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Disordered topological graphs enhancing nonlinear
phenomena
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Joel Moore2,3, Boubacar Kanté1,3*

Complex networks play a fundamental role in understanding phenomena from the collective behavior of spins,
neural networks, and power grids to the spread of diseases. Topological phenomena in such networks have
recently been exploited to preserve the response of systems in the presence of disorder. We propose and dem-
onstrate topological structurally disordered systems with a modal structure that enhances nonlinear phenom-
ena in the topological channels by inhibiting the ultrafast leakage of energy from edge modes to bulk modes.
We present the construction of the graph and show that its dynamics enhances the topologically protected
photon pair generation rate by an order of magnitude. Disordered nonlinear topological graphs will enable
advanced quantum interconnects, efficient nonlinear sources, and light-based information processing for arti-
ficial intelligence.
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INTRODUCTION
Disorder in two-dimensional electronic systems leads to a wide
range of topological phenomena, including integer and fractional
quantum Hall effects, in which impurities resulting from the
sample fabrication process break the degeneracies of Landau
levels and localize the wave functions at almost all energies (1–4).
Such localization is the direct cause of quantized plateaus in the
Hall conductance, as the localized states do not contribute to the
particle transport and the quantization plateaus would cease to
exist in an ideal clean sample (1, 5–6).

The hallmark of topological phenomena in two-dimensional
finite-size systems is the appearance of a transport channel that is
robust to disorder (7). The robustness to disorder has been investi-
gated and exploited in many wave-based phenomena including
photonics, microwaves, acoustic, and plasmonics to conceive
devices potentially more robust to manufacturing imperfections
that usually degrade the performance of classical systems and
cause decoherence in quantum systems (3). Topological transport,
occurring along boundaries, can be unidirectional and immune to
backscattering, provided that the disorder is not strong enough to
close the mobility gap. The unique robustness of topological trans-
port has led to advanced device concepts, including topological
delay lines, topological lasers, topological frequency combs, and to-
pological quantum light sources (8–16). However, most attention
has focused on the treatment of potential disorder, i.e., on spatially
local random potentials. A different type of disorder, known as
structural disorder, has long existed in nature, for example, in amor-
phous silicon. In this noncrystalline form of silicon, the local con-
nectivity is preserved, since each silicon atom is bonded to four
adjacent neighbors, but long-range structural order is lost. Never-
theless, a mobility gap in amorphous matter has been observed (17–
18). More recently, topological phenomena have been observed in
nonperiodic systems (19–24). These findings lead to a natural

question to ask: beyond preserving topological properties, can dis-
ordered topological systems outperform their periodic counterpart?
We propose a structurally disordered system that exhibits a nontriv-
ial topological phase, characterized by a nonuniform synthetic mag-
netic flux. We show that, in the presence of nonlinearities, the
structurally disordered system prevents the ultrafast leakage of
energy from topological modes to bulk modes, enhancing nonlinear
phenomena. As an example, we demonstrate that the longer con-
finement of light can lead to an order of magnitude increase in
the generation rate of correlated photon pairs compared to periodic
topological platforms.

RESULTS
Disordered linear topological graph
The proposed nonlinear amorphous graph, presented in Fig. 1, is
constructed by kagomizing a Voronoi diagram obtained from a
disk-sampled set of points (Supplementary Materials) (23). The
result is a collage of polygonal plaquettes, each having three to
nine sides, as sketched in Fig. 1A. Adjacent vertices are then
coupled by a directional hopping with uniform magnitude κ and
phase factor eiϕ, shown as the graph edges in the sketch in
Fig. 1A. The linear tight-binding Hamiltonian can be written as

Ĥ0 ¼
X

i
ω0â

y
i âi � κ

X

hi;ji

ðe� iϕâyi âj þ e
iϕâyj âiÞ ð1Þ

where âyi (âi) creates (annihilates) a particle on the ith site, ω0 is the
natural on-site frequency, and <i,j> restricts the summation to pairs
of nearest neighbors. The additional hopping phase ϕ, which can be
tuned in a photonic implementation (Supplementary Materials),
can be interpreted as the Peierls phase resulting from the presence
of a synthetic magnetic field. In the model considered here, the syn-
thetic magnetic flux across a polygonal plaquette of the graph
depends on the number of edges of the plaquette. Specifically,
within each triangular plaquette (white in Fig. 1A), a constant syn-
thetic magnetic field flux of −3ϕ is accumulated. In contrast, as
sketched in Fig. 1B, the synthetic magnetic field threading each po-
lygonal plaquette with at least four sides is different, and it can vary
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from 4ϕ to 9ϕ, proportionally to the number of sides of the polyg-
onal plaquette. Therefore, unlike the anomalous quantum Hall
systems that feature a uniform magnetic flux inside hexagonal pla-
quettes (25–26), the proposed amorphous system has a nonuniform
magnetic flux across different plaquettes based on the real-space
connectivity. The statistical distribution of the magnetic flux per
plaquette is shown in Fig. 1C, and it can be controlled by changing
the filling ratio in the original random disk sampling process (Sup-
plementary Materials). By preserving the local connectivity, the
generated structure inherently has short-range order but lacks
long-range order. This can be inferred from Fig. 1D, where a flat-
tened pair correlation function between vertices is observed, unlike
periodic structures that exhibit characteristic sharp peaks. Despite
the structural disorder, the system shows the hallmarks of nontrivial
topology. By controlling the hopping phase, the system undergoes a
topological phase transition that opens a nontrivial mobility gap.
The topological nature of such a gap can be verified by calculating
a topological marker known as “Kitaev sum,” shown in Fig. 1E (23,
27), whose value at some frequency ω expresses the accumulated
Chern number from all the bands below the chosen frequency.
The complex hopping term e−iϕ allows for a selective tuning of
the Kitaev sum across a phase boundary between −1 and +1,
when ϕ is set to a value between 0 and π. A nonzero topological
marker in the gap implies that a finite-size system will exhibit
chiral topological edge states, unidirectionally guided along the
physical edge. These states, marked by a low density of states in
the topological gap (Fig. 2A), emerge in both periodic and

amorphous systems and are robust to on-site potential disorder as
long as the disorder strength is not comparable to the bandgap
(Supplementary Materials). However, while a strong enough on-
site potential disorder will eventually overcome the topological
protection of the edge states, an increasing degree of structural
disorder will not affect the topological properties of the system,
i.e., the edge states are topologically protected irrespective of the
degree of structural disorder (24). The regions with a higher
density of states in Fig. 2A correspond to bulk bands, including
a flat band at zero frequency. We classified the eigenstates ψ by
calculating their inverse participation ratio (IPR), defined as
IPRðψÞ ¼

P
i jψi j

4
=j
P

i jψi j
2
j
2
, whose scaling law with respect to

the lattice size is a measure of the localization of the eigenstates
within finite-size systems. The IPR presented in Fig. 2B shows
that our amorphous structure features three types of eigenmodes,
which are chiral edge (CE) modes, localized bulk (LB) modes,
and extended bulk (EB) modes. The localization and the scaling
properties of the modes with the size of amorphous graphs are sum-
marized in Fig. 2C. For a two-dimensional graph with disk sampling
domain area L2, the IPR scales as a constant for LB modes, as 1/L for
CE modes, and as 1/L2 for EB modes. Intensity profiles of three rep-
resentative modes are shown in Fig. 2 (D to F). The IPRs of the CE
modes scale like their periodic counterparts, indicating the exis-
tence of topological edge transport channels, while the LB modes,
which are a unique feature of the amorphous system, originate from
the presence of structural disorder. The LB modes stand out as char-
acteristic peaks in the IPR of Fig. 2B, occurring in the vicinity of the

Fig. 1. Principle and design of amorphous topological graphs. (A) Sketch of an amorphous topological graph. The local coordination number z is preserved (z = 4),
while the graph connectivity is different from the periodic counterpart. Different colors indicate polygonal plaquettes with different number of sides. (B) Zoomed-in view
of (A), showing the presence of a nonuniform magnetic field flux. The labels quantify the magnetic flux across each polygonal plaquette, which is equal to the overall
hopping phase acquired by a photon through a round-trip around the plaquette. (C) Distribution of polygonal plaquettes with N ≥ 4 sides for the graph in (A). The
periodic lattices only have hexagons with N = 6. (D) Pair correlation function g(r) of the amorphous structure in (A), compared to the periodic lattice. The amorphous
structure lacks long-range order, as evidenced by the flattened pair correlation function at longer distances r/a. (E) Topological phase diagram for the amorphous struc-
ture. The color represents the Kitaev sum calculated over all the modes below different values of the cutoff frequency ω/κ, for different hopping phases ϕ between
adjacent vertices. The result is averaged over 20 realizations of disorder.
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band edges, and they are responsible for the mismatch between the
density of states of periodic and amorphous systems (Fig. 2A). The
EB modes, which are spatially delocalized, feature low IPRs. The in-
troduction of structural disorder has therefore dramatically changed
the localization nature of the bulk modes, introducing the LB modes
near the band edges. In addition, the remaining bulk modes are
more localized, while the topological nature of the system is
preserved.

Disordered nonlinear topological graph
We now consider the nonlinear dynamics of the amorphous topo-
logical graph by including multiparticle interactions. As a prototyp-
ical example relevant for a wide class of systems, we will focus here
on local two-particle interactions, such as the ones that occur
between photons in a Kerr medium. The full Hamiltonian Ĥ de-
scribing the nonlinear graph is written by adding a term V̂ to the
linear Hamiltonian Ĥ0

Ĥ ¼ Ĥ0 þ V̂ ð2Þ

where

V̂ ¼ U0
X

i
n̂2
i ; n̂i ¼ â

y
i âi ð3Þ

In Eq. 3, U0 is a material-dependent strength of the nonlinearity
and n̂i is the particle number operator at site i. The time dynamics of

the nonlinear system is obtained by explicitly integrating the time-
evolution equations. The periodic and the amorphous topological
systems are both driven with the same amplitude, which is spectrally
peaked within the topological bandgap. Snapshots of the intensity
distribution at different times t are shown for the periodic (Fig. 3A)
and amorphous (Fig. 3D) graphs. The energy of the propagating ex-
citation is confined near the boundary at early time stages in both
cases (t < 3T ), where T = 1000 κ−1 is approximately the time the
signal takes to travel from the input to the output port. In the peri-
odic case (Fig. 3A), the excited CE modes couple to other CE modes
and then leak toward the bulk as the EB modes are fed (t = 5T ). This
contrasts with the amorphous case, where energy is confined within
the CE modes at t = 5T, as shown in Fig. 3D. The difference in
energy transport in the presence of nonlinearity is quantified by
probing the transmission at the output port for different injected
power levels, as shown in Fig. 3 (B and E). For a relatively weak
pumping power P0, the transmission spectrum is similar in the pe-
riodic and amorphous systems. As the pumping power increases,
the edge transport channel breaks down in the periodic system
due to the nonlinearity-induced coupling, while the transmission
in the amorphous system maintains CE propagation, leading to
an almost 10-fold increase in the peak power difference at the
output. The stronger coupling between adjacent CE modes in the
periodic case is confirmed by the presence of additional side
peaks in the transmission spectrum. The evolution of the two
systems in the time-frequency domain, obtained via a short-time

Fig. 2. Scaling of modes in periodic and amorphous topological graphs. (A) Density of states for the amorphous and periodic topological graphs, for a hopping phase
ϕ = π/2. (B) Inverse participation ratio for the eigenmodes of the periodic and amorphous graphs. Three types ofmodes [chiral edge (CE), localized bulk (LB), and extended
bulk (EB)] are observed with distinct IPRs. The shaded area represents the standard deviation for 20 realizations of structural disorder. (C) Scaling of the IPR with the graph
size L, for different modes. The results obtained by diagonalizing the linear Hamiltonian in Eq. 1 agree well with the theory, and the IPR of modes scales as a constant, 1/L,
and 1/L2 for LB, CE, and EB modes, respectively. The error bars are obtained by averaging over 20 realizations. (D to F) Intensity profiles of three representative modes,
classified as LB (D), CE (E), and EB (F), showing different localization features. The local light intensity is proportional to the size of the circles at each site, and it is visualized
by thermal-like fill color.
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Fourier transform, is presented in Fig. 3 (C and F). In the periodic
system, at early times, the initialized CE mode couples to the spec-
trally closest CE modes, resulting in frequency broadening. As time
evolves, the coupling between the excited CE modes and EB modes,
induced by the presence of the nonlinearity, ignites bulk modes,
which in turn excite other EB and CE modes. The result, at long
times, is a markedly broadened spectrum. The amorphous system
in Fig. 3F, however, shows a notably different behavior, displaying
both reduced oscillations between adjacent CE modes as well as a
suppressed appearance of additional modes in the spectrum,
achieving an almost unperturbed propagation for much
longer times.

DISCUSSION
The increased isolation that the injected CE mode experiences in
the amorphous system can be understood as an interplay of differ-
ent mechanisms. First, the broken periodicity resulting from the in-
troduction of structural disorder precludes us from identifying a
well-defined momentum for the EB modes, hampering the fulfill-
ment of phase-matching conditions for the nonlinearity-induced
coupling, and suppressing the initial oscillations between CE

modes. Second, according to Fermi’s golden rule, the initially
excited bulk modes will be located around the peak of density of
states in Fig. 2A, close to the band edges. These modes have an
EB nature in the periodic system, but with the introduction of struc-
tural disorder, some of them become LB modes in the amorphous
system (28). The localization of LB modes then delays the nonline-
arity-induced propagation from CE to EB modes, with the latter
being excited at much later times. The eventual propagation of
the signal to the EB modes is delayed by the introduction of struc-
tural disorder, but not completely suppressed, as an inevitable con-
sequence of the presence of the nonlinearity.

The spatial and spectral energy confinement in the presence of
nonlinearity can be used, for example, to enhance the efficiency of
quantum topological photon pair generation via spontaneous four-
wave mixing in optical systems (29–30). In this nonlinear four-
photon process, a pump signal is injected into the system via an
input port, and the correlated photon pairs generated within the to-
pological bandgap are guided toward the output port along the
boundaries. The positions of input and output ports are chosen
as shown in Fig. 3 (A and D) to increase the distance traveled by
the pump signal, thereby maximizing the photon pair generation
efficiency. The system is described by the following Hamiltonian

Fig. 3. Enhanced nonlinear topological transport in amorphous graphs. (A and D) Snapshots of the real-space intensity distribution in periodic (A) and amorphous
(D) structures, following an initial pulse excitation injected from the input channel, taken at times 3T, 5T, and 7T, where T = 1000 κ−1 is approximately the time it takes for
the signal to travel from the input to the output port. Energy leaks from the edge to the bulk modes in the periodic graph, while it remains confined along the edge in the
amorphous graph for longer times. (B and E) Power spectrum at the output channel for two different input powers P0 and 10P0, for the periodic (B) and amorphous (E)
graphs. The additional peaks in the periodic graph spectrum at 10P0 pumping correspond to the coupling between adjacent CEmodes. The insets showa zoomed-in view
of periodic (B) and amorphous (E) graphs. a.u., arbitrary units. (C and F) Time evolution of the power spectrum after injecting an initial signal at an edge mode frequency,
obtained via a short-time Fourier transform. In the amorphous case (F), the energy couples to other edge modes or bulk modes at a slower rate compared to the periodic
case (C).
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(29, 31–32)

HSI ¼ H
ðSÞ
0 þH

ðIÞ
0 þ

X

i
χiâ
ðSÞy
i âðIÞ

y

i ð4Þ

where the last term creates correlated pairs of photons, called signal
(S) and idler (I ), at a site-dependent rate χi ¼ χ0 â

ðPÞ
i â

ðPÞ
i , which

depends both on the pump (P) strength and on the optical nonlin-
earity χ0. The terms HðS=IÞ0 are the bare Hamiltonians of the signal
and idler photons, respectively. The effectiveness of this process typ-
ically relies on working with a quasi-linear dispersion to satisfy both
energy and momentum conservation. As shown in Fig. 4A, the to-
pological dispersion in our system fulfills this requirement. The
photon pair generation efficiency is presented in Fig. 4B. Both the
periodic and the amorphous system generate a similar number of
photon pairs at early times. At later times, however, the efficiency
of the periodic system drops due to the increased coupling between
CE and EB modes, while the amorphous system remains efficient.
The enhanced spectra of signal, pump, and idler are presented in
Fig. 4C. In the periodic case, the self-modulation of the pump
leads to a reduced lifetime of the edge modes at the excitation fre-
quencies; hence, the photon pair generation rate is also reduced,
while in the amorphous case, the pumped edge states can generate
more photon pairs.

We proposed and demonstrated an amorphous topological plat-
form (graph) to enhance nonlinear phenomena. The disordered to-
pological graphs are based on the control of a synthetic magnetic
field threading through different polygonal plaquettes and leading
to a nonuniform flux that gives rise to the nontrivial topology of the
graph. The nonlinear responses of such amorphous topological
graphs outperform their periodic counterparts, owing to the emer-
gence of LB modes and to a reduced phase matching, enabling the
ultrafast guiding of energy, protected against leakage. The accumu-
lation of energy in the topologically protected channel enhances the
generation of photon pairs. The proposed scheme for enhancing
nonlinear responses via the introduction of structural disorder in
topological systems will have a broad range of applications, includ-
ing devices for robust light-based information processing and
computing.

MATERIALS AND METHODS
Generation of the amorphous topological graph
The amorphous graphs are generated via a three-step procedure to
maintain a fixed coordination number while implementing the
structural disorder. First, disk sampling with a random seed is
used to introduce disorder in the system. Then, the centers of the
disks are used to generate a Voronoi graph with a fixed coordination
number of 3. The amorphous Kagome graph is finally constructed
by connecting the centers of adjacent edges around each vertex of
the Voronoi diagram. The generated Kagome graph has a coordina-
tion number of 4, which is the same as that of a periodic Kagome
lattice. In the disk sampling process, the filling ratio can be used to
control the degree of disorder. In the amorphous structures simu-
lated in this work, a filling ratio of η = 0.45 is used with a domain
size of L/r = 250 in the disk sampling step.

Calculation of the topological index
The topology of the amorphous graph is explored via the Kitaev
sum. The graph is first triparted into three adjacent spatial
regions A, B, and C that share a common vertex at the center of
the graph and that cover 1/4 of its area. Then, the Kitaev sum at
frequency ωc is calculated as

νðPÞ ¼ 12π
X

i[A

X

j[B

X

k[C
ðPijPjkPki � PikPkjPjiÞ

where P is the projection operator onto the eigenmodes below ωc
and i, j, and k are site indices.

Time-domain simulations
The time-domain simulations were performed on MATLAB via ex-
plicit integration of the semiclassical evolution of the particle fields,
using a fourth-order Runge-Kutta scheme to ensure numerical
stability. The four-wave mixing process was simulated in the unde-
pleted pump approximation, under which the fields evolve via a
time-dependent Hamiltonian that can be represented as the follow-
ing matrix (31)

HSIðtÞ ¼
HðSÞ0 CðtÞ
CyðtÞ HðIÞy0

" #

where Cij(t) = χi(t)δij and the state vector is expressed as

Fig. 4. Disorder-enhanced topological light generation. (A) Effective dispersion relation of amorphous and periodic edge states, obtained by plotting the average
phase change between consecutive triangular plaquettes along the edge against the frequency of each eigenmode. For the amorphous system, dispersion broadening is
observed due to the aperiodic variation of the phase at different positions along the edge state. Note that, for bulk modes, the quasi-linear phase change breaks down
due to the lack of well-defined transport channels. (B) Time evolution of the total number of generated photon pairs. The photon pair generation rate (slope of the curve)
decreases in the periodic system as the signal/idler modes couple to the EB modes, while the generation rate remains high for longer time in the amorphous system. (C)
Example of the normalized spectra of photon pairs generated via a pump at frequency ωp = 0.4 κ. The spectra are centered at the pump frequency.
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ψ ¼ ½aðSÞ1 ; . . .; aðSÞN ; a
ðIÞy
1 ; . . .; aðIÞyN �

T
. The outputs are Fourier-trans-

formed to obtain the spectral information.
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