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This study aims to compare the complete growth and development of corpus

luteum (CL) in domestic bu�alos from day 5 until day 40 after ovulation either

in pregnant or non-pregnant animals and whether luteal vascularity (LV) with

progesterone (P4) and nitric oxide (NO) could determine luteal functionality

or not. Pluriparous bu�alos (Bubalus bubalis) were categorized as pregnant

(n = 6) or non-pregnant (n = 9) after pregnancy check at day 25. Animals

were subjected to ultrasound analysis to determine the CL area (cm2) and LV.

Blood sampling was performed following the Doppler examination. Ovarian

tissue samples from non-pregnant bu�alo genitalia (n= 18) and early pregnant

bu�alo genitalia (n = 3) were collected from great abattoirs. Luteal Doppler

indiceswere lower in the pregnant group, while peak systolic velocity (PSV) was

increased (p < 0.05) in the same pregnant females. Both P4 and NOMs were

elevated (p < 0.05) in the pregnant group. There was a positive correlation (p <

0.01) between P4 andCL PSV. Based on ourmacroscopical examination, theCL

of non-pregnant bu�alos was classified into four stages. Histologically, stage

I showed that CL was covered by a highly vascularized connective tissue (CT)

capsule. It consisted of small and large lutein cells, whereas stage II was similar

to stage I except for the presence of numerous fibroblast cells and vacuolated

cells. Stage III was characterized by increasing the number of collagen fibers

and the thickness of the blood vessels. Stage IV revealed thickening of the

CT capsule and septae, regressed capillaries and arterioles, in addition to

shrunken degenerated lutein cells. CL of pregnant bu�alos revealed the same
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structure as CL at stage II. CL area was increased in the pregnant group. The

collective data suggested that evaluation of the luteal artery could be extremely

helpful to determine the potential benefits of colored and pulsed Doppler in

CL vascularization assessment in both luteal and early pregnancy phases.
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Introduction

Buffalos (Bubalus bubalis) are a common species in the

Middle East (1) and Africa (2), and have great potential due to

their critical role in farming and agriculture in those developing

countries (3–5). One of the major restraints in the utilization

of domestic buffalo reproductive capacity as compared to cattle

has been its characteristically poorer reproductive functionality

and efficiency (6) that is associated with silent heat, missing

many behavioral signs, and lesser conception rates (7, 8). So,

studying a basic reproductive pattern is of great importance for

enhancing the reproductive efficiency of buffalos (9). The corpus

luteum (CL) is the primary reproductive gland responsible for

progesterone production, and is required for the establishment

and progression of the gestation period; moreover, CL plays

a critical role in many reproductive processes, such as

successive implantation and embryonic development (10, 11).

Histologically, CL consists of cells with a steroidogenic and

non-steroidogenic nature (12). The steroidogenic cells, which

are responsible for progesterone production, are composed

of luteal cells (large and small cells that originate from both

granulosa and theca cells), while the non-steroidogenic cells

are composed of fibroblasts, endothelial cells, and macrophage

(13, 14). Although luteal functions have been evaluated in many

studies (15, 16), many specific regulatory factors related to luteal

vascularization need future studies, especially in buffalos. The

size of the CL at the mid-luteal phase of the estrous cycle

ranged from 1 to 2 cm compared to that at pregnancy which

ranged from 2 to 2.5 cm (17). Generally, the CL in buffalo is

smaller compared to that in cattle (18) and associated with

lower progesterone levels, which in turn may affect embryonic

mortality (19, 20) and adversely impact the maintenance of

pregnancy (21, 22). Some studies have reported that the adequate

development of the CL in association with progesterone levels

(P4) is needed to prevent embryonic mortality (23); in addition,

pregnant buffalos reported a greater diameter of CL linked to a

marked linear increase in plasma P4 levels that positively affects

the luteal vascularity (LV) (24). Another study has reported a

higher average timed velocity (TAV cm/sec) of the luteal artery

in pregnant buffalos compared to non-pregnant buffalos (25).

Moreover, lower pregnancy rates are observed with lower CL

vascularization after 5 days of mating (26). The luteal and early

normal pregnancy phases are associated with marked changes in

the cardiovascular hemodynamic system, such as elevated blood

flow volume and decreased Doppler indices, especially vascular

resistance index (27, 28), as all these changes are followed by

increased levels of nitric oxide (NO) and its metabolites (NOMs)

in the form of nitrite and nitrate, which lead to the improved

response of smooth muscle on NO reaction (29). Little is

known about the histological structure of CL, using the Doppler

technique that is based on the anatomical determination of the

luteal artery, as well as characterization of each luteal stage in

normal luteal and pregnant phases in Egyptian domestic buffalo.

Therefore, this current study aimed to compare the complete

growth and development of CL in domestic buffalos from day 5

until day 40 after ovulation either in pregnant or non-pregnant

buffalo, and whether luteal vascularity (LV) with progesterone

(P4) and nitric oxide (NO) could determine luteal functionality

or not.

Materials and methods

Ethical approval

All experiments were performed according to the

Veterinary Animal Care and Use Committee of the Faculty

of Veterinary Medicine, Cairo University (Approval number

Vet CU12/10/2021/363).

Animal housing and management

For the study, cyclic pluriparous (n= 18) Egyptian domestic

buffalos (Bubalus bubalis aged 8–11 years, 3.5 ± 0.5 body

condition score, 490 ± 30 kg) kept on a large animal farm in

the Faculty of Veterinary Medicine at Giza square (30.0276◦N,

31.2101◦E) were used. Animals were maintained in open

yards. All females were fed a mixed ration that consisted of

60% forage and 40% concentrate, containing dry matter and

crude protein. To determine the female cyclicity, all buffalos

underwent weekly ultrasound examination (1 time/week for 3

successive weeks) to evaluate the ovarian functionality using

EXAGO, rectal ultrasound device (France), as the device is
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equipped with a 6–12 MHz transrectal probe, before the start

of examination procedures.

Time of synchronization and mating
process

Synchronization was performed using the gonadotropin–

prostaglandin–gonadotropin combination (GPG/ Ovsynch)

protocol, which was previously conducted in cattle (30), and

used in buffalo (31). The GPG program was started with the

first intramuscular injection of GnRH (5 ml/animal; Receptalr

0.004 mg/ml, Msd Animal Health India) on day 0 followed by

a single intramuscular injection of prostaglandin (PGF2α) per

intramuscular injection (25mg; Lutalyser, Upjohn) on day 7

and a second GnRH was administered on day 9 as previously

demonstrated in buffalos (31). All females underwent routine

ultrasound assessment on day 11 after mating from the start

of the GPG program and only those excited by a preovulatory

follicle ≥1 cm (32) were used in the study (n = 18). All buffalos

were examined randomly (n= 18); after that, nine buffalos were

mated naturally 21 h after the second GnRH injection by an

adult healthy bull aged from 9 to 10 years (n = 5) (33, 34).

Mated buffalos were examined on day 25 for pregnancy after

natural mating using the same ultrasound device at this day. Of

nine females, only six became pregnant (GP I, Pregnant; n = 6),

while the other three did not (n= 3); the second group were not

mated and entered in the normal luteal phase after the ovulation

process (GP II, Non-pregnant; n = 9). Furthermore, ultrasound

assessments were done one-day post-mating to assure that all the

animals underwent normal ovulation, which was confirmed by

the disappearance of the largest follicle using B-mode ultrasound

scanning (35, 36).

CL vascularization assessment

CL ultrasound assessment was conducted every day from

day 5 after ovulation until day 40 using Doppler ultrasound

portable device (ExaGO, rectal ultrasound device, France)

performed with a 6–12 MHz transrectal probe with a device

set as follows: velocity was automated at 25 cm/s, Doppler filter

was 150Hz, PRF was 3,500 kHz, and insonation angle was 40◦

(37). The procedure of CL examination was done once the ovary

appeared on the ultrasound scanner and the image was frozen to

measure the CL dimensions to estimate the CL area by equation

[area = π
∗(a/2)∗(b/2)], where a and b were the short and long

axis of CL dimensions, respectively (26). To evaluate the CL

blood flow perfusion, color Doppler mode was activated, and a

sample window was placed on the CL tissue to show the colored

area in blue (away from the probe) and red (toward probe)

color maps, which were assessed by image analysis software

program at different stages of the luteal phase and the first days

of pregnancy (38).

CL Doppler parameter evaluations

Based on our anatomical determination of the luteal artery

and at the level of clearly visualized CL, the spectral mode was

activated to show the blood flow velocity of the luteal artery by

the wave pattern that was presented only in the luteal artery, not

on the luteal vein, as venous circulation assessment did not give

any information due to the absence of spectral graph obtained

from pulsed-wave Doppler mode (Figure 1). The spectral graph

showed a Doppler measurements calculation automatically as

resistance and pulsatility index (RI and PI), peak velocity point

of contraction and end-diastolic point of relaxation (PSV and

EDV cm/s), as well as time to perform maximum velocity

(TAV cm/s; Figure 1). B-, color, and spectral modes videos (15 s

duration /each) were saved and stored on the flash memory. If

there was a cavity in the CL, the area of the CL was assessed by

subtracting the cavity area from the whole CL area (39).

Blood sampling and hormonal
assessment

Blood samples were obtained from the jugular vein of

all buffalos from day 5 until day 40 following each Doppler

examination. Plasma and serum samples were stored at −20

until hormone analysis. Progesterone (P4, EIA-1561) was

analyzed using ELISA kits (DRG, Germany) by competitive

assaying with inter and intra assays precisions of 9.96 and 5.4,

respectively, and test sensitivity of 0.045 ng/ml. Serum samples

were used in assaying the nitric oxide (NO) via its metabolites

(NOMs; µmol/L) as previously examined in our laboratory

(40, 41). The nitric oxide inter and intra assay coefficients were

1.17% and 1.09%.

Collection of tissue samples

Non-pregnant buffalo genitalia (ovaries bearing the CL) (n

= 18) (n = 2 for vascular anatomical architecture and n =

16 for histological examination (n = 4 genitalia/each luteal

stage) in addition to early pregnant buffalo genitalia (n = 3)

were collected from great Cairo abattoirs within 3 months. The

reproductive organs were transported on ice to the laboratory for

examination within 15min after exsanguinations. Stages of the

estrous cycle were determined by macroscopic ovarian dating

(color, consistency, size, vasculature of CL, and presence of

follicles on the surface of the ovary) and then classified into

early luteal [Stage I, (n = 4), 1–5 days] (Figure 2a) in which the

CL appeared small, reddish, and soft; mid-luteal (stage II and
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FIGURE 1

Ultrasonogram revealed the mature corpus luteum (CL) with its spectral wave of both luteal artery (a) and luteal vein (b) blood flow velocities.

N.B: Luteal artery waveform characterized by a complete cardiac cycle in from of peak systolic (PSV; cm/s) and end diastolic velocities (EDV;

cm/s) with time average to make maximum velocity (TAV; cm/s), while the vein wave was characterized by absence of cardiac cycle without any

spectral graph.

stage III) in which the CL became large, brownish, and harder

[Stage II, (n = 4), 6–10 days] (Figure 2b) and appeared fibrous,

pale, and hard [Stage III, (n = 4), 11–16 days] (Figure 2c); and

late luteal stage [Stage IV, (n = 4), 17–20 days] (Figure 2d). CL

can be seen as fibrous, yellowish, and hard. While in pregnancy,

CL became light reddish with enlargement of the uterine horn

(Figure 2e). Additionally, this classification was also defined

depending on Baithalu et al. (14).

Vascular anatomical architecture

Two specimens from non-pregnant genitalia were used to

examine the vascular anatomical architecture for demonstrating

the ovarian and luteal artery. Vessels were cannulated, flushed

thoroughly with normal saline to remove any blood clots, and

then injected with 60% gum milk latex emulsion colored red

using ROTRING ink (42, 43). Then the specimens were kept

in formalin 10% and 1% glycerine solution for 4 days before

manual dissection. The photograph was taken by a digital

camera and manipulated by Photoshop ccx64 version. After

dissection, we found that the arterial supply of the buffalo ovary

was the main ovarian artery, which trifurcated into ovarian,

tubal, and uterine branches. The first one continued for a short

distance craniolaterally and then divided into 3–4 twigs to enter

the ovary from its attached border, the middle one was the luteal

artery which was convoluted in its pathway until reached the

ovary within the meso-ovarian ligament (Figure 3).

Histological examination

Samples of ovarian tissue containing CL from pregnant

and non-pregnant buffalos were fixed in 10% neutral buffered

formalin, dehydrated in ascending grades of ethanol, cleared in

xylene, and finally embedded in paraffin wax. Paraffin sections

(4–5µm thick) were obtained and stained with hematoxylin

and eosin, Crossman’s trichrome stain, and periodic acid-Schiff

(PAS) (44).

Statistical analysis

All data are presented as the mean ± SEM as all results

are the first check for normality. An unpaired t-test was

used for comparisons between the two groups at each time

point. The statistical significance of progesterone and nitric

oxide alterations, as well as luteal Doppler findings in both

groups, was assessed by repeated-measures two-way analysis

of variance (ANOVA) to study the effect of group, time,

and their interaction. By this method, you can compare all

16 values (2∗8) (interaction between the effect of group and

time). All analyses were achieved by using SPSS software

version 20. p < 0.05 indicates significant differences. Pearson’s

correlation coefficients between progesterone levels and CL

Doppler parameters in all females (pregnant and non-pregnant)

were calculated.

Results

Corpus luteum characterization in live
animals and hormonal analysis

The luteal phase was divided into early (Figure 4), mid

[stages II and III] (Figure 5), and late (Figure 6) stages in
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FIGURE 2

Corpus luteum in the bu�alo ovary at di�erent luteal stages as (a) represented an early luteal (stage I, 1-5 days), (b) demonstrated a mid-luteal

(stage II, 6-10 days), (c) showed a mid-luteal (stage III, 11–16 days), (d) showed a late luteal (stage IV, 17-20 days), and (e) demonstrated corpus

luteum gravidities at early stage of pregnancy. N.B: 1, ovary and 2, corpus luteum.

pregnant and non-pregnant animals. Moreover, this luteal

classification was also confirmed by the progesterone levels at

these stages.

CL area (cm2) determination by B-mode
ultrasonography

The CL area (cm2) in both groups showed an elevation

beginning from day 5, and with each examination time point,

there was an additional increase till day 15 after ovulation. Also,

the CL area in non-pregnant buffalos showed a similar pattern

but a non-significant decline was observed on days 20, 25, and

30, then the CL area was significantly (p < 0.05) elevated on

days 35 and 40. The differences between the pregnant and non-

pregnant groups reach a significant (p < 0.05) level from day 20

(1.87 ± 0.02 cm2) until day 40 (2.75 ± 1.85 cm2). The time and

interaction between the time with the group showed a significant

(p < 0.05) difference in the CL area (Figure 7).

Luteal artery Doppler parameter evaluations

The luteal artery was the second division of the ovarian

branch of the main ovarian artery and lodged within the

meso-ovarian ligament (Figure 3). The spectral mode of the

luteal artery was measured to determine both luteal Doppler

indices that were expressed by RI and PI. Luteal PI in both

groups showed a decrease beginning from day 5, and with

each examination time point, there was an additional decrease

till day 15. Also, the PI in non-pregnant buffalos showed a

similar pattern with a maximum elevation on day 30. The

differences between the pregnant and non-pregnant groups

reach a significant (p < 0.05) level on day 20 (1.33 ± 0.01) and

continue to be significant till day 40 (0.89 ± 0.01; Figure 8A).

The interaction between time with the group had shown a

significant (p < 0.05) difference in luteal PI, while the time did

not show any significant difference.

Luteal RI in both groups showed a decrease beginning from

day 5, and with each examination time point, there was an
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FIGURE 3

Image revealed the main ovarian artery of the ovary. 1- ovary, 2- main ovarian artery, 3- ovarian branch of the main ovarian artery, 4- tubal

branch of the main ovarian artery, 5- ovarian twigs of the ovarian branch, 6- luteal branch of the ovarian branch, and 7- mesoslphenix.

FIGURE 4

B-mode and colored ultrasonograms of a 9-year-old bu�alos at the early luteal phase (stage I; from 1 to 5 days) as (A,B) images showed an early

formed corpus luteum in non-pregnant female on day 5 in gray and color modes and (C,D) images showed an early formed corpus luteum in

suspected pregnant one on day 5 in gray and color modes. CL, corpus luteum.
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FIGURE 5

B-mode and colored ultrasonograms of a 9-year-old bu�alos at the mid luteal phase with two stages stage II; from 6 to 10 days and stage; III

from 11 to 16 days, as (a,b) images showed the corpus luteum in non-pregnant female on day 10 in gray and color modes, (c,d) images showed

the formed corpus luteum in suspected pregnant one on day 10 in gray and color modes, (e,f) images showed the corpus luteum in

non-pregnant female on day 15 in gray and color modes, and (g,h) images showed the formed corpus luteum in suspected pregnant one on

day 15 in gray and color modes. CL, corpus luteum.
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FIGURE 6

B-mode and colored ultrasonograms of 9-year-old bu�alos at the late luteal in non-pregnant compared to pregnant one (Stage IV vs. Stage I

suspected pregnant from 17 to 20 days). As (a,b) images showed the regressed corpus luteum on day 17 in gray and color modes and (c,d)

images showed the more regressed corpus luteum on day 18 in gray and color modes compared to (e,f) images showed the corpus luteum in

suspected pregnant females on day 18 in gray and color modes, and (g,h) images showed the corpus luteum in suspected pregnant females on

day 20 in gray and color modes. CL, corpus luteum.

FIGURE 7

Area of the corpus luteum (CL area; cm2) presented in pregnant (Preg) and non-pregnant (Non-preg) bu�alos from day 5 till day 40 after

ovulation. Data are obtained as mean with standard error of mean. a,b Values are significantly di�erent at P < 0.05 compared with day 5 in both

groups, while cvalue is significantly di�erent at P < 0.05 between two groups at the indicated same time point.

additional decrease. Also, in non-pregnant buffalos, the luteal RI

showed a similar pattern with a maximum elevation on day 30.

The differences between the pregnant and non-pregnant groups

reach a significant (p < 0.05) reduction from day 25 (0.69 ±

0.01) until day 40 (0.48± 0.01) in the pregnant group compared

to that in the non-pregnant group (Figure 8B). The time and

interaction between the time with the group show a significant

(p < 0.05) difference in luteal RI.
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FIGURE 8

Pulsatility index (PI; A), resistance index (RI; B) and luteal peak systolic velocity (PSV; cm/sec; C) values presented in pregnant (Preg) and

non-pregnant (Non-preg) bu�alos from day 5 till day 40 after ovulation. Data are obtained as mean with standard error of mean. a,b Values are

significantly di�erent at P < 0.05 compared with day 5 in both groups, while cvalue is significantly di�erent at P < 0.05 between two groups at

the indicated same time point.
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Finally, the spectral luteal PSV (cm/s) was elevated in both

groups, but the elevation was significant (p < 0.05) from day 25

(15.88 ± 0.33) to day 40 (18.97 ± 0.74) in the pregnant group,

while in the non-pregnant group, the PSV was elevated until day

15 (15.05± 0.85) after ovulation and then subsequently declined

at days 20, 25, and 30, and then elevated at day 35 and day 40, as

the time and interaction between time with the group showed a

significant (p < 0.05) difference in luteal PSV (Figure 8C).

Progesterone and nitric oxide levels

Plasma progesterone levels in both groups showed an

increase beginning from day 5, and with each examination time

point, there was an additional increase. Plasma progesterone

levels in pregnant females were elevated (p < 0.05) from day

20 (1.34 ± 0.01) until day 40 (2.21 ± 0.01), while those in non-

pregnant females significantly decreased at days 25 and 30 (0.23

± 0.01 and 0.21 ± 0.02) (Figure 9A). The time and interaction

between time with the group showed a significant (p < 0.05)

difference in progesterone level. Serum NOM levels in both

groups increased from day 5 till day 15. In the pregnant group,

NOM levels were elevated significantly (p < 0.05) from day 20

to day 40 compared to the non-pregnant group (Figure 9B),

in addition, the time and interaction between time with both

groups showed a significant (p < 0.05) difference in NOM. A

positive correlation (p < 0.01) was observed for both pregnant

and non-pregnant buffalos between plasma levels of P4 and CL

PSV (cm/s), while there was a negative correlation (p < 0.01)

between P4 levels and both Doppler indices (RI and PI).

Uterine blood flow in live animals

Both blue and red colored area/pixels were seen to be

significant (p < 0.05) elevated from day 20 (764.12 ± 4.21 and

644.21 ± 2.51) till day 40 (948.12 ± 12.42 and 766.32 ± 3.55) in

pregnant females compared to non-pregnant females as shown

in Figure 10. There was no time and group interaction in the red

and blue uterine blood flow.

Histological investigation

CL of non-pregnant buffalos demonstrated different stages

of activity. In the early luteal stage (Stage I), the CL was covered

by a fibrous connective tissue capsule, which formed septae

that divided the CL into lobules. In this stage, both the capsule

and septae appeared highly vascularized with many dilated and

engorged blood vessels (Figure 11A). Some lutein cells were

large, ovoid, or polyhedral in shape with large spherical vesicular

eccentrically situated nuclei and prominent nucleoli [large lutein

cells (LLCs)], while others were small and irregular in shape with

eccentrically spherical lightly stained nuclei [small granulosa

lutein cells (SLCs)]. LLCs possessed more cytoplasmic: nuclear

ratio and lipid droplets than that of SLCs. The LLCs occupied

a more central portion of CL in a close association with blood

capillaries, while SLCs occupied the periphery portion and were

distributed among the large ones (Figure 11B). The mid-luteal

stage (stage II) was similar to stage I, except for the presence

of numerous fibroblast cells and a high number of vacuolated

cells with large vacuoles and an increasing number of lutein

cells (Figures 11C,D). Moreover, most cells appeared in close

association with engorged blood capillaries (Figure 11E). The

mid-luteal (Stage III) was characterized by the presence of a high

amount of collagen fibers in the capsule surrounding CL, septae,

and interstitial tissue in addition to increasing the thickness

of the blood vessels enclosed in both capsule and septae

(Figures 11F,G). Furthermore, some luteal cells appeared to be

generated with shrunken condensed nuclei, while others showed

the apocrine mode of secretion. In this mode of secretion,

the remaining part of the cells appeared with deep acidophilic

cytoplasm and condensed nucleus. Moreover, LLCs appeared

with abundant large vacuoles distributed among numerous

fibroblast cells. These vacuoles were represented by narrow

strands in some cells (Figures 11G,H). Conversely, the late luteal

stage (Stage IV) was characterized by a substantial increase in

the amount of fibrous CT mainly collagen, thickening of the CT

capsule, CT septae, and blood vessels (Figure 11I) in addition

to regressed capillaries and arterioles like remnants with an

onion-skin arrangement of surrounding myofibroblast and

heavily condensed and rounded endothelial cells (Figure 11J).

Furthermore, most luteal cells appeared shrunken, degenerated,

and highly vacuolated with small, condensed spherical or oval

peripherally situated nuclei (Figure 11K). Additionally, the CL

of pregnant buffalos revealed the same structure of CL at

stage II with abundant LLCs surrounded by highly vascularized

connective tissue capsules (Figure 11L).

Discussion

The current study compares the complete growth and

development of CL in domestic buffalos from day 5 until day

40 after ovulation. CL plays a critical role in the gestation

maintenance and establishment in many species because of its

ability to produce an adequate P4 level (10, 45), therefore, any

decline of this mechanism could affect embryonic mortality

as previously demonstrated in cows (46). This study shows a

significant elevation in CL area from day 20 until day 40 in

pregnant buffalos compared to non-pregnant buffalos with a

marked elevation of plasma P4 levels in the same group, which

could help determine the importance of adequate CL diameter

and area to establish the first early stage of pregnancy (47).

Additionally, some studies reported a higher CL area in early

pregnant females compared to non-pregnant ones (25), but

others did not show a significant difference between the two
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FIGURE 9

Plasma progesterone (P4; ng/mL; A), and serum nitric oxdie metabolites (NOMs; µmol/L; B) levels presented in pregnant (Preg) and

non-pregnant (Non-preg) bu�alos from day 5 till day 40 after ovulation. Data are obtained as mean with standard error of mean. a,b Values are

significantly di�erent at P < 0.05 compared with day 5 in both groups, while c value is significantly di�erent at P < 0.05 between two groups at

the indicated same time point.
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FIGURE 10

Uterine blood flow area expressed by blue and red colored area/pixels presented in pregnant (Preg) and non-pregnant (Non-preg) bu�alos from

day 5 till day 40 after ovulation. Data are obtained as mean with standard error of mean. a,b Values are significantly di�erent at P < 0.05

compared with day 5 in both groups, while c value is significantly di�erent at P < 0.05 between two groups at the indicated same time point.

groups (48). Similarly, some studies reported an elevation in

plasma P4 levels from day 7 to day 10 after mating in pregnant

females (25, 47) as high P4 levels were responsible mainly

for greater embryonic development (23). In addition, the P4

levels remained elevated in some studies until 6–8 months of

pregnancy (49).

Increases in CL diameter and progesterone level were

greater in pregnant than in non-pregnant buffalos, indicating

the importance of adequate CL size for maintenance of

pregnancy (47). Lesser plasma progesterone levels from day

10 to 20 after AI in buffalos were associated with the death

of an embryo (22), demonstrating the pivotal role of CL for

pregnancy stage development and maintenance. The variation

in the serum P4 concentrations throughout the estrous cycle

of non-pregnant and pregnant buffalos is primarily dependent

on the blood flow, CL area, amount of steroidogenic tissue

(number and size of luteal cells), and its capacity to synthesize

progesterone (10), in addition to its lipid contents (50). The

development, maintenance, and regression of CL involved

remarkable morphological and functional changes during the

estrous cycle (51–53). The current study showed that CL had

steroidogenic cells involving LLCs and SLCs with morphological

characteristics that were reported by Baithalu et al. (14) in

buffalo and Ozen et al. (54) and Xavier et al. (55) in a

cow. The presence of large lightly stained nuclei of LLCs

throughout stages I, II, and III may indicate the activity and

hypersecretory LLCs during these phases of the cycle and

pregnancy, while luteal cells of Stage IV revealed small more

dense nuclei, which is an indication of luteolysis. Furthermore,

the presence of vacuolated cytoplasm of LLCs was caused by

their lipid contents that vary throughout the estrous cycle and

appear in a close association with the synthesis and secretion

of progesterone. Kapoor et al. (50) demonstrated that the

variations in lipid distribution within the cyclic and regressed

CL were inversely associated with the activity of the 3β-

hydroxysteroid dehydrogenase enzyme involved in the synthesis

of steroid hormones. Our results exhibited lutein cells of stage

IV with highly vacuolated cytoplasm. Increasing accumulation

of lipids in the regressed luteal cells with a significant decline

in production of P4 hormone might be due to degenerated

smooth endoplasmic reticulum resulting in absence of 3β-HSD

in addition to degenerated mitochondria containing P450 side-

chain cleavage (50, 56). Both 3β-HSD and P450 side-chain

cleavage were involved in the biosynthesis of progesterone (50).
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FIGURE 11

Photomicrograph showing the histological structure of corpus luteum (CL) during oestrus cycle and pregnancy. (A,B) Demonstrating early luteal

stage (Stage I). (A) The CL is covered by a highly vascularized connective tissue capsule and septa. The blood vessels are dilated and engorged

with blood (arrow) (Crossman’s trichrome stain, x100). (B) Large lutein cells (LLCs) are ovoid, or polyhedral in shape with large spherical vesicular

eccentrically situated nuclei and prominent nucleoli (yellow arrow) while small lutein cells are irregular in shape with eccentrical spherical lightly

stained nuclei (SLCs) (black arrow). Furthermore, LLCs possessed more cytoplasmic: nuclear ratio and lipid droplets than that of SLCs

(Crossman’s trichrome stain, x400). (C,E) Showing mid luteal stage (stage II). (C) Presence of numerous fibroblast cells (arrow) with increasing

the size of LLCs (H & E, x400). (D) Revealing a high number of vacuolated lutein cells with large vacuoles (arrow) (Crossman’s trichrome stain,

x400). (E) Most lutein cells appear in a close association with engorged blood capillaries (arrow) (Crossman’s trichrome stain, x400). (F,H)

Revealing mid luteal stage (stage III). (F) Presence of a high amount of collagen fibers in the capsule surrounding CL and C.T. septae (black

arrow) in addition to increasing the thickness of the blood vessels enclosed in both capsule and septae (yellow arrow) (Crossman’s trichrome

stain, x100). (G) Presence of a high amount of collagen fibers in the interstitial tissue (black arrow). Furthermore, LLCs appear with abundant

large vacuoles which are represented by narrow strands in some cells (yellow arrow) (Crossman’s trichrome stain, x400). (H) LLCs (yellow arrow)

appear with abundant large vacuoles distributed among numerous fibroblast cells (black arrow) (H & E, x400). (I,K) Exhibiting late luteal stage

(stage IV). (I) A substantial increase in the thickening of blood vessels enclosed within the C.T. capsule (arrow) (H & E, x400). (J) Showing

regressed capillaries and arterioles like remnants with an onion-skin arrangement of surrounding myofibroblast (arrow) and heavily condensed

and rounded endothelial cells (chevron) (PAS, x400). (K) Most lutein cells appear shrunken, degenerated, highly vacuolated with small,

condensed spherical or oval peripherally situated nuclei (yellow arrow). Moreover, presence of regressed blood vessels (black arrow) (H & E,

x400). (L) Showing CL of pregnant bu�alos has the same structure of CL at stages I and II with abundant LLCs (yellow arrow) in close association

with blood capillaries (black arrow) (H & E, x400). The yellow arrows indicate the prominent nuclei with some LLCs.

Additionally, during the estrus cycle, the luteal cell population

and the size of luteal cells increased and then regressed at stage

IV. These results were consistent with references (14, 57, 58).

Therefore, these findings reflect the variation in the serum P4

concentrations throughout the estrous cycle of non-pregnant

and pregnant buffalos.

Hence, the present study was designed to study the cellular

composition of the mature buffalo CL with its functional

characterization in relation to progesterone secretory ability and

nitric oxide during the normal luteal and pregnancy phases. In

the normal luteal phase the level of NOMs was critical as it was

related to the luteal vascularization and functionality (59), as

after ovulation nitric oxide affects oocyte activation by regulating

the calcium channel during the process of fertilization (60),

while in the normal early pregnant stage, nitric oxide contributes

to the elevation of maternal blood and reduction of blood

pressure (61). Moreover, nitric oxide was extremely important in

the embryo’s multiple divisions (62) as some studies showed that

embryonic growth was delayed due to the presence of inhibitory

mediators in the blastocyst stage that adversely affects nitric

oxide levels (63). Besides nitric oxide, some mediators have

been concerned with this phenomenon, such as estradiol and

prostacyclin (64).

The elevation in uterine blood flow that was expressed by red

and blue colored areas in the pregnant group compared to non-

pregnant buffalos could be associated with the buffalo maternal
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pregnancy recognition that began once the early embryo moved

in the fallopian tube and then entered the uterus after 5–

6 days post-mating, as the uterine vascularization is included

in the implantation procedures expressed by the growth and

development of new blood vessels (65, 66). Furthermore,

increased serum levels of NOMs in early pregnancy were very

important in the vasodilator mechanisms as nitric oxide is

shared in the blood pressure regulations and coronary artery

vasomotion, therefore any abnormalities in nitric oxide and its

metabolites levels could adversely affect pregnancy (67) in form

of hypertension and angiogenesis problems (68).

Besides progesterone’s important function, CL functionality

could also be assessed by luteal vascularization (36). In this

study, the CL vascularization was determined using both

Doppler indices and PSV (cm/s), as both Doppler indices

decreased in pregnant females compared to those in non-

pregnant females, while the luteal artery PSV was elevated

in the same pregnant group, this could be explained by the

inverse relationship between both Doppler indices and Doppler

velocities with time average point (TAV) as previously reported

in other studies (69–72), in addition, an inverse relationship was

observed between blood flow rate and Doppler indices especially

PI (73–75). In accordance with our finding, a study reported an

increase in both peak and time average velocities (PSV and TAV

cm/s) on day 7 after time artificial insemination in pregnant

cows (76), as the determination of luteal blood flow total area

with Doppler velocities could increase the accuracy of pregnancy

prediction (26). Consistent with our Doppler measurements,

cyclic CL (stage I, II, and III) and CL of pregnancy were

characterized by high vascularization, and most lutein cells were

adjacent to engorged blood capillaries that were in harmonywith

Xavier et al. (55) in the pregnant cow. These results might be

due to the high metabolic demand for CL. Moreover, the growth

and maintenance of CL and its adequate endocrine function

were mainly associated with increasing luteal vascularization

and angiogenesis (77, 78). Many studies found a similar positive

correlation between CL vascularization in its blood flow and

plasma P4 levels after ovulation (79). However, during luteal

regression, all lutein cells decreased in their number and

shrunk until they disappeared, leaving arteriole-like remnants of

blood vessels with an onion-skin arrangement of surrounding

myofibroblast and heavily condensed and rounded endothelial

cells with dense connective tissue in the residual CL. This finding

was in accordance with observations reported by Augustin et

al. (80). Increasing thickness of the CT capsule, CT septae,

and blood vessels led to reduced blood flow, which in turn

resulted in decreased progesterone secretion as observed in the

current study.

Moreover, this study revealed the presence of non-

steroidogenic cells, mainly fibroblast and endothelial cells. In

stages III and IV, the number of fibroblasts notably increased,

which was consistent with the results of Baithalu et al. (14) as

the fibroblasts were responsible for the synthesis of connective

tissue fibers and extracellular matrix (81), and collagen fibers

were required to alternate the degenerated and regressed luteal

cells. Baithalu et al. (14) reported that, during the late luteal

stage, the greater number of macrophages and fibroblasts could

serve as a cellular marker of luteal regression. Furthermore, our

results revealed a high rate of deposition of collagen fibers in

stages III and IV which comes in accordance with Jaglan et al.

(53), who observed changes in the collagen concentration with

the development and regression of cyclic buffalo CL during the

estrous cycle. Iwahashi et al. (82) showed that alterations in the

synthesis and distribution of collagen played a primary role in

determining the CL structure and function.

Conclusion

The histological structure of CL and assessment of its

hemodynamics depending on anatomical identifications could

be used extensively to get useful data about CL functional status

in both luteal and early pregnant phases. Finally, the evaluation

of the luteal artery could be extremely helpful as the artery

showed a wave pattern to determine the potential benefits of

colored and pulsed Doppler in CL vascularization assessment.
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