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in Graves’ ophthalmopathy
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1Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University
(The First People’s Hospital of Shunde), Foshan, China, 2The Second School of Clinical Medicine,
Southern Medical University, Guangzhou, China, 3Department of Radiology, Shunde Hospital of
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Graves’ ophthalmopathy (GO) is an autoimmune disease related to Grave’s

disease (GD). The therapeutic strategies for GO patients are based on precise

assessment of the activity and severity of the disease. However, the current

assessment systems require development to accommodate updates in

treatment protocols. As an important adjunct examination, magnetic

resonance imaging (MRI) can help physicians evaluate GO more accurately.

With the continuous updating of MRI technology and the deepening

understanding of GO, the assessment of this disease by MRI has gone

through a stage from qualitative to precise quantification, making it possible

for clinicians to monitor the microstructural changes behind the eyeball and

better integrate clinical manifestations with pathology. In this review, we use

orbital structures as a classification to combine pathological changes with MRI

features. We also review some MRI techniques applied to GO clinical practice,

such as disease classification and regions of interest selection.

KEYWORDS
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Abbreviations: GO, Graves ophthalmopathy; GD, Graves’ disease; CAS, Clinical Activity Scores;

EUGOGO, European Group on Graves’ Orbitopathy; MRI, magnetic resonance imaging; TSHR, thyroid

stimulating hormone receptor; insulin-like grow factor 1 receptor (IGF-1R); OFs, Orbital fibroblasts; TH, T

helper; ECM, extracellular matrix; CT, computed tomography; T1WI T1 weight-images; T2WI T2 weight-

images; T2RT, T2 relaxation time; SI, signal intensity; CHESS, Chemical Shift-selective Fat Suppression;

STIR, short inversion time inversion recovery; SIR, signal intensity ratio; ADC, apparent diffusion

coefficient; EPI, echo planar imaging; FF, fat fraction; Hu, Hounsfield units; ROIs, regions of interest;

ECV, extracellular volume; TRAb, thyroid receptor antibody; DON, dysthyroid optic neuropathy.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.991588/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.991588/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.991588&domain=pdf&date_stamp=2022-09-29
mailto:sjiesy@smu.edu.cn
mailto:13825553451@139.com
https://doi.org/10.3389/fendo.2022.991588
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.991588
https://www.frontiersin.org/journals/endocrinology


Song et al. 10.3389/fendo.2022.991588
Introduction

Graves’ ophthalmopathy (GO) is an extrathyroidal

manifestation of Graves’ disease (1). Approximately 20%–30%

of GD patients suffer from GO, and it is more common in

women. The prevalence of GO is reported to be between 90 and

155 per 100,000 people in Europe and 100–300 per 100,000 in

Asia (2, 3). Although the incidence rate of GO is relatively low, it

has a significant impact on the quality of life of patients, whether

in mental health or socio-economic status (4). Various clinical

presentations can be observed in GO, including proptosis, eyelid

retraction, periorbital tissue edema, and compressive optic

neuropathy. Therefore, accurate treatment is important to

improve the symptoms of patients. Despite the vast progress

made in the understanding of GO pathogenesis, treating the

condition can still be problematic. The management of GO

depends on an accurate assessment of its severity and activity.

Symptom-and-sign-based systems, such as Clinical Activity

Scores (CAS), classifications by the European Group on

Graves’ Orbitopathy (EUGOGO), NOSPECS, and VISA

(vision, inflammation, strabismus, and appearance), have been

widely accepted to assess GO severity and activity (5). However,

these classifications can be subject to clinical experience and

patient status, and more objective assessments are needed.

Magnetic resonance imaging (MRI) is a non-invasive medical

imaging method. It has long been applied in GO assessment and

differential diagnosis, which is non-radiation and provides high

resolution in soft tissue (6). Recently, major progress has been made

in MRI for GO. This review summarizes the application of MRI

sequences to different tissues involved in GO. We have compared

the efficacy of these sequences in view of more objective prediction

and diagnosis to assist physicians in selecting better protocols.
Pathogenesis of GO

It has been postulated that the thyroid-stimulating hormone

receptor (TSHR) is the primary potential target for GO initiation.

Recent studies have suggested that the insulin-like growth factor 1

receptor (IGF-1R) also plays a critical role in GO development (7).

Orbital fibroblasts (OFs), which express TSHR and/or IGF-1R, are

activated to secrete pro-inflammatory factors and extraocular

matrix (ECM). Meanwhile, other immune cells such as T cells, B

cells, and monocytes are mobilized via chemotaxis to reach

retrobulbar tissue, forming an orbital inflammatory

microenvironment (8, 9). In the early stage, T helper (Th) 1 cells

play a major role, secreting IL-1b, IL-2, IFN-g, etc. These pro-

inflammatory cytokines promote the proliferation of OFs,

accelerate the production of glycosaminoglycans, and induce the

differentiation of OFs. Regarding the inactive or late phase,

activation of Th2 cells leads to anti-inflammatory cytokines

secretion, with representative as IL-4 and TGF-b, which promote

tissue repairment (10). Th17 also serves as a critical cell,
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contributing to inflammation and fibrosis (11). As a result, the

orbital fat expands, which results in overt exophthalmos. The

extraocular muscles (EOMs) become swollen and suffer from

limited motility, leading to diplopia or strabismus. This

inflammatory microenvironment and ECM accumulation is

associated with periorbital edema. In severe cases, the crowded

orbit increases the mechanic pressure, exacerbating pain or even

compressing the optic nerve and veins (8, 12, 13).
Why we choose MRI?

A small proportion of GO cases do not present with thyroid

dysfunction, and, there are many alternative conditions that

might mimic GO, such as idiopathic orbital inflammation,

sarcoidosis, Sjogren syndrome, and vasculitis (14). Moreover,

as aforementioned, soft tissues such as EOMs and orbital fat are

involved in GO, and their pathology reflects the status of the

disease. Thus, a comprehensive supplementary examination is

necessary to help physicians identify GO from other diseases and

classify GO more accurately.

Pathological biopsy provides the most accurate method for

early diagnosis and staging of GO. However, this procedure

presents a relatively high risk of side effects and suffers from low

adherence, so it is problematic to promote. Another approach

that could provide precise information is imaging, including

computed tomography (CT), MRI, and ultrasound

examinations. These have the advantages of being non-

invasive and time-saving and provide the ability to detect

subtle lesions in the retrobulbar structures, so imaging in GO

diagnosis is now a research focus. The advantages and

disadvantages of these methods are summarized in Table 1.

Despite some deficiencies, the advantages of MRI compared

to CT or ultrasound are still remarkable, such as the lack of

radiation, the high soft tissue resolution, the ability to perform

multi-parametric imaging and post-processing, which has

resulted in more attention from physicians for this procedure.

The differential diagnosis according to symptoms and MRI

findings is indicated in Table 2, and two cases mimicking GO

are depicted in Figure 1. The basis for evaluating GO and

selecting treatment is complicated pathology, and lots of

pathological changes can be captured on MRI, including

inflammation, steatosis, and fibrosis.
MRI for evaluation of GO

GO is a multi-stage disease in which multiple tissues are

involved, causing variable morphological and histological

changes in these tissues. As shown in Table 3, we briefly

describe the anatomy and histology of these tissues in relation

to the disease and summarize relevant MRI sequences based on

the different target tissues.
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Orbital fat

Anatomy, histology, and pathologic
change in GO

About 50% of the orbital volume is formed by orbital fat, which

serves to support other structures in the orbit and reduce friction

(35) (Figure 2). Histologically, orbital adipose tissue can be divided

into two types: large adipocytes with thin septa at the orbital apex

and small adipocytes with more fibrous septa near the muscles and

lacrimal glands (36, 37). To date, there are no studies about
Frontiers in Endocrinology 03
whether these two fats have different effects during GO progress.

Orbital fibroblasts can differentiate into adipocytes and cause an

expansion of fat volume, resulting in a more severe appearance. At

the same time, lower orbital fat thickness seems to indicate the

better responsive to glucocorticoid (18, 19), despite the relationship

between the volume and CAS remains further elucidated (38, 39).

Exophthalmos
Proptosis is a common symptom that occurs in about 60%

of GO patients (40). It probably results from the enlargement
TABLE 1 Comparison of three imaging modalities.

Ultrasound CT MRI

Morphological changes in orbits Medium, especially in blood flow Strong, especially in bone Strong, especially in soft tissue

Assessment for activity Weak Weak Strong by multiple parameters

Treatment response monitoring Weak Medium Strong

Examination time Time-saving Time-saving Time-consuming

Cost Price-friendly Medium Expensive

Radiation No Yes No

Availability and convenience Strong Medium Weak

Contraindications – Pregnancy Claustrophobia, electronic or magnetic metal implanted
CT, computed tomography; MRI, magnetic resonance imaging.
TABLE 2 Differential diagnosis of GO.

GO Orbital
lymphoma

IgG4 related
ophthalmopathy

Idiopathic orbital
inflammation

Carotid-Cavernous Fistulas

Sex distribution Female Male No difference No difference Male

Thyroid
Dysfunction

Always Rarely Rarely Rarely Rarely

Increased IgG4 Slightly Rarely Obviously Rarely Rarely

Clinical manifestations

Bilateral Frequently Rarely Frequently Sometimes Rarely

Pain Frequently Sometimes Rarely Frequently Sometimes

Eyelid swelling Frequently Rarely Frequently Frequently Rarely

Multiple organs
involvement

Always, such as thyroid
and pretibial myxedema

Frequently, such as
periorbital bone

Always, such as
salivary gland and
pancreas

Rarely Rarely

Proptosis Frequently Frequently Frequently Rarely Frequently

Conjunctiva
involvement

Frequently Sometimes Rarely Frequently Frequently

MRI features

Extraocular
muscle
enlargement

Frequently, without
tendon involved

Rarely Sometimes, tendon can
be involved

Sometimes, often in medial
muscle, tendon can be involved

Frequently, multiple muscles

Lacrimal gland
enlargement

Frequently Frequently Always Sometimes Rarely

Nerve involved Sometimes, optic nerve
compression

Sometimes, optic
nerve compression

Rarely Rarely Rarely

Character of
lesion on MRI

Active phase: T2WI ↑
Inactive phase: T1 T2 WI
–/↓

T1WI –
T2WI –/↓
with irregular
margin

T1WI –
T2WI –/↓
with homogenous and
well-defined

Similar to GO Enlargement and internal signal void of
cavernous sinus on T1WI and T2WI
GO, Graves ophthalmopathy; IGG4, immunoglobulin G4; MRI, magnetic resonance imaging; T1WI, T1 weighted-image; T2WI, T2 weighted image. ↑, signal increased; ↓, signal decreased.
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of adipose tissue, which is the main component of the orbit

(39). Exophthalmos, defined as a 3 mm greater than the upper

limit of the normal range, contributes to assessing GO

“severity” and treatment response (41, 42). However, the

relationship between exophthalmos and activity is inexplicit

(19, 43, 44). The degree of exophthalmos might be related to

various factors, including sex, age, and race (45–49), which is

recommended to establish a normal reference in their own area

districts. Traditionally, the Hertel exophthalmometer is used to

measure exophthalmos. Although it is portable and affordable,

accuracy and comparability are limited due to some

unavoidable factors, such as the experience of the observers

and axial globe position (50, 51). Previous studies have shown

that the interclinician reliability of exophthalmos obtained

from Hertel ophthalmometry is not as perfect as that

measured on imaging (52, 53). For this, the axial slice that

most obviously depicts the EOMs and optic nerve is selected,

and from which the perpendicular distance between the

interzygomatic line and the surface of the cornea is measured

(Figure 3A) (52). However, depending on the selection of either
Frontiers in Endocrinology 04
the anterior or the posterior corneal surface, there can be a

difference of 1–2 mm for the exophthalmos determined by MRI

and by Hertel ophthalmometry (15, 16). In summary, in the

absence of guidance from an experienced ophthalmologist,

m e a s u r i n g e x oph t h a lmo s w i t h MR I i s a g o o d

diagnostic option.

Volume of orbital fat
Orbital fat has an irregular structure and fills the spaces

among normal tissues such as nerves, eyeballs, and EOMs,

making accurate measurement of the tissue by common MRI

difficult (54). Early quantitative measurements were made by

subtracting the volume of the six EOMs, the optic nerve, and the

eyeball from the entire orbit. However, the fat volume thus

derived still included other connective tissues such as the

lacrimal gland and blood vessels (55). Another simple method

is to measure the thickness of the orbital fat: the distance

between the medial wall of the orbit and the medial wall of the

eyeball (Figure 3B), but the accuracy of these methods is still

challenging (19). With the development of three-dimensional
B

C D

A

FIGURE 1

Differential diagnosis based on MRI. (A, B) Slightly enlarged EOMs were shown in T1WI, with the unilateral, augmented superior ophthalmic vein
(black arrows). Features indicated carotid-cavernous fistulas instead of GO, which need to confirm via digital subtraction angiography (DSA). (C, D)
MRI images suggested Imbalanced exophthalmos and the apparent swelling of superior rectus in the right eye. Meanwhile, in T2FS, increased signal
of EOMs, combined with the tendon involved (white arrows) enlargement in superior rectus suggested orbital myositis. The figure is original.
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technology, software such as MIMICS can measure the volume

of orbital fat more accurately via reconstruction (Figure 2), and

ratios of fat volume to orbital bony volume can neutralize gender

differences (56). This method has been used for evaluating the
Frontiers in Endocrinology 05
therapeutic effect of teprotumumab, but it is widely based on CT

rather than MR images (57, 58). However, benefiting from the

high resolution of soft tissue, reconstruction with MRI may be

more accurate than with CT (17).
TABLE 3 MRI sequences applied in GO assessment.

Tissue
or
organs

Index Method MRI
sequence

MRI findings Reference

Orbital
fat

Exophthalmos the perpendicular distance between the interzygomatic line and
the surface of the cornea

T1WI 1–2 mm difference between MRI and Hertel
ophthalmometry

Cevik et al.
(15)
Maria et al.
(16)

Volume ROI outlined and restructured by Mimics T1WI with
thin layers

Orbital fat volume in GO is higher than
healthy control

Shen et al.
(17)

Thickness The maximum distance between the eyeball and medial wall T1WI The thickness increased successively among
the healthy control, responsive group and
unresponsive group

Hu et al.
(18)
Xu et al.
(19)

EOMs Diameters Short Diameter: medial and lateral rectus muscles were
measured on axial images, others on coronal images

T1WI Affected by many factors, a possible
predictor of glucocorticoid response

Xu et al.
(19)

Volume ROI outlined and restructured by Mimics T1WI with
thin section

EOMs volume in GO are higher than
healthy control

Shen et al.
(17)

EOMs Inflammation Draw ROI on the maximum EOMs cross-section T2 mapping T2RT got from T2 mapping is higher in
therapeutic responsive group than
unresponsive group

Zhai et al.
(20)

Draw ROI on the muscle with highest signal intensity STIR-T2WI SIR is correlate with CAS Mayer et al.
(21, 22)

Dixon-T2WI Dixon-T2WI has fewer artifacts and higher
efficacy than traditional FS sequences

Ollitrault
et al. (23)
Chen et al.
(24)

Echo planar
DWI, non-
EPI DWI

Both sequences can discriminate GO from
controls, but non-EPI DWI might have
higher efficacy

Politi et al.
(25)
Feeney et al.
(26)

Fat
infiltration

Intramuscular fat quantification by specific calculation Dixon-T2WI FF of EOMs in GO is higher than normal Das et al.
(27)

Fibrosis Draw ROI of inferior rectus and medial rectus muscles on the
maximum cross-section

Non contrast
T1 mapping

Although several EOMs show higher signal
on FS sequence, decrease in T1 SI predict
unresponsible to therapy

Matsuzawa
et al. (28)

Draw ROI of four rectus muscles at muscle belly precontrast
and postcontrast

Pre/post
contrast
T1mapping

ECV is higher and relate to pathological
findings in inactive groups

Ma et al.
(29)

Lacrimal
gland

Herniation The perpendicular distance between the interzygomatic line and
the most anterior tip

T2WI with
FS

The herniation value is higher in active and
glucocorticoid responsive patients

Gagliardo
et al. (30)

Inflammation “Hotspot”: ROI which only a little proportion of the whole
cross-section placed on the highest SI region

T2WI with
FS

SIR is higher in active GO than inactive Hu et al.
(31)

Draw ROI on the maximum LG cross-section T2 mapping T2 value is higher in GO than GD and it’s
an independent predictor for the diagnosis
of GO

Wu et al.
(32)

Optic
nerve

DON Muscle index and T2 value got from four continuous slices and
select the most efficacy slice

Dixon-T2WI,
T2 mapping

Muscle index and T2 value are higher in
DON

Zou et al.
(33)

The optic nerve sheath diameter, optic nerve diameter and
optic nerve subarachnoid space got from two continuous slices
and select the most efficacy slice

Modified
Dixon-T2WI

The optic nerve subarachnoid space is larger
in DON than GO and health control

Wu et al.
(34)
fro
MRI, magnetic resonance imaging; T1WI, T1 weighted image; ROI, regions of interest; GO, Graves ophthalmopathy; EOMs, extraocular muscles; T2RT, T2 relaxation time; SIR, signal
intensity ratio; CAS, clinical activity score; T2WI, T2 weighted images; FS, fat suppressed; DWI, diffusion weighted image; EPI, echo planar imaging; FF, fat fraction; SI, signal intensity;
ECV, extracellular volume; LG, lacrimal gland; GD, Graves’ disease; DON, dysthyroid optic neuropathy.
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EOMs

Anatomy, histology, and pathologic
change in GO

Six EOMs enable a wide movement range of the eye,

including four recti muscles and two oblique muscles.

However, the majority of studies have focused on the

morphological and histological changes in the rectus muscles.

Compared to limb skeletal muscles, EOMs have a more random

arrangement of myogenic fibers and more variation in size.

Pathologies such as fiber hypertrophy and myopathy can

frequently be observed even in normal EOMs. Additionally,

the EOMs contain more mitochondria and have a greater

oxidative capacity than other skeletal muscles (59). These

factors may have some impact on quantitative MRI. Future

studies are needed to establish the baseline of EOMs in healthy

subjects (60, 61).

Pathological changes in EOMs are common in GO, with

approximately 70% of patients involved (39). These lesions

involving the muscle belly are roughly consistent with the

course of GO, and quantifying the extent of these lesions may

be complementary indicators for assessment, including

classification and prediction.

Morphological parameters of EOMs
The active phase of GO is usually accompanied by

inflammatory edema, leading to changes in several measurable

parameters of the EOMs (62). MRI can clearly show EOMs and

further measure their diameter, cross-sectional area, and

volume. Due to edema in EOMs during the active phase, the

short diameter (thickness) measured from coronal MRI is often
Frontiers in Endocrinology 06
higher than that in the healthy group, suggesting great

responsiveness to immunosuppressive therapy (Figure 3C) (19,

63). Another study demonstrated that the thickness of EOMs

showed a strong correlation with cross-sectional area but a weak

correlation with muscle volume, indicating that the

measurement of EOM volume could not be replaced by

thickness simply (64).

Classically, the volume of EOMs can be obtained by

multiplying the sum of the cross-sectional areas by the layer

thickness (65). Nowadays, similar to the fat volume, EOM

volume can also be measured by 3D reconstruction (39)

(Figure 2). Increased EOM volume is positively correlated with

the GO severity and may contribute to optic neuropathy (56, 66).

However, it remains inconclusive in GO activity (21, 38, 67, 68).

One possible reason is that the enlargement of EOMs usually

occurs earlier than obvious symptoms, which further highlights

the role of imaging in early diagnosis.
Inflammation evaluating in EOMs

T2 relaxation time (T2RT)
EOMs usually appear edematous, and the inflamed portion

may produce high signals on T2WI, which has been used to

assess the activity of GO. Nowadays, quantitative MRI is

available. This gives a higher accuracy compared to qualitative

MRI. T2 mapping is a technique to construct a map based on the

T2 value calculated for each voxel. The T2 value is defined as the

time until T2 has decayed to 37% of the post-excitation

transverse magnetization according to the curve acquired from

several single-shot images. This provides a quantitative
B

C D

A

FIGURE 2

Reconstruction of orbital fat and EOMs. The ratio of orbital fat and EOMs usually change in GO patients. (A) Healthy people. (B) Both fat and muscle
volume increased. (C) Muscle volume increased only. (D) Fat volume increased only. This figure is original and the classification is based on (39).
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parameter that describes the T2 signal (69). The T2RT reflects

the water content of the tissue and is used as a way to assess the

degree of inflammatory edema (70). This has been widely used in

inflammation-related diseases such as myocardial edema,

arthritis, and axial spondyloarthropathies (71–73). Likewise,

T2RT of EOMs tends to increase in patients in the active

phase and is positively correlated with CAS scores (27).

Furthermore, T2RT showed a good prediction of the prognosis

after immunosuppression therapy. Tachibana et al. found the

coincidence rate of diagnosis by CAS and T2RT was relatively

low (54.2%). Even in the CAS negative group, more than half

had a prolonged T2RT and showed improvement after

immunosuppressive therapy (43). Zhai and colleagues (20)

divided patients into two groups according to the therapeutic

effects of glucocorticoids. They found mean T2RT of EOMs is

higher in responsive group as an independent predictor of

prognosis, with area under the curve (AUC) = 0.764.

Fat suppression (FS) sequences
Although T2RT provides reliable information on parameters

to indicate the degree of inflammation, measurement of T2RT

must be accompanied by appropriate post-processing. In

addition, the signal of adipose tissue is high on both T1

weight-images (T1WI) and T2 weight-images (T2WI), which

can confound the water signal (74). FS sequences can suppress

such fat signals to some degree, with negligible effects on water

signals, allowing a better differentiation between adipose tissue

and inflammatory edema (Figures 3D, E). Under these

conditions, it was demonstrated that measurements of the

signal intensity (SI) could be directly used to estimate the

degree of inflammation. Commonly used fat suppression

technologies include Chemical Shift-selective Fat Suppression

(CHESS), short inversion time inversion recovery (STIR), spatial

spectral pulse, and Dixon (75). Hoh and colleagues (76)

measured signal intensities of the EOMs in 19 patients with

Graves’ ophthalmopathy by STIR sequences, showing that the

temporalis muscle was structurally similar to the EOMs, with

little inflammation occurring in GO. Therefore, they calculated

the signal intensity ratio (SIR) of EOMs and temporalis muscles

as being higher in GO patients than in healthy controls and

positively correlated with Werner activity scores (76).

Subsequently, other researchers also evaluated the SIR and

activity scores in GO patients by STIR, confirming good

agreement despite the different scoring criteria in these

investigations (22, 77, 78).

Dixon is often used as a T2-weighted processing technique

that can directly distinguish between fat and water signals, and

Dixon-T2WI suffers from fewer artifacts than STIR sequences,

making it quite suitable for head and orbital imaging. Except for

a water map which is equal to the fat-suppressed sequences,

Dixon-T2WI can also generate a fat map, allowing for

quantitative analysis of the fat content. In some studies,
Frontiers in Endocrinology 07
investigators compared Dixon-T2WI with conventional T1WI,

T2WI, and other FS sequences such as fat-sat. With higher signal

values in the edematous fraction, Dixon-T2WI was shown to

improve the sensitivity and specificity of the diagnosis (23, 24).

Accordingly, the predictive performance of treatment response

by FS sequence is better than T2RT (Figure 3F) (18, 20).

Diffusion-weighted imaging (DWI)
DWI is based on the different ability of water molecules to

specifically move in different tissues. If their motility decreases,

the signal intensity determined by DWI increases, and vice versa,

thereby exploiting regional differences in tissue-specific diffusion

capacity to produce contrast. This allows the use of the apparent

diffusion coefficient (ADC) to describe the extent to which water

molecules are confined in different tissues (79). The degree of

diffusion sensitization is described by the b-value. Higher b-

values correlate with diffusion effects positively and thus more

pronounced signal attenuation, but this comes with increased

noise, reducing the overall signal-to-noise ratio. It is important

to optimize the SNR at each b-value for multiple b-values in

DWI acquisition. DWI has been widely applied in distinguishing

benign and malignant tumors of, for instance, the brain, liver,

lung, kidney, and other parenchymal organs, and for the

identification of acute cerebral infarction and showed great

sensitivity and specificity (80). The ADC also shows

superiority in the observation of orbital tissue lesions and

inflammation (81–83).The value can also be used to quantify

the degree of inflammation in EOMs. In one study, it was shown

that ADC values of the four EOMs increased sequentially when

comparing a healthy control group with, respectively, a GO-

uninvolved group and a GO-involved group. Consequently,

DWI might identify the inflamed EOMs earlier than other

sequences as it can better distinguish less advanced GO cases

from healthy controls (84).

There are two major techniques for DWI available, of which

the most commonly used is echo planar imaging (EPI), but it

suffers from low signal-to-noise ratio and is easy to form artifacts

(85). The non-EPI alternative was initially used for the diagnosis

of middle ear cholesteatoma, where it resulted in fewer artifacts

and a higher resolution and could identify microscopic lesions as

small as 2 mm, which is better than EPI for skull base imaging

(86, 87). Recently, the effect of the non-EPI alternative technique

for DWI was evaluated for GO, and such studies demonstrated

good results for patients with active GO and optic neuropathy

(26, 88).

Fat infiltration in EOMs
Fat infiltration in EOMs is often observed inMR images and is

probably correlated with the severity of GO. TheMRI signal of the

EOMs was found to be slightly lower than normal signals in the FS

sequence, indicating fat infiltration in EOMs (89, 90), but this

method can only be used for qualitative diagnosis. The fat fraction
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(FF) is a semiquantitative parameter of fat measurement,

represented by the ratio of fat to the sum of water and fat in the

EOMs obtained by post-processing of the data with defined

calculation methods. It has been widely used to estimate fat

infiltration, including vertebral tumor progression, and to

evaluate surgical effects (91–93). The FF of EOM increases with

the course of GO, which is consistent with its pathological process

(27, 61), but the relationship between FF and the various stages of

the disease is unclear. This may be related to the relatively small

size of EOMs compared to other organs or tissues. The effect of

edema remains large, despite an increase in fat content, causing
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the values of FF to fluctuate without consistent positive or negative

correlation with CAS scores.

It cannot be neglected that CT is another modality to

estimate fat infiltration of EOMs based on Hounsfield units

(HU). The density ranges were set at −200 to −30 HU for fat, −30

to +100 HU for EOMs, and 0 HU for edema, which is sufficient

to decrease the error from other infiltrations, including

hyaluronic acid and lymphocytes (94, 95). However, two

studies showed inconsistent results: Regensburg et al. found

there was no statistical significance in the mean identity of

EOMs between GO and controls, whereas Cohen et al. found
B

C D
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A

FIGURE 3

MRI measurements in GO. (A–C) Length parameters such as proptosis, thickness of extraocular muscles and thickness of orbital fat. It is
noteworthy that thickness of medial rectus and lateral rectus muscles should be measured in axial images. (D, E) Signal intensity of extraocular
muscles and lacrimal glands got from Dixon-T2WI sequence. The signal intensity of temporalis muscle (red circle) or white matter (yellow circle)
on the same slice was used to calculated signal intensity ratio (SIR). (F) EOMs displayed on T2 mapping. This figure is original.
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that fat infiltration is prevalent in GO patients (94, 96). The

difference between regions of interest (ROIs) selection (entirety

of EOMs or parts of fat infiltration) could be an explanation.

Furthermore, investigation into the comparison of MRI and CT

in EOM fat infiltration is still deficient.
Fibrosis in EOMs
There is a broad clinical overlap between the active and

fibrotic phases, and EOMs with fibrosis can be refractory to

glucocorticoid therapy (97). Although the occurrence of fibrosis

is insidious and difficult to detect from the clinical presentation,

MRI has significant advantages in detecting tissue fibrosis.

Ollitrault et al. used the area with low signal in both the

Dixon T2WI water map and in T2WI as a marker of EOM

fibrosis (23). Alternatively, enlargement of EOMs with normal

T2RT was used as the basis for determining chronic fibrosis (98).

However, these methods do not provide a quantitative

determination for the degree of fibrosis, and the diagnostics

based on such imaging is highly subjective, so that a clinical

significance of this method is unclear. Similar to T2 mapping,

T1mapping has been used as it can color-code T1-based signal

intensity, allowing for better highlighting of small lesions (99).

This showed good prediction and assessment of fibrosis in the

heart, liver, kidney, and other tissues (100–102). When T1

mapping and Dixon T2 were evaluated for EOMs in GO with

diplopia, it was found that the value of T1 could more reliably

estimate the fibrosis than Dixon T2. Patients with decreased T1

values may have entered a stage of fibrosis. At this time,

glucocorticoid treatment is of little use, and surgery should be

considered instead (28).

Nevertheless, the specificity and sensitivity of non-enhanced

T1mapping are not satisfied, as T1 values can also reflect the

inflammation in soft tissue (103). Based on increased

extracellular matrix in tissues, extracellular volume (ECV) is a

derived index from pre-contrast and postcontrast T1 values that

has more efficacy in detecting fibrosis (Figure 4). Calculation of

ECV:

ECV = (1 –   hematocrit)
1=T1(postcontrast   rectus) − 1=T1(precontrast   rectus)
1=T1(postcontrast   blood) − 1=T1(precontrast   blood)
Frontiers in Endocrinology 09
A recent study indicated that one of the main pathological

changes in inactive patients is muscle fibrosis. ECV rather than

T1 significantly correlates with collagen volume fraction, which

contributes to muscle fibrosis. This suggests that ECV may be

more specific than T1 value as a parameter to assess EOM

fibrosis (29).
Lacrimal glands

Anatomy, histology, and pathologic
change in GO

The lacrimal glands are paired amygdaloid glands located in

the zygomatic process of the frontal bone. They are divided into

many lobules consisting of glandular tubules and acinar

portions. The interstitium of secretory tubules is scattered by

lymphoid cells, mast cells, and fibroblasts, and the acinar

portions are surrounded by a basal layer of myoepithelial cells

(104, 105).

The surface of the lacrimal glands in GO patients expresses

TSHR. Similar to the involvement of EOMs in GO, immune-

related lymphocyte and monocyte infiltration can also occur in

lacrimal glands (106). Inflammatory markers such as C-reactive

protein, IL-1b, and IL-6 increased in the tears of GO patients,

representing that the lacrimal gland is also a target organ for

thyroid receptor antibody (TRAb) (107, 108). More than 30% of

GO patients suffer from dry eyes, while enlarged lacrimal glands

can be observed on imaging in 11% of patients (109, 110). It can

even occur in cases with no change in EOMs, which may

contribute to early GO detection (111).

MRI appearance
Trokel et al. first found lacrimal gland enlargement in GO

(112). Then, several studies demonstrated objectively

quantitated parameters of the lacrimal glands, such as length,

width, and area, are greater in GO than healthy control.

However, these morphological parameters cannot discriminate

between active and inactive patients (31, 113). The volume of the

lacrimal gland cannot provide additional information about

diagnosis neither (114). Similar to EOMs, quantifying the
BA

FIGURE 4

T1 mapping of EOMs. (A) Native T1 mapping. (B) Post-contrast T1 mapping for evaluating fibrosis in EOMs. Evaluating the T1 value or ECV of
medial rectus and inferior rectus muscles may be sufficient for providing help for diagnosis. This figure is original.
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degree of inflammation in the lacrimal gland may be more

helpful in staging. The signal value of the lacrimal gland can also

be measured on the T2 FS sequence, and the SIR can then be

obtained by comparing it with the SI of the temporalis muscle.

This approach can also be used as a criterion for differentiating

between active and inactive GO (31). Meanwhile, the ADC and

T2 values can also have a similar impact (32).

Lacrimal gland herniation is a special value characterized by

Nugent et al. (115). The protrusion was determined to be at least

half of the gland displaced anterior to the frontozygomatic

process. This parameter was refined in subsequent studies, and

reported greater bilateral lacrimal gland herniation in active GO

patients than in inactive patients (30). Furthermore, compared

to SIR, herniation can predict whether the patients have a

response to glucocorticoids combined with orbital fat

thickness (18).

Unfortunately, it seems difficult to find fibrosis in the lacrimal

gland through biopsies after contrast injection (116), but the T1 value

decreases more after contrast injection in active than inactive patients

(32), providing a novel perspective for lacrimal gland fibrosis. It

remains to be investigated whether fibrosis of the lacrimal gland has

any influence on the evaluation of GO and on predicting the efficacy

of glucocorticoids.

Optic nerve

Anatomy, histology, and pathologic
change in GO

The optic nerve extends from the retina to the brain and can

be divided into the intraocular, intraorbital, intracanal, and

intracranial segments. The intraorbital segment starts from the

posterior of the sclera to the optic canal, represents its longest

part, and is closely related to GO. It is wrapped by the optic

nerve sheath, which consists of the cerebral dura mater,

arachnoid mater and cerebral pia mater. The subarachnoid

space of the nerve connects to the intracranial subarachnoid

space and is filled with cerebrospinal fluid (117).

Dysthyroid optic neuropathy (DON), with an incidence of

about 5%, is one of the most severe complications of GO (118,

119). As a result, the early detection and treatment of DON plays a

crucial role in preventing permanent blindness. Several situations

promote DON, including compressed optic nerves, optic neuritis,

or stretched optic nerves. Over 90% of patients with DON have an

enlarged EOM compressing the optic nerve, so quantification of

the degree of compression helps in diagnosis. In addition, a few

biopsies of nerve make optic neuritis neglected (120), but MRI

may detect inflammation of the nerve, which is recommended as a

typical examination for diagnosis and follow-up (121).

Meanwhile, 5% of DON cases may be caused by optic nerve

traction, but this mechanism is still controversial (122, 123). In

conclusion, the quantitative assessment of DON by MRI focused

on the size of the EOMs and optic neuritis.
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Currently, there are no consistent criteria for the diagnosis of

DON, which is diagnosed based on clinical symptoms such as

visual impairment, visual field defects, optic disc edema, and

color vision disorder (124). However, these features are non-

specific and can also occur in other diseases such as idiopathic

orbital inflammation or cranial nerve palsy (125). A number of

ophthalmic indicators can identify subclinical DON before the

onset of obvious symptoms, such as blue-yellow deficiency and

thinned macular inner retina. These tests require specialized

equipment and experienced ophthalmologists (126, 127). MRI,

however, can clearly show the posterior state of the eye and

improve the diagnosis of DON, depending on the underlying

mechanism. Early studies concentrate on morphologic

parameters by CT to quantify the compression. Barrett et al.

defined a muscle index as a classic method by calculating the

diameters of four EOMs occupied orbit (128). Weis and

colleagues found that the diameter of medial muscles is

suitable for predicting DON. The ROC for diagnosis was 0.83,

but they did not define a specific cut-off value (66).

Rutkowska-Hinc et al. found cerebrospinal fluid in the optic

nerve sheath was different between DON and non-DON patients

(129). As previously mentioned, because T2 mapping and FS

sequences exactly reflect the moisture content of tissues, they can

be used as a new indicator for identification. Zou and colleagues

modified the Barrett index by using Dixon-T2WI with higher

resolution, and they calculated the index at four slices behind the

eyeball. Muscle index at 21 mm combined with T2 mapping,

which could indicate the rupture of the optic nerve myelin sheath

and edema, improved the accuracy of diagnosis (33). On the other

hand, the optic nerve subarachnoid space will increase with the

edema of the optic nerve in DON. It is convenient to qualify the

subarachnoid fluid volume by determining the diameters between

the optic nerve sheath and the optic nerve on FS sequences and

using this as a predictor (34).
Discussion and future perspectives

In this review, we discussed comprehensive tissue-based

approaches to estimating GO and provided several MRI

features in different situations. We also summarized several

methods for parameter measurement, but we did not provide

clarity regarding how these features influence the activity phase

and guide management. For example, to what extent does MRI

change suggest the need for surgery or second-line therapies?

Which MRI feature suggests local treatments are sufficient?

Although achievements in MRI and GO are growing rapidly,

most previous studies were based on cross-sectional and

retrospective analysis. Prospective studies that combine the

results of treatment with multi-parameter MRI are still

important. Future studies should focus on developing new
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sequences to improve temporal resolution, such as T1 rho, a

relatively new sequence that has better characterization in injury

than T1 (130). The improvement of image analysis methods for

imaging, including histogram analysis, also provides more

accurate ways for GO evaluation (131, 132). Furthermore,

radiomics and deep learning have been widely used in image

segmentation, ROI extraction, and automatic analysis to assist in

diagnosis. Song and Lin et al. established two systems to

discriminate GO from healthy people and detect active and

inactive phases (133, 134), but investigations including larger

samples and prognosis are still needed.
Conclusion

To sum up, MRI is promising for GO assessment by

providing high-resolution images and multiple functional

sequences that allow physicians to intervene at the subclinical

stage of GO. However, there are still some issues to be addressed,

including machine diversity, time-consuming, and higher

economic burden. It is crucial to establish a generally accepted

test mode consisting of the necessary sequences, which is time-

saving and price-friendly. This requires the coordinated efforts

of endocrinologists, radiologists, and ophthalmologists.
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