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Abstract: Developing a controlled method for obtaining hybrid enzymatic-based interfaces for
sensing application require the use of a multiuse, reusable sensor. By controlling the interface
characteristics in terms of the surface chemistry, thickness, and roughness, a tailored response
toward various toxic compounds can be obtained, regarding both materials used as active surfaces
and fabrication methods. Herein, we report a preliminary study on using a laser-based method
(i.e., matrix-assisted pulsed laser evaporation, or MAPLE) for obtaining active polymeric–enzymatic
interfaces as hybrid or layered coatings for detecting toxic vapors. The MAPLE fabrication consisted of
the simultaneous alternating evaporation of layers of polyethylenimine (PEI) and acetylcholinesterase
(AchE) in order to obtain active surfaces as both hybrid PEI-AchE and a PEI/AchE layered coating,
respectively. The deposition processes of the polymer and enzyme were carried out using a
double-target system and a Nd:YAG pulsed laser, operating at 0.45 J/cm2 fluences with a wavelength
of 266 nm and a repetition rate of 10 Hz. Fourier transform infrared spectroscopy revealed no
significant changes in the functional groups of both hybrid and layered coatings compared with
the initial material. The thickness and roughness, as well as the morphologies of the coatings
revealed by atomic force microscopy and scanning electron microscopy showed coatings thicker than
two µm that had smooth surfaces and average roughness values below six nm. The sensors were
tested with simulants for nerve gases and pesticides containing phosphonate ester groups, namely
dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP), and a different
sensitivity was shown to the selected chemical agents for each of the sensors. The best sensitivities for
DMMP and DIMP obtained by using a PEI-AchE coated sensor are 65 kHz and 200 kHz, respectively,
whereas the best sensitivity when using multilayered interfaces is 30 kHz and 10 KHz for DIMP and
DMMP, respectively.

Keywords: MAPLE; surface acoustic wave sensor; AchE; DMMP detection; DIMP detection

1. Introduction

Nowadays, the fast, sensitive detection of specific harmful chemical agents presents interest as a
research topic, which is caused by security concerns and safety hazards. Therefore, detecting quantities
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lower than those that can affect negatively life and health, as well as discriminating between chemical
toxic compounds is of interest for wide area of applications related to health and security.

Among the most used sensors, surface acoustic wave (SAW) sensors are used at a larger scale
for research related to the detection of volatile toxic compounds due to specific characteristics: high
sensitivity, small size, low cost, very good response time, and ability to work in wireless mode.

The SAW sensor sensitivity and selectivity are related both to sensor characteristics and active
area interface properties. This implies the use of specific compounds and methods that are compatible
with them, which allow tailoring their characteristics [1–7].

The organophosphorus compounds have a significant negative impact as related to terrorism.
Such compounds are also environmental and food chain pollutants (i.e., DMMP, or dimethyl
methylphosphonate), as they are used as common additives for anti-foaming agents, plasticizers,
stabilizers, textile conditioners, and antistatic agents [8]. Moreover, DMMP is used due to its
nontoxicity and organophosphorus compound elemental composition for mimicking nerve agents,
being considered an appropriate simulant for both insecticides and G-series nerve agents. Besides
DMMP, diisopropyl methylphosphonate (DIMP) can be used as well as simulant for G-series
nerve agents.

Therefore, one major requirement for obtaining highly sensitive active elements for sensors is the
synergy between specific functional materials with advanced fabrication technology. Polyethylenimine
(PEI) and acetylcholinesterase (AchE) were chosen for obtaining the hybrid and multilayered coatings
due to their peculiar characteristics suitable for sensing DMMP and DIMP. Specifically, among the
polyamines, polyethyleneimine (PEI) represents one of the most interesting candidates for binding
specific volatile compounds due to its high amine density and accessible primary amine sites on
the chain ends (for example, for CO2 capture ability, etc.) [9]. In the literature, AchE immobilized
through physical adsorption is mainly used for biosensors, especially for testing/screening therapeutic
drugs for Parkinson’s and Alzheimer’s diseases, as well as in clinical diagnosis [10–13]. For this
direction, films of silica sol-gel incorporating gold nanoparticles (AuNPs-Si-SG) coated with AchE, or
platinum-coated with AchE, were used to test various drugs [14].

The use of active coatings with tunable characteristics in sensing fields is directly correlated with
the surface chemical and topographical properties. Therefore, the method of preparation, and the type
of analytes implied must to be correlated to the specific application.

There are chemical methods and physical methods that can be used to modify/coat a surface;
this involves processes from adding suitable functional groups on the surface (i.e., chemical vapor
deposition (CVD)) to adding physical material onto a surface (i.e., spin coating, dip coating, vapor
deposition, sputtering, arc vapor deposition, and ion plating). If in the case of CVD, the thickness of
the film can be controlled even to an atomic level, but the precursors are highly toxic, corrosive, or
explosive, causing the destruction of the biocompounds or adverse toxic effects. In the case of spin
coating and dip coating, it is difficult to control the thickness of the film, and no hybrid materials that
imply organic solvents and proteins/enzymes can be obtained [15].

In the last years, matrix-assisted pulsed laser evaporation (MAPLE) was successfully used for
depositing sensitive materials such as polymers and proteins, but it was also shown to be an appropriate
approach for embedding in a controlled manner not only ceramic materials or graphene, but also
active proteins such as lactoferrin, or, for a narrow window of parameters, functional Micrococcus
bacteria for biosensing applications [16–22].

MAPLE provides a suitable process for transferring various small or large molecular weight
species as coatings from the condensed phase into the vapor phase. The process starts with the laser
energy being mostly absorbed by the solvent molecules, therefore preventing the target molecules
from being damaged by the high-energy laser beam. The solvent vaporization mechanism includes
the photo thermal process that converts the absorbed energy of the photons from the frozen solvent
molecules to thermal energy [15]. Therefore, when “target molecules absorb enough energy through
collisions with solvent molecules under the evaporation process, the target molecules are transferred to
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the vapor phase”. It is important to underline that the MAPLE target solution is depleted layer by layer;
the concentration does not change within the experiment time [15]. Depending on the experimental
conditions, and due to the low solvent adhesion coefficient, most of the solvent molecules are pumped
away [15–22]. When it is necessary to obtain coatings from not miscible elements, targets can also be
designed as a multi-compartment system, therefore allowing a unique method to “mix” proteins with
polymers that use organic solvents [18].

Within this context, in this work, the matrix-assisted pulsed laser evaporation (MAPLE) technique
was used to yield hybrid PEI-AchE, which can form respectively layered PEI/AchE thin films for
efficient DMMP and DIMP capture. In previous work by Viespe et al. [23], it was observed that if the
PEI is deposited by air-brush technique, the film morphology is affected, with direct consequences on
the signal-to-noise ratio (SNR).

In this work, MAPLE was used to evaporate simultaneously or alternatively layers of PEI and
AchE. Micron-thick sensitive layers formed active surfaces: hybrid PEI-AchE and PEI/AchE layered
coatings, repsectively. These were tested with DIMP and DMMP. Our approach presents not only
the advantage of controlling the morphology of the polymer and enzyme films deposited on quartz
substrates, but, more importantly, when using the MAPLE technique, the solvent used for the PEI
polymer will not contact the AchE enzyme; therefore, it will not affect its functionality.

2. Materials and Methods

2.1. Target Solutions Preparation

The chemicals were obtained from Sigma-Aldrich (Saint Louis, MO, USA). Deionized water and
methanol were used as solvents for AchE and PEI, respectively. Solutions of 2% weight PEI (408719
Aldrich, average Mw ~800 by LS, average Mn ~600 by GPC) in methanol, and 0.1% weight AchE
(C3389 Type VI-S, lyophilized powder, 200–1000 units/mg protein) in double-distilled water were
obtained. The PEI solutions were subsequently sonicated for several minutes (30 min) (Sharpertek
Digital Ultrasonic cleaner XP PRO).

2.2. Matrix-Assisted Pulsed Laser Evaporation System

A “Surelite II” pulsed Nd:YAG laser system (Continuum Company) (five to seven ns pulse
duration) at 266 nm and a 10-Hz repetition rate was used to irradiate the frozen targets. In order to
avoid the influence of methanol on AChE, we used a double-target system, consisting of 75% area
occupied by AchE and 30% occupied by PEI (Figure 1). In order to form the target, the solutions were a
sonicated for five minutes and rapidly frozen in a liquid nitrogen-cooled copper container. Firstly, the
PEI solution was confined within 30% of the target by using a removable Teflon separator; secondly,
the AchE solution was frozen, and the teflon separator was removed. The container was mounted
on a cryogenic holder inside the deposition chamber (Neocera spherical vacuum chamber with 12”
diameter). The target was maintained frozen by a circulating liquid nitrogen system; the temperature
was checked by the two thermocouples placed directly onto the target holder. The laser fluence was
0.45 J/cm2 and the number of pulses was kept at 54 k pulses (for AchE) and 36 k pulses (for obtaining
a 2.4-um thick PEI and a 200-nm thick PEI-AchE enzyme coatings). Also, in order to avoid damage by
local overheating and drilling following multiple pulses of laser irradiation, the target was rotated
with 20 rpm using a motion feed-driven motor. Due to the absorbed laser energy in the first frozen
layer of the target, which consisted mostly of frozen solvent, vaporization takes place in order to
entrain the enzyme and polymer particles toward the substrate, while volatile solvent molecules were
removed from the deposition chamber by the vacuum pumps. The substrates are placed parallel to the
target and situated at a distance of 3.5 cm. The background pressure in the chamber was maintained
at 1–2 × 10−3 Pa.
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Figure 1. Matrix-assisted pulsed laser evaporation (MAPLE) setup and target system used for obtaining
hybrid polyethylenimine (PEI)-acetylcholinesterase (AchE) coatings and layered PEI/AchE thin films.

The hybrid PEI-AchE coatings were obtained by simultaneously scanning the laser beam onto
the dual target; within the same experiment, respectively layered PEI/AchE thin films were obtained
by firstly scanning the laser beam onto the PEI target, and secondly onto the AchE target surface
(Figure 1).

2.3. Substrate Preparation

Two types of substrates were used: double-polished Si (100) transparent in the infrared (Neyco),
and SAW sensors.

The Si substrates that were used for Fourier transform infrared (FTIR) measurements, as well as
for atomic force microscopy (AFM) and SEM were cleaned by sonication with alcohol and water and
blow-dried under N2 gas before use. All of the substrates were placed at a distance of 3.5 cm from the
frozen target and kept at ambient temperature during the deposition.

The SAW sensors were fabricated on ST-cut quartz with propagation in the X-direction. The
interdigital transducers consisted of 200 nm of gold on 10 nm of chromium as an adhesive layer.
A double-double finger design was used with a periodicity of 11 µm. The SAW sensors’ operation
frequency was ~69 MHz. For the measurement circuit, a DHPVA-100 FEMTO (10–60 dB, 100 MHz)
amplifier was used, and the frequency shift of the system was read using a CNT-91 Pendulum counter
analyzer [23,24].

2.4. Chemical and Morphological Characterization of the Deposited Thin Films

Fourier transform infrared spectroscopy (FTIR) was used to evaluate the characteristic vibrations
of the functional groups of the substrate-deposited thin films. The infrared spectrum of the native
molecule deposited by drop cast on the Si substrates was used as the control. The FTIR measurements
were carried out using a Jasco FT/IR-6300 type spectrometer in the 400–4000 cm−1 range, with a
resolution of 4 cm−1. The spectra were measured by transmission through a coated Si wafer, and then
the absorption was calculated by the accumulation of 1024 scans. For maintaining a steady atmosphere
in the measurement chamber, silica gel and regularly purging the spectrometer with argon gas were
used. The employed substrate that was used as the background as well was a thin silicon wafer
(transparent to infrared).

Morphology characterizations were performed by optical microscopy, atomic force microscopy
(AFM), and scanning electron microscopy (SEM). For optical microscopy, the images were acquired
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using an Axiovert 200 Microscope coupled to a Carl Zeiss AxioCamMRm camera. AFM (XE 100
AFM, Park systems) measurements were performed in non-contact mode, and allowed for surface
roughness analyses.

SEM investigations were carried out on a field emission scanning electron microscope (JSM-531
Inspect S Electron Scanning Microscope, FEI Company (Hillsboro, OR, USA)).

2.5. DMMP and DIMP Measurements

The different concentrations of DMMP and DIMP were detected using a testing system developed
by Viespe et al. [25]. The DMMP and DIMP liquid was injected into a gas mixture and mixed with air.
The amount of DMMP and DIMP, as shown in Table 1, were six ppm and five ppm respectively, after
the total evaporation of the analyte that was circulated in the system by a diaphragm pump (Pfeiffer
model MVP 035-2). The mixture temperature and the flow rate were maintained constant during
the experiments. Repeating 10 measurements of the frequency deviation for each of the sensor films
yielded errors below as ± 4%.

Table 1. Fourier transform infrared (FTIR) measurements.

Position (cm−1) Vibrations

PEI
3500 NH asymmetric stretching
3391 NH symmetric stretching
3365 NH stretching II
2915 CH asymmetric stretching
2881 CH symmetric stretching
1647 N–H deformation
1496 C–H deformation
1043 C–N stretching

AchE
3282.25 OH stretching

2962 C–H stretching
2340; 2360 Asymmetric stretching, CO2 gas phase influence
1700–1600 Amide I
1600–1500 Amide II
1451–1410
1200−1405

1300

C==C stretching vibration
νC−N stretch
νN−H bend

3. Results and Discussion

There are various surface and interface characteristics of an active sensor element (i.e., thickness,
uniformity, roughness, chemistry) that can influence and dictate the response of a sensor to a specific
analyte. By the ability to control and tailor both the physical and chemical characteristics of the
interfaces, an enhanced response and use of these active coatings can be obtained. In this work, we
used the MAPLE technique for depositing hybrid and layered active surfaces based on PEI and AchE
for detecting DMMP and DIMP, respectively.

3.1. Morphological Characterization

Scanning electron microscopy and atomic force microscopy were used first to analyze the
morphology and roughness of the deposited and drop-casted components of the layered and hybrid
coatings surfaces with a final thickness of 2.4 µm in different areas of the samples. Examples of the
SEM and AFM images of the samples obtained by both drop cast and MAPLE are presented in Figure 2
(for the drop-casted material), and in Figures 3–5 for the samples obtained by MAPLE.
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Figure 2. SEM, optical microscopy, and atomic force microscopy (AFM) images of AchE and PEI
drop-casted materials.

Figure 3. Top-view SEM of the MAPLE samples obtained on Si. Scale bar: 50 µm.

It was observed that the control samples, which were obtained by drop casting, as shown in
Figure 2, are characterized by relatively smooth surfaces, but AchE presented an irregular accumulation
of material as nanograins onto the surface. The optical microscopy images show a larger accumulation
of these grain-like structures over the entire area of the samples. The irregular shapes are present in
the case of PEI too; the material is spread non-uniformly.

In contrast with the control samples, the main characteristics for the MAPLE-obtained samples,
as confirmed by both SEM and AFM analysis, are uniformity and low roughness surface, as can be
seen for the PEI, AchE, and PEI/AchE thin films (Figures 3–5).

However, it was observed as well that in the case of layered coatings, the protein can accumulate,
leaving part of the PEI exposed. However, in the case of hybrid coatings, the proteins deposit seems to
be embedded within the polymeric layer.

For a better visualization of the surface topography and understanding of the material
organization on the surfaces, AFM measurements were performed, showing slightly porous surfaces,
with pores varying within tens of nanometers in the case of hybrid PEI_AchE coatings (Figure 5). The
non-contact mode AFM images showed smooth structures of both the single elements and hybrid
surfaces; roughness levels below six nm were observed (i.e., 2.2 nm for PEI, 4 nm for AchE, 2.8 nm
PEI/AchE, and 5.9 nm for PEI_ACHE).
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Figure 4. SEM images (with 20,000 magnification) of the samples obtained by MAPLE. (Scale bars:
four µm).

Figure 5. The AFM analysis of the MAPLE-coated samples (1 µm × 1 µm).
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3.2. Chemical Characterization

The differences induced by deposition methods (MAPLE and drop cast) in the functional groups
among the PEI, AchE, PEI-AchE, and PEI/AchE samples were determined by FTIR measurements.
The similarity between the absorbance bands for drop cast and the thin films obtained by MAPLE
are depicted in Figure 6 and Table 1. The significant absorption regions of the deposited material and
control are shown, allowing the optimum visualization of the peaks and the changes induced by the
MAPLE process.

Figure 6. FTIR spectra of PEI polymer films, AchE enzyme, and PEI-AchE hybrid coatings, deposited
by MAPLE and the drop-casted solution as a reference of the peaks positions and widths.

The composition was preserved after dissolving the PEI in methanol (drop cast), as well as
for MAPLE transfer (Figure 6). The unmodified functional groups of PEI were indicated by the
signals at 3500 cm−1 corresponding to NH asymmetric stretching, and at 3391 cm−1 and 3365 cm−1,
corresponding to NH symmetric stretching. The CH symmetric and asymmetric stretching were
confirmed by the signals from 2881 cm−1 and 2915 cm−1, respectively. The N–H deformation was
confirmed at 1647 cm−1, while the peaks observed at 1496 cm−1 and 1043 cm−1 corresponded to C–H
deformation and C–N stretching, respectively [25].

Moreover, the functional groups of AchE samples obtained by MAPLE were indicated by the signal
at 3282.25 cm−1, corresponding to AchE’s free hydroxyl stretching mode [26–29]. Due to adsorbed
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hydrocarbons on the surface, the C–H stretching vibrations are confirmed by the signal at 2926 cm−1.
Although the samples were maintained through using silica gel and purging the spectrometer with
argon gas, the CO2 interferences from ambient conditions are noticed as a double peak located at 2340
cm−1 and 2360 cm−1 (asymmetric stretching). The signals at 1641 cm−1 were associated with the NH
bending and scissoring mode, while the signal in the range 1451–1410 cm−1 was assigned to the C==C
stretching vibration arising from the deposited enzyme on the surface [26–28,30,31]. Furthermore, the
spectrum of MAPLE-deposited AchE-PEI hybrid coatings showed absorptions similarities with that
of the drop-casted samples for both components. However, as previously reported, the presence of
enzyme immobilized onto a surface was confirmed by the observation of broad and intense bands
for amide I at ~1655 cm−1 (νC=O stretching vibrations) and amide II at ~1530 cm−1 (combination of
δN−H bending and νC−N stretching modes) [28], while in our case, despite the similarity between
the drop-cast spectra and the MAPLE spectra, the peaks corresponding to amide I were observed at
1641 cm−1, while the Amide II band was observed at 1514 cm−1. If in the works reported previously,
the bands follow the general trend of displaying broad unstructured bands without any overlaid fine
structures, in our case, several components bands are observed at 1636 cm−1, 1649 cm−1, 1672 cm−1,
and 1690 cm−1. As reported by Gorne-Tschelnokow et al., by analyzing the deconvoluted spectra of
the enzyme, components were observed as well at 1631 cm−1, 1648 cm−1, and 1656 cm−1; meanwhile,
weaker bands appeared near 1622 cm−1, 1640 cm−1, and 1672 cm−1 [26]. Other minor peaks (between
1700–1850 cm−1) are related to the carbonyl stretching absorption. Also, as previously observed in the
work of Khaldi et al. [28], the peaks observed in the region of 1400−1200 cm−1 are assigned to amide
III (νC−N stretch and νN−H bend near 1300 cm−1).

These observations demonstrate a non-destructive laser transfer of the PEI and AchE thin film,
without methanol solvent molecules on the substrate or interfering with AchE after MAPLE deposition,
allowing the deposition of two different configurations for the active element of the sensor, as both
layered and mixture/hybrid coating.

3.3. DMMP and DIMP Measurements

A comparison between the frequency shifts values for the coated sensors with either PEI or hybrid
and layered coatings, together with the effects of the presence of DMMP and DIMP, is shown in Table 2.
An increase of the value of frequency shift—meaning a better response for DIMP—was observed for
all of the samples, while hybrid PEI-AchE coatings gave a better response as compared with both PEI
and PEI/AchE layered coatings. The frequency shift that was obtained for a DMMP concentration by
us was better than the results obtained with SAW sensors using ZnO [29] and polysiloxane [32] for
DMMP detection. The response time was between 9–15 s and 90–100 s in the case of DIMP and DMMP,
respectively. This response could be explained by the vapor pressure of DMMP and DIMP. DMMP has
a higher vapor pressure at 25 ◦C (0.962 mmHg) than DIMP (0.28 mmHg), which makes it evaporate
over a longer time in site.

Table 2. Frequency shift of sensors at six-ppm dimethyl methylphosphonate (DMMP) concentration
and five-ppm diisopropyl methylphosphonate (DIMP) concentration.

Sensor Type
DIMP DMMP

Frequency Shift [kHz] Frequency Shift [kHz]

Multilayer PEI/AchE 30 10
PEI with AchE 200 65

PEI 11 4

By comparing the results for the three types of sensors, one can notice a difference in frequency
change depending on the type of film deposited. Thus, for the PEI film, where interaction took place
through weak hydrogen bonds [33], the lowest values were obtained. For the layered film, where
the enzyme interacts directly with the analyte, the results are intermediate. In this case, the signal is
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received by an effect, π, (between the electrons p of the nitrogen and the electrons π of the phosphate
group), providing stronger bonds than the hydrogen bonds formed by PEI [34–36].

The better response given by the hybrid coating can be explained by the synergistic effect of PEI
and AchE, with both the polymer and the enzyme acting in the presence of DMMP and DIMP, through
weak hydrogen bonds and the p–π effect. Also, the AchE is well-known for providing a binding site
through the exposure of both an esteratic subsite (Ser-His-Glu) and peripheral binding anionic subsite
that has the ability to bind to many different types of ligands [37]. Moreover, as shown in Figure 4, the
hybrid surfaces are also characterized by the presence of nm-sized pores that could lead to increasing
the active surface area of the sensor. Nevertheless, the differences between the results for DIMP and
DMMP can be explained by the electron repellent inductive effect of the methoxy groups and the
methyl radicals, which form a larger electronic cloud on the DIMP phosphorus than the DMMP [38].

These non-covalent interactions of this system with DMMP could also represent the basis for
the realization of reversible detectors of nerve agent simulants in solution and also on solid supports.
Nevertheless, as sensitivity and selectivity are crucial factors within sensor applicability, the perspective
envisages discriminating volatile nerve agents and/or other toxic organophosphates compounds from
non-toxic substances in a complex gaseous environment by using sensor array based on SAW resonators
and active elements based on AchE, but in combination with different types of chemoselective polymers
that could give the system both selectivity and sensitivity toward various chemical agents.

4. Conclusions

This study demonstrated the feasibility of obtaining hybrid polymer–enzyme active interfaces for
PEI-AchE sensors by using MAPLE and a modular target system. The two different configurations of
PEI-AchE depositions were characterized by SEM and AFM, and revealed smooth surfaces, except
for the presence of nm-sized pores in the case of the hybrid surfaces. Moreover, no significant
modifications of FTIR spectra were observed either after MAPLE deposition or AchE inclusion within
the PEI polymer. On the other hand, the inclusion of AchE within the PEI coating played a major role
in increasing the measurement sensitivity for both DIMP and DMMP detection. This demonstrates
that the enzymes and polymer deposited by MAPLE can provide good premises for the development
of a sensor with suitable stability, good reproducibility, and high sensitivity toward DMMP and DIMP.

Such a laser-based coating deposition approach demonstrates the great potential of
PEI-AchE-based enzymatic interfaces in a sensing system, with potential perspectives to be used
for biomedical and clinical diagnostic applications.
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