Co. (1969); Lee et al. (2003); Tripathi et al. (2006).

Experimental

Crystal data C12H21NO-0.5H2O $M_r = 204.31$ Monoclinic, C2/c a = 11.6739 (3) Å b = 6.5043 (2) Å c = 28.6241 (7) Å $\beta = 99.8620 \ (10)^{\circ}$

$V = 2141.33 (10) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 173 (2) K
$0.56 \times 0.43 \times 0.18 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector	2584 independent reflections
diffractometer	2352 reflections with $I > 2\sigma(I)$
Absorption correction: none 13147 measured reflections	$R_{\rm int} = 0.058$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F ²) = 0.112	H atoms treated by a mixture of independent and constrained
S = 1.07	refinement
2584 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
141 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} O1 - H1C \cdots N1^{i} \\ N1 - H1B \cdots O1W^{ii} \\ O1W - H1W \cdots O1^{iii} \end{array}}$	0.84 0.849 (16) 0.863 (16)	1.86 2.398 (16) 1.963 (17)	2.7007 (12) 3.2241 (12) 2.8147 (12)	175 164.6 (14) 168.7 (16)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y - 1, z; (iii) $-x + 2, y, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance in the acquisition of the crystallographic data. This work was supported by grants from the National Research Foundation (South Africa), GUN 2046819, the University of KwaZulu-Natal and Aspen Pharmacare.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2403).

References

- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.
- Bruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

du Pont de Nemours, E. I., and Co. (1969). Patent No. GB 1 157 143 19 690 702. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172-187.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Tripathi, R. P., Saxena, N., Tiwari, V. K., Verma, S. S., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. 14, 8186-8196.

supplementary materials

Acta Cryst. (2008). E64, o1228 [doi:10.1107/S1600536808016851]

2-(Tricyclo[3.3.1.1^{3,7}]dec-2-ylamino)ethanol hemihydrate

G. A. Boyle, T. Govender, H. G. Kruger and O. K. Onajole

Comment

The title compound, an adamantane derivative, was synthesized as part of an ongoing study to evaluate the biological activity of such compounds as potential anti-tuberculosis agents (Bogatcheva *et al.* (2006), Lee *et al.* (2003), Tripathi *et al.* (2006)). Although the compound is known (du Pont de Nemours and Co.; 1969), its crystal structure has not been reported.

The compound contains a polycyclic (lipophilic) hydrocarbon region, polar amine and hydroxyl units, and crystallizes with half a water molecule in the asymmetric unit (Fig.1)- the water molecule being situated on a crystallographic 2-fold axis at (1, y, 3/4). The title molecule exhibits several C–C bond lengths in the adamantane skeleton that deviate from the expected value of 1.54 Å. This has been observed previously and is typical for these types of compounds.

The structure exhibits intermolecular hydrogen bonding between O1 and N1 of adjacent molecules as well as between O1 and O1W of the water molecule (Fig. 2). There is also a complex network of short contacts between the molecules in structure. These intermolecular interactions result in a layered structure with distinct hydrophilic and hydrophobic regions (Fig. 3). The adamantane skeleton forms the hydrophobic layer while the polar hydroxyl and amino moeties constitute the hydrophilic region.

Experimental

A mixture of 2-adamantanone (2 g, 13 mmol) and 2-aminoethanol (1 g, 16 mmol) in 20 ml of methanol was stirred under dinitrogen atmosphere at room temperature for 2 h. The mixture was cooled to zero degrees using an external ice bath after with NaBH₄ (1 g, 26 mmol) was added slowly over a 30 minutes. The mixture was stirred for overnight at room temperature after which it was concentrated *in vacuo* and excess NaBH₄ was quenched by adding 40 ml of 10% HCl and the product was also extracted as its HCl salt in the process. The aqueous solution was washed with 2x20ml of dichloromethane, after which the aqueous layer was basified (pH 12) with NH₄OH and the product was extracted from the mixture with dichloromethane (2x30ml), the solvent was dried over Na₂SO₄ and concentrated *in vacuo*. The product was recrystallized from dichloromethane, thereby affording pure 2-aminoethanol adamantane (2 g, 77% yield).

Refinement

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F^2 using *SHELXTL*. With the exception to H1B and H1W, all hydrogen atoms were first located in the difference map then positioned geometrically, and allowed to ride on their respective parent atoms, with bond lengths of 0.99 Å (CH₂), 1.00 Å (Methine CH) or 0.84 Å (OH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH₂ and CH), or 1.5 OH) times U_{eq} of the parent atom. Atoms H1B and H1W were located in the difference map and refined freely. **Figures**

Fig. 1. The *ORTEP* (Farrugia, 1997) diagram of the title compound showing the displacement ellipsoids for non-hydrogen atoms at the 50% probability level.

Fig. 2. Figure depicting the intermolecular hydrogen bonding.

Fig. 3. Packing diagram depicting layered structure as seen down the *b*-axis.

2-(Tricyclo[3.3.1.1^{3,7}]dec-2-ylamino)ethanol hemihydrate

Crystal	data
---------	------

F(000) = 904
$D_{\rm x} = 1.267 {\rm ~Mg~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 7587 reflections
$\theta = 2.9 - 28.3^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$
T = 173 K
Plate, colourless
$0.56\times0.43\times0.18~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2352 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.058$
graphite	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
phi and ω scans	$h = -15 \rightarrow 15$
13147 measured reflections	$k = -8 \rightarrow 8$
2584 independent reflections	<i>l</i> = −37→37

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.112$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.0507P)^2 + 1.5961P]$ where $P = (F_0^2 + 2F_c^2)/3$
2584 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
141 parameters	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.76341 (9)	-0.06132 (17)	0.61221 (4)	0.0189 (2)
H1	0.6899	-0.0946	0.6241	0.023*
C2	0.81420 (9)	0.13986 (16)	0.63482 (3)	0.0156 (2)
H2	0.7582	0.2520	0.6229	0.019*
C3	0.92859 (10)	0.18681 (17)	0.61700 (4)	0.0181 (2)
H3	0.9635	0.3162	0.6321	0.022*
C4	1.01487 (10)	0.00885 (18)	0.62888 (4)	0.0205 (2)
H4A	1.0880	0.0411	0.6173	0.025*
H4B	1.0334	-0.0096	0.6637	0.025*
C5	0.96251 (10)	-0.18982 (17)	0.60569 (4)	0.0208 (2)
Н5	1.0189	-0.3054	0.6137	0.025*
C6	0.93562 (11)	-0.16124 (19)	0.55178 (4)	0.0243 (3)
H6A	1.0082	-0.1301	0.5396	0.029*
H6B	0.9023	-0.2896	0.5366	0.029*
C7	0.84905 (11)	0.01531 (19)	0.53962 (4)	0.0240 (3)
H7	0.8313	0.0338	0.5044	0.029*
C8	0.73704 (10)	-0.0346 (2)	0.55821 (4)	0.0250 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H8A	0.7025	-0.1627	0.5433	0.030*
H8B	0.6802	0.0781	0.5499	0.030*
C9	0.85024 (10)	-0.23740 (17)	0.62443 (4)	0.0208 (2)
H9A	0.8159	-0.3668	0.6101	0.025*
H9B	0.8677	-0.2561	0.6593	0.025*
C10	0.90159 (11)	0.21388 (18)	0.56282 (4)	0.0241 (3)
H10A	0.8462	0.3288	0.5546	0.029*
H10B	0.9739	0.2475	0.5507	0.029*
C11	0.83975 (9)	0.33596 (16)	0.70953 (4)	0.0170 (2)
H11A	0.7728	0.4258	0.6973	0.020*
H11B	0.9109	0.4007	0.7018	0.020*
C12	0.85067 (10)	0.31373 (16)	0.76292 (4)	0.0186 (2)
H12A	0.7770	0.2587	0.7706	0.022*
H12B	0.9132	0.2141	0.7745	0.022*
N1	0.82297 (8)	0.13298 (14)	0.68680(3)	0.0156 (2)
O1	0.87618 (7)	0.50454 (12)	0.78653 (3)	0.01947 (19)
H1C	0.8167	0.5477	0.7963	0.029*
O1W	1.0000	0.82045 (19)	0.7500	0.0240 (3)
H1B	0.8774 (13)	0.053 (2)	0.6990 (5)	0.024 (4)*
H1W	1.0445 (14)	0.737 (3)	0.7380 (6)	0.037 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0192 (5)	0.0197 (5)	0.0178 (5)	-0.0041 (4)	0.0030 (4)	-0.0029 (4)
C2	0.0175 (5)	0.0146 (5)	0.0146 (5)	0.0007 (4)	0.0027 (4)	0.0003 (4)
C3	0.0224 (5)	0.0155 (5)	0.0172 (5)	-0.0032 (4)	0.0059 (4)	-0.0004 (4)
C4	0.0178 (5)	0.0236 (6)	0.0200 (5)	0.0000 (4)	0.0033 (4)	-0.0024 (4)
C5	0.0247 (6)	0.0180 (5)	0.0198 (5)	0.0045 (4)	0.0038 (4)	-0.0010 (4)
C6	0.0310 (6)	0.0236 (6)	0.0193 (5)	0.0008 (5)	0.0072 (4)	-0.0046 (4)
C7	0.0313 (6)	0.0265 (6)	0.0138 (5)	0.0015 (5)	0.0030 (4)	0.0010 (4)
C8	0.0245 (6)	0.0296 (6)	0.0188 (5)	-0.0003 (5)	-0.0023 (4)	-0.0036 (4)
C9	0.0300 (6)	0.0137 (5)	0.0189 (5)	-0.0029 (4)	0.0048 (4)	-0.0006 (4)
C10	0.0339 (6)	0.0206 (6)	0.0195 (5)	0.0004 (5)	0.0092 (4)	0.0040 (4)
C11	0.0207 (5)	0.0133 (5)	0.0170 (5)	0.0003 (4)	0.0033 (4)	-0.0009 (4)
C12	0.0239 (5)	0.0151 (5)	0.0172 (5)	-0.0006 (4)	0.0049 (4)	-0.0010 (4)
N1	0.0189 (4)	0.0131 (4)	0.0149 (4)	0.0008 (3)	0.0033 (3)	-0.0003 (3)
01	0.0195 (4)	0.0188 (4)	0.0208 (4)	-0.0012 (3)	0.0054 (3)	-0.0058 (3)
O1W	0.0293 (6)	0.0175 (6)	0.0259 (6)	0.000	0.0064 (5)	0.000

Geometric parameters (Å, °)

C1—C9	1.5297 (16)	C7—C8	1.5287 (17)
C1—C8	1.5334 (15)	C7—C10	1.5316 (17)
C1—C2	1.5334 (14)	С7—Н7	1.0000
C1—H1	1.0000	C8—H8A	0.9900
C2—N1	1.4745 (12)	C8—H8B	0.9900
C2—C3	1.5395 (15)	С9—Н9А	0.9900
С2—Н2	1.0000	С9—Н9В	0.9900

C3—C4	1.5339 (15)	C10—H10A	0.9900
C3—C10	1.5388 (15)	C10—H10B	0.9900
С3—Н3	1.0000	C11—N1	1.4700 (13)
C4—C5	1.5314 (16)	C11—C12	1.5187 (14)
C4—H4A	0.9900	C11—H11A	0.9900
C4—H4B	0.9900	C11—H11B	0.9900
С5—С9	1.5305 (16)	C12—O1	1.4200 (13)
C5—C6	1.5324 (15)	C12—H12A	0.9900
С5—Н5	1.0000	C12—H12B	0.9900
C6—C7	1.5299 (17)	N1—H1B	0.849 (16)
С6—Н6А	0.9900	O1—H1C	0.8400
С6—Н6В	0.9900	O1W—H1W	0.863 (16)
C9—C1—C8	109.03 (9)	C6—C7—C10	109.54 (10)
C9—C1—C2	110.44 (9)	С8—С7—Н7	109.5
C8—C1—C2	108.97 (9)	С6—С7—Н7	109.5
С9—С1—Н1	109.5	С10—С7—Н7	109.5
C8—C1—H1	109.5	C7—C8—C1	109.82 (9)
C2—C1—H1	109.5	С7—С8—Н8А	109.7
N1—C2—C1	110.79 (8)	С1—С8—Н8А	109.7
N1—C2—C3	115.22 (8)	С7—С8—Н8В	109.7
C1—C2—C3	108.91 (8)	C1—C8—H8B	109.7
N1—C2—H2	107.2	H8A—C8—H8B	108.2
C1—C2—H2	107.2	C1—C9—C5	110.01 (9)
С3—С2—Н2	107.2	С1—С9—Н9А	109.7
C4—C3—C10	108.86 (9)	С5—С9—Н9А	109.7
C4—C3—C2	110.53 (9)	С1—С9—Н9В	109.7
C10—C3—C2	108.48 (9)	С5—С9—Н9В	109.7
С4—С3—Н3	109.6	Н9А—С9—Н9В	108.2
С10—С3—Н3	109.6	C7—C10—C3	109.77 (9)
С2—С3—Н3	109.6	C7C10H10A	109.7
C5—C4—C3	110.03 (9)	C3—C10—H10A	109.7
C5—C4—H4A	109.7	С7—С10—Н10В	109.7
C3—C4—H4A	109.7	C3—C10—H10B	109.7
C5—C4—H4B	109.7	H10A-C10-H10B	108.2
C3—C4—H4B	109.7	N1-C11-C12	109.98 (8)
H4A—C4—H4B	108.2	N1—C11—H11A	109.7
C9—C5—C4	108.72 (9)	C12-C11-H11A	109.7
C9—C5—C6	109.72 (9)	N1-C11-H11B	109.7
C4—C5—C6	109.38 (9)	C12-C11-H11B	109.7
С9—С5—Н5	109.7	H11A—C11—H11B	108.2
C4—C5—H5	109.7	O1—C12—C11	111.73 (8)
С6—С5—Н5	109.7	O1—C12—H12A	109.3
C7—C6—C5	109.49 (9)	C11—C12—H12A	109.3
С7—С6—Н6А	109.8	O1—C12—H12B	109.3
С5—С6—Н6А	109.8	C11—C12—H12B	109.3
С7—С6—Н6В	109.8	H12A—C12—H12B	107.9
С5—С6—Н6В	109.8	C11—N1—C2	113.60 (8)
H6A—C6—H6B	108.2	C11—N1—H1B	109.6 (10)
C8—C7—C6	109.42 (10)	C2—N1—H1B	110.6 (10)

supplementary materials

C8—C7—C10	109.34 (10)	C12—O1—H1C	109.5
C9—C1—C2—N1	-69.54 (11)	C6—C7—C8—C1	60.43 (12)
C8—C1—C2—N1	170.72 (9)	C10-C7-C8-C1	-59.53 (12)
C9—C1—C2—C3	58.18 (11)	C9—C1—C8—C7	-60.00 (12)
C8—C1—C2—C3	-61.56 (11)	C2-C1-C8-C7	60.61 (12)
N1—C2—C3—C4	67.40 (11)	C8—C1—C9—C5	59.43 (11)
C1—C2—C3—C4	-57.78 (11)	C2—C1—C9—C5	-60.27 (11)
N1—C2—C3—C10	-173.32 (9)	C4—C5—C9—C1	60.16 (11)
C1—C2—C3—C10	61.50 (11)	C6—C5—C9—C1	-59.42 (11)
C10-C3-C4-C5	-59.70 (12)	C8—C7—C10—C3	59.75 (12)
C2—C3—C4—C5	59.36 (11)	C6—C7—C10—C3	-60.14 (12)
C3—C4—C5—C9	-59.71 (11)	C4—C3—C10—C7	59.61 (12)
C3—C4—C5—C6	60.09 (12)	C2-C3-C10-C7	-60.72 (12)
C9—C5—C6—C7	59.30 (12)	N1-C11-C12-O1	175.36 (9)
C4—C5—C6—C7	-59.87 (12)	C12-C11-N1-C2	-178.67 (8)
C5—C6—C7—C8	-59.80 (12)	C1—C2—N1—C11	-164.04 (9)
C5—C6—C7—C10	60.05 (12)	C3—C2—N1—C11	71.76 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A			
O1—H1C…N1 ⁱ	0.84	1.86	2.7007 (12)	175			
N1—H1B…O1W ⁱⁱ	0.849 (16)	2.398 (16)	3.2241 (12)	164.6 (14)			
O1W—H1W···O1 ⁱⁱⁱ	0.863 (16)	1.963 (17)	2.8147 (12)	168.7 (16)			
Symmetry codes: (i) $-x+3/2$, $y+1/2$, $-z+3/2$; (ii) x , $y-1$, z ; (iii) $-x+2$, y , $-z+3/2$.							

Fig. 1

Fig. 3