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Abstract

Ratooning is an important cultivation practice in sugarcane production around the world,

with underground buds on the remaining stalk acting as the source for establishment of a

subsequent ratoon crop. However, the optimal depth of cutting during harvest in terms of

yield and root growth remains unknown. We carried out a two-year field study to determine

the effects of three cutting depths (0, 5 and 10 cm below the surface) ratoon cane root and

yield. Results showed that cutting to a depth of 5 cm increased the root fresh weight and

root volume by 21–59% and 41–127%, respectively, compared to cutting depths of 0 and 10

cm. Remarkably, cutting to a depth of 5 cm also had a significant effect on the development

of fine roots, which is closely linked to cane yield. The effect was particularly noticeable in

terms of two root traits, root volume and the surface area of roots with a diameter of 1.0–

2.0mm, and root length and the number of root tips in roots with a diameter of 0–0.5mm. As

a result, a cutting depth of 5 cm below the surface increased cane yield by 43 and 28% com-

pared to depths of 0 and 10 cm below the surface, respectively. Overall, these findings sug-

gest that a cutting depth of 5 cm is optimal in terms of sugarcane yield, largely due to the

enhanced effect on root traits, especially the development of fine roots. These findings will

help optimize sugarcane ratoon management and improve the ratoon cycle.

1. Introduction

Sugarcane (Saccharum spp. hybrid) is an economically important crop in tropical and subtrop-

ical regions, and is currently cultivated in 121 countries around the world [1]. A large, peren-

nial, tropical C4 grass, sugarcane stores sucrose in its stem, and has long been recognized as

one of the most efficient crops at converting solar energy into chemical energy, harvestable as

sucrose and biomass [2]. After harvest, the remaining underground buds generate shoots,

which go on to establish a subsequent ratoon crop [3]. The main advantages of ratooning are

the cost savings related to planting labor, purchase of cane setts and soil tillage [4, 5]. A
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reduction in costs of 45% has been reported with an overall increase in net benefits [6].

Ratooning also results in early sprouting and ripening compared with newly planted crops [7].

Accordingly, 6 to 20 ratoon crops are often harvested from a single planting in many countries

[5, 8], representing more than 50% of the total sugarcane production in tropical regions and

more than 40% in sub-tropical regions [9]. For example, ratoon crops account for about 55%

of the sugarcane produced in India [10], 80–85% in Hawaii, 80–90% in Brazil, and at least 50%

in China [11, 12]. Maintaining ratoon crop yield and the ratoon cultivation period is therefore

an important consideration of sugarcane production.

The length of the sugarcane ratooning cycle is crucial to production and depends on the

cultivar, local soil and environmental conditions, management practices, and the production

level. In general, the cycle is approximately 4–5 years in Brazil, 5–7 years in Cuba, and 5–8

years in the Mauritius [13]. However, in China, the cycle is relatively short, with only two

ratoon crops [14] due to the sharp decrease in yield. Yield decline is mainly caused by

improper ratoon management [3], with shallowing of the underground buds and a subsequent

decline in activity followed by eventual failure to germinate.

A few studies have examined the effects of stubble height on yield in ratoon crops such as

forage sugarcane [15, 16], rice [17, 18], and alfalfa [19], as well as the effect of stubble height

after mowing [20, 21]. However, little is known about the effects of cutting depth or the length

of remaining stalk on ratoon cane yield or the ratooning cycle. An increase in stubble height

was found to increase ratoon crop yield in forage sugarcane [16], while a decrease in stubble

height caused an increase in ratoon crop yield in alfalfa [19], rice [17] and forage grasses [20,

21]. Moreover, increased yield was found to correspond to increasing residual height of the

second crop in rice [18].

Stubble shaving is a popular management practice in sugarcane ratoon crops [4, 15, 22],

whereby some of the aboveground residue and terminal buds are removed [23]. However,

compared to harvest, stubble shaving is thought to be harmful to the remaining stalks and

below ground buds [15]. Furthermore, the optimal depth of stubble shaving has yet to be

determined. According to Li [7], the length of cane stalk left below ground is more than 20 cm

under conventional cultivation of new plant cane in China. However, with increased shavings,

the position of the ratoon stool is thought to become shallower compared with the original

cane sett. Accordingly, the root system from the ratoon stool then generates in these shallower

soil layers, with no deep nodes from which new roots can develop, having an effect on ratoon

yield and shortening the ratoon cycle. It has therefore been suggested that deeper harvesting

might be more suitable in terms of root growth and shoot node development underground.

Moreover, while the removal of upper layers is practical, the most beneficial cutting depth in

terms of the germination of underground buds with a robust root system is a key consider-

ation. In addition, although the effect of stubble shaving on ratoon crops has been examined,

most of these studies are concerned with the remaining stubble and aboveground residues,

with little attention being paid to the underground parts. Understanding the optimal depth of

cutting during harvest and the effect on yield is therefore essential to sugarcane production.

Since underground buds are important in establishing ratoon crops [24], proper ratoon

management aimed at promoting underground germination is important. The activity of

underground buds was found to decrease, while the number of buds increases with soil depth

[7]. In addition, as mentioned above, the root system of sugarcane plants is largely influenced

by the depth of these underground buds [7]. Roots originating in deeper soil are stronger and

have a greater mass compared with those generated in shallower soil [25]. Cultivation practices

that promote root development in deeper soil should therefore result in a stronger root system

[22], and subsequent growth of healthy tillers with strong anchorage [8]. We therefore hypoth-

esized that deeper cutting would increase ratoon crop yield by stimulating the germination of
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buds at lower stalk positions belowground, thereby promoting root development on these

nodes, and increasing the absorption of water and nutrients from deeper rainfed soil. We

therefore varied cutting depth to examine changes to bud germination, root growth, and root

morphology, and the effects of root development on ratoon yield. The findings will help opti-

mize ratoon crop management and improve the ratoon cycle in this region.

2. Materials and methods

2.1. Site description

The field experiment was conducted in Kaiyuan City (103o15’E, 23o42’ N, 1117 m a.s.l.), Yun-

nan Province, Southwest China. No specific permissions were required because the study was

conducted on the land owned by Sugarcane Research Institute, a state-owned institution. Fur-

ther, no hazardous material was used and the study did not include and endangered or pro-

tected species. The soil is sandy loam with 50.0% sand, 34.0% silt, and 16.0% clay, and a pH of

7.5. The soil has a high organic matter content of 1.8%, with a total potassium content of

0.76%, total nitrogen content of 0.142%, and total phosphorus content of 0.12%. The content

of alkaline hydrolysis nitrogen is 78.2 mg kg-1, available phosphorus is 26.6 mg kg-1, and avail-

able potassium is 49.0 mg kg-1. Organic matter was determined using the potassium dichro-

mate method, soil nutrients were tested using flame atomic absorption spectrophotometry,

and soil mechanical composition was determined using the sedimentation method. The field

experiment was conducted under rainfed conditions, with a groundwater level of approxi-

mately 2 m below the ground surface.

The climate in this region is characterized by hot summers and mild winters, with severe

droughts in early spring. The highest precipitation and temperatures occur in June and July.

Mean annual precipitation is 983 mm, and winter and summer precipitation are 20.3 and

174.6 mm mean monthly, respectively. The mean air temperature is 20.0˚C, and the mean

winter and summer temperatures are 14.4 and 24.1˚C, respectively. These annual figures are

also of intrinsic value since they behave differently with respect to each other during the grow-

ing season from June to October (Fig 1).

2.2. Experimental design

The experiment was conducted from 2017 to 2018 using sugarcane cultivar YZ081609 [24].

Planting was carried out on 22 April 2016 at a conventional planting density of 120,000 buds

ha-1 (two-bud cane setts). The planting depth (cane sett bed to soil surface) was approximately

10 cm, with about 10–15 cm of earthing up at the late tillering stage (the early elongation

stage). Thus, at harvest, 20–25 cm of soil covered the original cane setts. NPK fertilizer (20: 12:

18) was applied during the early elongation period at a rate of 1200 kg ha -1 on 10 April 2017

and 10 April 2018. All other cultivation and crop management procedures were in line with

conventional cropping practices.

Based on the density of underground buds on the ratoon stool and the germination poten-

tial, we divided the underground buds into three types (Fig 2). Type 1: terminal buds in the

top soil. Least abundant, but fastest to germinate, with the roots distributed mainly in the

upper soil layer. Type 2: distributed at a depth of 5–10 cm, mostly active and fast to germinate,

with deeper roots than type 1. Type 3: distributed below 10 cm, mostly dormant with the poor-

est rate of germination. Accordingly, cutting treatment was carried out at the following depths:

the soil surface (0 cm, T1), and 5 (T2) and 10 cm below the surface (T3) (Fig 2). All plants were

harvested manually using a sharp hoe. In order to maintain an accurate cutting depth, one side

of the soil surrounding each stool was removed to the respective depth under each treatment

before harvest. Plant crops (2016) were harvested on 9 March 2017, cultivated to the first
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ratoon crop then re-harvested on 4 March 2018, representing the second ratoon crop. Each

plot was 30 m2, with five rows, each 6 m long. Each treatment was randomized and consisted

of 3 replications.

Fig 1. Monthly precipitation and temperatures at the experimental site (Kaiyuan City, Yunnan Province, southwest China) for

2017–2018.

https://doi.org/10.1371/journal.pone.0238085.g001

Fig 2. Schematic diagram of the experimental design.

https://doi.org/10.1371/journal.pone.0238085.g002
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2.3. Data collection

Root and shoot biomass were investigated at three stages in the first and second ratoon crops:

the early stem stage of elongation (168 days after harvest, DAH), the middle stage of elongation

(198 DAH), and the late stage of elongation (238 DAH). Three randomly selected stools from

each plot were cut at ground level then their fresh weights were measured immediately. The

shoots were then dried at 70˚C for 72 hours to measure the dry weight. The root system was

excavated using a frame (50×50 cm) to a depth of 30 cm and the roots were washed thor-

oughly. After measuring the fresh weight, the roots were analyzed for the following morpho-

logical characteristics: length, surface area, volume, tip number, fork number, crossing (of

growth in a three-dimensional space), and diameter using a root scanner (Win RHIZO 2009 b;

REGENT Instruments Inc., Quebec, Canada). After scanning analysis, the roots were dried at

70˚C for 72 hours to measure the dry weight. The length, surface area, volume and tip number

were also analyzed in terms of a range of root diameters to evaluate the impact of treatment on

fine root development. At maturity (9 March 2017, and 4 March 2018), plant height and cane

diameter were measured in 10 random selected plants in each plot then the number of millable

stalks and the overall yield were determined for each plot.

The economic benefits of each cutting depth were also calculated based on the resulting

inputs (¥): 150 Yuan ton-1 for harvest, 2,250 Yuan ha-1 for trash pulverizing, 4,800 Yuan ha-1

for fertilizer, 750 Yuan ha-1 for fertilizer application and hilling up, 900 Yuan ha-1 for pesticide

application, and 450 Yuan ton-1 for output of millable cane, in 2017 and 2018, respectively.

Costs were calculated based on the area of the plots and the cultivar used.

2.4. Statistical analyses

When the P value of the correlation between root biomass and dry weight or shoot biomass

and dry weight was greater than that of the correlation with fresh weight, the dry weight was

used for analysis. In all other cases, the fresh weight was used. Mean differences in sugarcane

yield and yield components were compared separately each year using one-way analysis of var-

iance (ANOVA) according to the Tukey method with treatment as the fixed effect and replica-

tion as the random effect. The shoot and root biomass, and root traits of each plant were

averaged for each cane cluster (amount per cluster / millable cane per cluster). Mean differ-

ences in shoot and root biomass, root volume, root surface area, root length, and root tip num-

ber were then compared separately for each year using one-way ANOVA according to the

Tukey method, with treatment as the fixed effect and replication as the random effect (SPSS

19.0 statistical software and Microsoft Office Excel). Correlation analyses were carried out

using the Bivariate Correlation Method with Pearson’s correlation coefficient (SPSS 19.0 statis-

tical software). The relationships between root traits and shoot biomass were determined

using Microsoft Office Excel 2016. We also estimated the root traits (root fresh weight, root

volume, root surface area, root length, root tip number, root fork number, root crossings) per

square meter and at a soil depth of 0.3 m according to the number of millable canes per unit

area.

3. Results

3.1. Yield and benefits

Cutting depth had a significant effect on cane yield in both the first and second ratoon crops,

with T2 (cutting at 5 cm below the surface) performing significantly better than the other two

cutting depths. Stalk diameter was also greatest under T2, while plant height decreased in both

ratoon crops with increasing cutting depth during harvest. The number of millable stalks
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increased with increasing cutting depth, with an increase from T1 to T2 in both ratoon crops,

but no significant increase from T2 to T3 (Table 1). Cutting depth also had a significant impact

on the millable cane number, stalk height and stalk diameter. Overall, stalk diameter is thought

to be the main factor affecting the difference in yield, with stalk height and the number of mill-

able canes acting as composite factors.

The net economic benefits were significantly impacted by cutting depth in both ratoon

crops, at 16,800, 27,700, and 19,600 Yuan ha-1 under T1, T2 and T3, respectively. Moreover,

T2 resulted in an increase in net benefits of 10,900 Yuan ha-1 (64.8%) and 8,000 Yuan ha-1

(40.9%) compared to T1 and T3, respectively, in both ratoon crops (Fig 3).

3.2. Relationship between root and shoot traits

3.2.1. Root fresh weight and shoot biomass under each cutting depth. Cutting depth

had a significant impact on shoot and root biomass in both ratoon crops, especially the second

(Fig 4). Shoot biomass and root fresh weights followed a consistent trend, increasing then

decreasing in both the first and second ratoon crops, and were highest under T2 at all three

Table 1. Sugarcane yield and yield components at cutting depths of 0 cm (T1), and 5 (T2) and 10 cm below the ground (T3) in the first (FR) and second ratoon crop

(SR).

Treatment Yield (Mg ha-1) Stalk diameter (cm) Stalk height (cm) Millable cane (thousand canes ha-

1)

FR SR FR SR FR SR FR SR

T1 83.07±7.22b 86.79±12.89b 2.70±0.18a 2.51±0.16b 258.33±6.30a 259.43±32.48a 56.32±3.86b 57.83±3.26b

T2 117.85±5.46a 124.50±1.35a 2.91±0.13a 2.91±0.09a 248.90±5.97a 236.70±13.49ab 71.55±5.66a 67.37±3.54ab

T3 89.68±13.54b 99.15±6.86b 2.65±0.15a 2.88±0.07a 226.14±12.98a 203.75±5.59b 71.92±7.51a 73.02±4.52a

Different letters in the same column indicate statistical significance (one-way ANOVA Tukey, P < 0.05).

https://doi.org/10.1371/journal.pone.0238085.t001

Fig 3. Mean input-output values of the two ratoon crops at each cutting depth (0 cm (T1), 5 cm below the ground

(T2), and 10 cm below ground (T3)). The net benefits of each treatment were calculated based on the following inputs

in RMB(¥): 150 Yuan ha-1 for harvesting, 2,250 Yuan ha-1 for trash pulverizing, 4,800 Yuan ha-1 for fertilizer, 750 Yuan

ha-1 for fertilizer application and hilling up, 900 Yuan ha-1 for pesticides, and 450 Yuan ton-1 for output of millable

canes. There was little change in the input price between study years. Costs were calculated according to the area size

and the sugarcane cultivar. Error bars, SD.

https://doi.org/10.1371/journal.pone.0238085.g003
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elongation stages (Fig 4A and 4B). The highest root fresh weight was also observed under T2

compared to T1 and T3, and a similar trend was observed in terms of the shoot fresh biomass

and root fresh biomass on the same DAH, especially in the second ratoon crop. Overall, there

was little difference between the changes in shoot and root biomass between the two ratoon

crops, with an increase in shoot biomass and a decrease in root biomass with increasing DAH

in the first ratoon crop.

3.3. Relationship between root morphological characteristics and shoot

biomass

Due to the similar trends in shoot and root biomass at each stage in both ratoon crops (Fig 4),

correlation analysis was carried out between shoot fresh weight and root morphology. As a

result, shoot biomass was found to be positively correlated with root biomass, root length, root

surface area, root volume, root tip number, root fork number and root crossings in both

ratoon crops (P < 0.01). Moreover, the r values of these correlations in the first and second

ratoon crops respectively were in the order of root biomass (0.86 and 0.78)> root fork number

(0.77 and 0.65)> root volume (0.67 and 0.72)> root length (0.68 and 0.72)> root crossings

(0.77 and 0.59)> root tip number (0.62 and 0.69)> root surface area (0.70 and 0.56) (S1

Table).

A linear relationship was observed between the root morphological characteristics and

shoot biological yield in both ratoon crops, and between the root fresh weight and shoot fresh

biomass, the root volume and shoot fresh biomass, and the root fork number and shoot fresh

Fig 4. Shoot and root fresh weight under each cutting depth in the first (FR) and second ratoon crops (SR). Days

after harvest (DAH) of 168 to 238 represent three months of elongation, while 238 DAH represent the end of the

elongation stage, approaching maturity stage, with a slow increase in yield. g plant-1: the amount per each millable cane

in a cluster. Different lower-case letters indicate significant differences within treatments at a significance level of

P< 0.05 level in each year. Error bars, SD.

https://doi.org/10.1371/journal.pone.0238085.g004
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biomass (Fig 5). R2 values were much lower in the first ratoon crop than the second crop, and

the scatterplots of the first crop were much more concentrated than in the second crop, but

the correlation coefficient (r) was extremely significant (P<0.01) as shown in S1 Table. More-

over, the root tip number and fresh shoot biomass, the root length and fresh shoot biomass,

and the root surface area and fresh shoot biomass all showed the same patterns (S1 Fig). This

was not because the fresh weight of the first year’s shoots was poorly correlated with the root

parameters; on the contrary, the correlations were extremely significant in the first ratoon, but

because the distribution of the shoot fresh weight was more concentrated with the root param-

eters compared with the second ratoon crop. This may be attributed to the cumulative effect of

the stalk cutting position from the first ratoon crop to the second, and also the difference in

rainfall in June and July between the two seasons.

3.4. Root characteristics under each cutting depth according to root

diameter

The results showed that the greatest root volume and root surface area were observed in roots

with a diameter of 1.5–2.0 and 1.0–1.5 mm, respectively. Moreover, values were greater under

T2 than T1 and T3. The greatest root length and root tip number were observed in roots with

a diameter of 0–0.5 mm, with root length decreasing much slower than the root tip number as

the root diameter increased. Root volume and root surface area were therefore considered a

similar morphological index, since values reached a maximum at a middle root diameter of

1.0–2.0 mm. Meanwhile, root length and root tip number reached a maximum in roots with

the finest diameter (Figs 6 and 7).

The average root diameter was similar under all three cutting depths, at 0.87, 0.89 and 0.90

mm under T1, T2 and T3, respectively. Each root trait showed differences among treatments

within different root diameter ranges, although there were only slight differences among treat-

ments in roots with a diameter of 0–3.5 mm (Table 2). That is, the treatments did not change

the percentage of each part of root in each plant. In terms of root volume, 25.9%, 29.4%, and

15.6% of roots had a diameter of 1.0–1.5, 1.5–2.0 and 2.0–2.5 mm, respectively. The root sur-

face area of roots with a diameter of 0.5–1.0, 1.0–1.5 and 1.5–2.0 mm was 23.7, 27.1 and 22.3%,

respectively. Similarly, the root tip number in roots with a diameter of 0–0.5 mm was 90.2%,

while the root length was 40.9%. The quantity of each trait in a given root diameter was there-

fore influenced by cutting depth and growing year, although the overall quantitative ratio dif-

fered slightly among treatments.

Fig 5. Relationships between shoot biomass and root fresh weight, root fork number, and root volume in the first

(FR) and second ratoon crop (SR). Plant-1: the amount per each cluster / millable canes in the cluster.

https://doi.org/10.1371/journal.pone.0238085.g005
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We also estimated the root traits per square meter and a 0.3 m soil depth. Accordingly, the

root fresh weight ranged from 167–287 g m-2, root volume from 79–164 m3 m-2, root surface

area from 3628–7329 cm2 m-2, root length from 13,430–26,349 cm m-2, root tip number from

36,538–68,473 m-2, root forks number from 114,364–215,035 m-2, and root crossings from

Fig 6. Effect of cutting depth on root volume and root surface area according to root diameter (D) in the first

(FR) and second ratoon crop (SR). Root volume was highest in roots with a diameter of 1.5–2.0 mm in both FR and

SR, while the root surface area was highest at a diameter of 1.0–1.5 mm plant-1: the amount in each cluster/ millable

canes in the cluster. � P< 0.05, �� P< 0.01. Error bars, SD.

https://doi.org/10.1371/journal.pone.0238085.g006

Fig 7. Effect of cutting depth on root length and root tip numbers. At the diameter of 0~0.5mm, the root length and

root tips number of each plant reached the highest, in both FR and SR. /plant: the amount of each cluster/ millable

canes of the cluster. � P< 0.05. �� P< 0.01. Error bars, SD.

https://doi.org/10.1371/journal.pone.0238085.g007
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9,059–16,704 m-2. The amount of root forks was highest, followed by the number of root tips,

possibly because of the specific morphology of the root tip, the diameter of which decreases in

a fitted ellipse [26]. Some root tips will also have been destroyed or damaged during harvest.

3.5. Root morphological traits are affected most by cutting depth

3.5.1. Effect of cutting depth on root volume and root surface area according to root diam-

eter. The analysis of root morphology revealed that root volume was highest in roots with a

diameter of 1.5–2.0 mm in both ratoon crops, with significantly higher values under T2 (Fig

6A and 6B). Root volume under T2 reached 6.98 and 11.85 cm3 in the first and second ratoon

crop, respectively, in roots of 1.5–2.0 mm, 2.17 and 3.06 cm3 higher than under T1 and T3,

respectively (P < 0.01). A significantly higher root volume was also observed under T2 in

roots with a diameter of 0–2.5 mm. However, in the first ratoon crop, no significant differences

were observed among treatments in roots with a diameter> 2.5 mm, and at a diameter

of> 3.0 mm in the second ratoon crop.

The root surface area was highest in roots with a diameter of 1.0–1.5 mm in both ratoon

crops, with significantly higher values under T2 (P < 0.01). Moreover, a significantly higher

root surface area was also observed under T2 in roots with a diameter of 0–2.5 mm. Mean-

while, no significant differences were observed between treatments in roots> 2.5 mm in the

first ratoon crop and> 3.0 mm in the second ratoon crop (Fig 6C and 6D). Under T2, the root

surface area reached 200.8 and 341.75 cm2 plant-1 in roots with a diameter of 1.0–1.5 mm in

the first and second ratoon crops, respectively, 63.6 and 119.42 cm2 plant-1 higher than under

T1 and T3, respectively.

A higher root volume and root surface area were therefore observed under T2 compared to

T1 and T3 in roots of different diameters, especially in the second ratoon crop, with an

increase in the maximum value as well as the total amount. A significant change was also

observed at a root diameter of 2.0–2.5 and 2.5–3.0 mm. Overall, between the first and second

crops, only slight increase was observed in T1 compared to T1 and T3 in terms of both root

volume and root surface area.

Table 2. Root volume (RV), root surface area (RSA), root length (RL) and root tip number (RTN) according to root diameter (RD).

Root trait ratio (%) Treatment Root diameter (mm)

0–0.5 0.5–1.0 1.0–1.5 1.5–2.0 2.0–2.5 2.5–3.0 3.0–3.5 RD>3.5

RV (cm 3 Plant-1) % T1 3.21±0.69a 14.29±2.59a 26.26±5.47a 27.87±2.67B 14.97±2.75a 6.25±2.92a 2.72±1.39a 4.43±2.96a

T2 2.92±0.52a 14.25±2.25a 26.75±3.02a 30.05±1.62A 15.20±1.67a 5.83±1.79a 2.26±0.79a 2.75±1.15b

T3 2.90±0.57a 13.03±1.28a 24.79±2.81a 29.97±1.76A 16.23±2.12a 6.46±1.49a 2.82±0.87a 3.80±1.48b

RSA (cm 2 Plant-1) % T1 13.46±2.12a 24.29±2.63a 26.99±3.97a 21.03±2.49Bc 8.84±2.19a 3.08±1.70a 1.14±0.69a 1.17±0.73a

T2 12.26±1.84a 24.13±2.66a 27.63±2.59a 22.61±1.98ABb 8.88±1.33a 2.80±0.98a 0.92±0.36a 0.77±0.30b

T3 12.46±2.09a 22.90±1.62a 26.33±2.46a 23.12±1.49Aa 9.76±1.58a 3.19±1.58a 1.18±0.40a 1.06±0.32a

RL (cm Plant-1) % T1 42.32±3.68a 26.22±1.77a 17.18±2.62a 9.71±1.64b 3.17±0.94a 0.19±0.56a 0.29±0.19a 0.20±0.12a

T2 39.88±3.89a 26.72±2.19a 18.17±2.32a 10.75±1.54a 3.26±0.64a 0.84±0.33a 0.24±0.10a 0.14±0.05b

T3 40.47±4.23a 25.86±1.82a 17.48±2.07a 11.08±1.22a 3.64±0.74a 0.97±0.30a 0.31±0.12a 0.19±0.05a

RTN (Plant-1) % T1 90.35±1.60a 7.04±1.16a 1.47±0.32a 0.76±0.20a 0.27±0.07b 0.08±0.03a 0.03±0.02a 0.01±0.02a

T2 90.15±1.48a 7.26±0.81a 1.45±0.26a 0.75±0.15a 0.29±0.05b 0.08±0.03a 0.02±0.01a 0.01±0.01a

T3 90.20±1.65a 7.15±1.18a 1.42±0.31a 0.78±0.19a 0.33±0.10a 0.09±0.04a 0.03±0.01a 0.01±0.01a

± represents the standard deviation. Different lowercase letters in the same column under each cutting depth denote a significant difference at P < 0.05, while different

uppercase letters denote a significant difference at P < 0.01.

� T1: a cutting depth of 0 cm; T2: a cutting depth of 5 cm below the ground; T3: a cutting depth of 10 cm below the ground.

https://doi.org/10.1371/journal.pone.0238085.t002
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3.5.2. Effect of cutting depth on root length and root tip number according to root

diameter. Cutting depth also affected the root length and root tip number in both ratoon

crops. A significant increase in both parameters was observed under T2 in roots with a

diameter< 2.5 mm, while no differences were observed at a diameter of 3.0–4.5 mm. Values

were highest in roots with a diameter of 0–0.5 mm (Fig 7) and were significantly higher under

T2 than the other treatments in both ratoon crops (P< 0.01). Overall, both the root length

and root tip number were greater in T2 than T1 and T3 at different root diameters, especially

in the second ratoon crop, with increase in the maximum value as well as the total amount.

Moreover, a significant change was also observed at a diameter of 2.0–2.5 mm and 2.5–3.0

mm. Between the first and second crop, only a slight increase was observed in T1 compared to

T3 in terms of both root length and root tip number.

The longest root length and maximum number of root tips was also determined in roots

with a diameter of 0–0. 5 mm (Fig 7), with a clear decrease in root tip number compared to

root length at diameters > 0.5 mm. Under T2, the root length was 1218 and 1790 cm plant-1 in

roots with a diameter of 0–0.5 mm in the first and second ratoon crop, 283 and 389 cm plant-1

greater than under T1 and T3, respectively. Moreover, the root tip number was 7184 and

10,608 plant-1 at a diameter of 0–0.5 mm in the first and second crops, 1768 and 2315 plant-1

more than under T1 and T3, respectively.

3.5.3. Relationship between fine root characteristics and shoot biomass. The above

results show that cutting depth affected the root biomass, and the values of four root compo-

nents (root volume, root surface area, root length and root tip number) in roots within a diam-

eter range of 0–2.5 mm. However, there was little effect on any of the four root components in

roots with a diameter > 2.5. We therefore analyzed the relationship between shoot biomass

and the above root components.

The results showed better linear relationships than under the total range of root diameters

between the root morphological characteristics and shoot biomass in both ratoon crops. Clear

linear relationships were observed between the root volume and shoot fresh biomass, root sur-

face area and shoot fresh biomass, root length and shoot fresh biomass, and root tip number

and shoot fresh biomass in roots with a diameter of 0–2.5 mm (Fig 8). The R2 values were

much lower in the first ratoon crop compared to the second, and the scatterplots were more

concentrated. Although the above relationships all showed a similar pattern, the R2 values

were greater between the fine root volume and root surface area plus the shoot fresh weight.

This may be attributed to the cumulative effect of stalk cutting position from the first ratoon

crop season to the second.

Fig 8. Relationships between shoot biomass and fine root characteristics in the first (FR) and second ratoon crop (SR). Plant-1: the

amount per each cluster / millable canes in the cluster.

https://doi.org/10.1371/journal.pone.0238085.g008
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4. Discussion

Plant roots are strongly linked with morphological, physiological and biochemical functions

[27]. Sugarcane roots perform a vital role in regulating both shoot development and responses

to the environment [28]. Root morphology determines the ability of crop plants to explore the

rhizosphere and efficiently absorb water and nutrients from the soil [29, 30]. Root length, root

surface area, and root volume are therefore commonly used to evaluate the performance of a

root system [31, 32]. In this study, root development was significantly impacted by cutting

depth. Cutting to depth of 5 cm below the surface (T2) increased activity of buds and deeper

roots, enhancing the ability to absorb nutrients and water from the soil, and thereby increasing

germination and root development. In contrast, cutting at a depth of 0 cm (T1) resulted in

shallow root development and a poor ability to absorb nutrients and moisture, while cutting to

10 cm below the surface (T3) resulted in mostly dormant buds, whose poor activity resulted in

relatively poor root development.

Morphological attributes of the fine roots affect nutrient and water uptake as well as bio-

mass accumulation [33], and the length and diameter of fine roots play a pivotal role in nutri-

ent and water acquisition [34–36]. In this study, roots with a diameter of 0–2 mm comprised

about 54% of the total root length, about 69% of the root volume, and 73% of the root surface

area. Meanwhile, roots with a diameter of 0–0.5 mm represented about 90% of the root tip

number, while those with a diameter > 2mm contributed to only a small proportion. The pro-

portion of fine roots in sugarcane differs from that in wheat and pulse crops. For example, in

pulse crops, roots with a diameter of 0–0.2mm comprise about 60% of the total root length

[37]. The classification of fine roots also differs between crops and, in general is characterized

by roots with a diameter of 0–0.2 mm in rice [38, 39], wheat, and pulse crops [37]. However, in

some species, such as poplar, switch grass, cool-season pasture grasses, corn, soybean [40], cot-

ton, maize and sorghum [41], the difference between fine and thick or coarse roots is classified

by a diameter of 2 mm. In terms of the proportion of roots (Table 2) and amount of roots (Figs

6 and 7), the root volume, root surface area and root length of roots with a diameter of

0–2.5mm played an important role in this study, while root tip number was important in roots

with a diameter of 0–0.5 mm.

Positive correlations were also observed among root traits and shoot biomass, with traits in

roots with a diameter of 0–2.5 mm having the greatest impact on shoot biomass. We therefore

removed the data of root traits in roots with a diameter> 2.5 mm, and reanalyzed the linear

relationships between shoot biomass and root volume, root surface area, root length, and root

tip number in those with a diameter of 0–2.5 mm. As a result, we found that R2 values were

highest at a diameter of 1.5–2.0 mm in both ratoon crops. Moreover, there were significant dif-

ferences in root traits at a diameter < 2.5 mm, and the number of root tips was significantly dif-

ferent at a root diameter< 0.5 mm. As the root diameter increased, the differences among

cutting depths rapidly declined, suggesting that the fine roots are essential for growth and devel-

opment of the underground root system in perennial sugarcane. That is, the more the number

of fine roots, the greater the absorption of water and nutrients, and the higher the yield.

Studies suggest that sugarcane stools contain about 10–19 underground buds, and together

with the roots, these underground buds and stalks combine to form the ratoon stool or crown

[42–46], distributed about 15 cm below the soil surface. The upper section of the sugarcane

stubble is mainly composed of surface buds, with about 2–3 living buds. After germination,

the roots remain in shallow soil, and nutrient and water absorption is poor. The mid-section is

the active bud section, with about 4–5 active buds. After germination, the roots extend deep

into the soil, improving nutrient and water absorption, and promoting survival under drought

conditions. The lower buds are mainly dormant, and tend to remain so. Relatively deep cutting
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is therefore thought to eliminate apical dominance of the upper buds and promote the germi-

nation of dormant buds on lower underground stalks.

In this study, the position of the terminal buds decreased with increasing cutting depth

from 0 to 10 cm. As a result, germination of these lower buds resulted in more nodes for root

development, which, in turn, increased opportunities for water and nutrient absorption com-

pared to germination of the upper buds. Thus, the shoot and root biomass were greater under

T2 than T1. Theoretically, the shoot and root biomass should also have been greater under T3

compared to T2; however, the opposite was observed. One reason for this is thought to be the

time required to come out of dormancy and for development of active buds, with the majority

of buds at this depth remaining dormant as in Betula pendula [47]. This is supported by a pre-

vious study by Harrell et al. [17] in ratoon rice, whereby a decrease in stubble height from 40

to 20 cm affected growth of the ratoon crop by shifting the panicle point of origin during early

growth and delaying maturity. In our study, plant height was lowest under T3 (Table 1); how-

ever, the amount of millable cane was highest, and the diameter was greater than under T1.

This also suggests that lower terminal buds benefit from a better growth environment after

germination, although the drawback is delayed growth of aboveground shoots. It was previ-

ously reported that sugarcane stems originating from deeper soil produce a stronger root sys-

tem [25], which is the basis of a good crop stand. In this study, T2 resulted in the highest root

biomass, which in turn, allowed sufficient uptake of nutrients and water, increasing the shoot

biomass compared with other treatments.

Overall, the findings of this study suggest that a cutting depth of 5 cm below the soil surface

promotes growth the root system, especially in terms of the root volume, root surface area and

root length of roots with a diameter of 0–2.5mm, thereby significantly improving the shoot bio-

mass and cane yield. This cultivation practice is a simple addition to ratoon cutting manage-

ment, increasing overall production of ratoon cane. This could therefore be applied successfully

to rain fed slopes in China and other Southeast Asian countries in line with manual harvesting

techniques. Meanwhile, in terms of mechanical harvesting, improvements could also be made

to the cutting machines, such as installing a shallow plow tooth before the disc blade to allow

removal soil beside the cane stalk and lowering of the disc blade to reduce abrasion. In line with

this, technology of lower cutting has already been extended to a production area of 25,000 hect-

ares in the sugarcane district of Dehong State, Yunnan Province, China, in 2018.

5. Conclusions

Deep cutting at depths of 5 and 10 cm below the soil surface (T2 and T3) considerably increased

yield compared to traditional cutting at the soil surface (0 cm, T1). The highest yield increase was

observed under T2, with an increase in production of 36.2 (42.7%) and 26.8 ton ha-1 (28.3%)

compared to T1 and T3, respectively. These results suggest that the improvements in all root

traits across all root diameters supported a greater increase in shoot biomass and yield. This was

especially true in terms of root volume and root surface area in roots with a diameter of 0–2.5

mm, and root length and root tip number in those with a diameter of 0–0.5 mm, both of which

also showed a good linear relationship. Moreover, since buds at the soil surface and dormant

buds remained under T1 and T3, this may have led to a shallower stool and delayed vegetative

growth of the shoot, respectively. Cutting at a depth of 5 cm below the soil surface is therefore

recommended in terms of root biomass, subsequent shoot biomass, and overall sugarcane yield.

Supporting information

S1 Fig. Relationships between shoot biomass and root length, root tip number, and root

surface area in the first (FR) and second ratoon crop (SR). Plant-1: the amount per each
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cluster / millable canes in the cluster.

(TIF)

S1 Table. Correlation between root morphology and shoots biomass. RFW: root fresh

weight; RDW: root dry weight; SFW: Shoot fresh weight; SDW: Shoot dry weight; RL: root

length; RSA: root surface area; RAD: root average diameter; RLPV: root length per volume;

RV: root volume. First ratoon crop (FR) n = 53, second ratoon crop (SR) n = 43. �� P<0.01, �

P<0.05 (2-tailed).
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