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Gliomas are primary brain tumors that originate from glial cells. Classification and grading
of these tumors is critical to prognosis and treatment planning. The current criteria for
glioma classification in central nervous system (CNS) was introduced by World Health
Organization (WHO) in 2016. This criteria for glioma classification requires the integration
of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-
to-date recommendations for CNS tumor classification, which in turn the WHO is
expected to adopt in its upcoming edition. In this work, we propose a novel glioma
analytical method that, for the first time in the literature, integrates a cellularity feature
derived from the digital analysis of brain histopathology images integrated with molecular
features following the latest WHO criteria. We first propose a novel over-segmentation
strategy for region-of-interest (ROI) selection in large histopathology whole slide images
(WSIs). A Deep Neural Network (DNN)-based classification method then fuses molecular
features with cellularity features to improve tumor classification performance. We evaluate
the proposed method with 549 patient cases from The Cancer Genome Atlas (TCGA)
dataset for evaluation. The cross validated classification accuracies are 93.81% for lower-
grade glioma (LGG) and high-grade glioma (HGG) using a regular DNN, and 73.95% for
LGG II and LGG III using a residual neural network (ResNet) DNN, respectively. Our
experiments suggest that the type of deep learning has a significant impact on tumor
subtype discrimination between LGG II vs. LGG III. These results outperform state-of-the-
art methods in classifying LGG II vs. LGG III and offer competitive performance in
distinguishing LGG vs. HGG in the literature. In addition, we also investigate molecular
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subtype classification using pathology images and cellularity information. Finally, for the
first time in literature this work shows promise for cellularity quantification to predict brain
tumor grading for LGGs with IDH mutations.
Keywords: brain tumor classification and grading, glioma, central nervous system tumor, radiomics, molecular,
deep neural network, cellularity, IDH mutation
INTRODUCTION

Gliomas are primary brain tumors that originate from glial cells.
Survival in patients with gliomas is dependent on the tumor type
and grade. According to a recent report, five-year survival is 94.1%
for pilocytic astrocytoma [lower-grade glioma (LGG) grade I] yet
it is only 5.6% for glioblastoma [high-grade glioma (HGG) grade
IV] (1). Overall, 94.1% of patients with pilocytic astrocytoma,
57.6% of patients with anaplastic oligodendroglioma (LGG grade
III), and 30% of patients with anaplastic astrocytoma (LGG grade
III) survived five years after diagnosis (1). Therefore, accurate
tumor classification and grading is required for proper treatment
planning and assessing overall prognosis in clinical practice. The
classification and grading of gliomas has evolved over time, and
modern classification of gliomas was first published by the World
Health Organization (WHO) in 1979 (2).

Prior to 2016, the WHO standard for tumor classification and
grading of central nervous system (CNS) tumors was entirely
based on histologic appearance. CNS tumors are classified
according to the microscopic similarities with different putative
cells of origin and differentiation levels (3). For grading of diffuse
gliomas, the histological features of mitotic activity,
microvascular proliferation and necrosis are used. There are
many studies in the literature for tumor grading using
histopathology images (4–6). With the publication of the
updated CNS WHO in 2016, it was determined that
histopathology for tumor classification and grading was no
longer accurate in isolation (3). Therefore, molecular data
combined with histology has become the new standard for
CNS tumor classification (7–10). With regards to diffuse
gliomas, isocitrate dehydrogenase (IDH) mutations have been
identified as a major criterion (7).

Recently, due to the rapid progress in molecular insights into
CNS tumors, the Consortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) has
been established to provide practical recommendations for CNS
tumor classification (11). The cIMPACT-NOW has been
updating the current WHO criteria to precisely determine
tumor type and subtype using both histology and genetic
information (12–14).

To accurately classify glioma grade following the current
WHO CNS tumor classification criteria, both histology and
genetic information are required. In addition, advancement in
deep neural networks (DNN) has enabled rapid progress in
many fields (5, 15–17). DNN analysis is capable of
automatically learning features from raw data and thus
alleviates the need for a handcrafted feature. Convolutional
neural network (CNN) is a typical DNN with a convolutional
2

layer. Both CNN and DNN structures have been extensively used
in the integration of pathology images and molecular
information. The accurate glioma classification and grading
may provide personalized treatment for patients with
brain tumor.

This work proposes a joint analysis of histopathology with
integrated molecular data using DNN for brain tumor type and
grading following the 2016 WHO criteria. The work utilizes
digital pathology images and four key molecular features (IDH1/
2, 1p/19q, ATRX, and MGMT) to obtain improved tumor
classification and stratification accuracy. In addition, a specific
shape-based measure for abnormal cell nuclei known as
cellularity (18) is investigated for its efficacy in tumor
classification. Cellularity is used to indicate the probability of
cancerous cells from the whole slide images (WSI). Specifically,
our work discovers the potential role of cellularity in tumor
histopathology image and IDH1/2 mutation status for grading
stratification within lower grade (grade II and III) gliomas.

The remaining sections are organized as follows: Section III
introduces the proposed method, including image pre-
processing and convolutional neural networks. Section IV
describes the data materials. Section V discusses the
experiment. Conclusions are in Section V.
BACKGROUND AND RELATED WORK

CNS tumor classification and grading has been an intense
research area. Based on the different types of patient data, the
latest research on tumor classification and grading is generally
categorized in three groups: digital pathology-based, structural
MRI-based, and proteomics/genomics-based. The following
subsections briefly review tumor classification using
histopathology, MRI and proteomics data.

Digital Pathology-Based Method
The histologic appearance of tumors has been the primary source
for glioma classification and grading prior to the most recent
WHO based on features such as nuclear atypia, mitotic activity,
microvascular proliferation and necrosis. As of the recently
updated WHO glioma classification criteria, pathology is
still one of the sources for CNS glioma classification with
integration of genetic data. There is a new trend towards using
digital pathology images, particularly whole-slide imaging, to
assist with classification separate from classic microscopic
examination. Nuclei and tissue segmentation on haematoxylin
& eosin (H&E) stained pathology digital images is a common
method for this analysis. Kong et al. proposed a computer-aided
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classification method for grading of neuroblastic differentiation
on whole-slide imaging (WSI) histology images (19). By using a
method called sequential floating forward selection (SFFS), the
authors first segment nuclei, extract hand-crafted features, apply
feature selection method and finally use k-nearest neighbor
for classification. Barker et al. proposed an automated brain
tumor type classification in whole-slide digital pathology images
using local representative tiles (6). In another work, nuclei
segmentation is obtained by using hysteresis thresholding
and watershedding, feature selection, and an Elastic Net
Classification for brain tumor grading. In (5), Mousavi et al.
proposed automated brain tumor grade discrimination based on
spatial domain analysis. The authors developed a method for cell
segmentation and a customized operation of spatial and
morphological filters to identify microvascular proliferation,
then applied a hierarchical decision for LGG and HGG
classification. Reza et al. proposed a computational cell nuclei
morphologic feature analysis technique to characterize gliomas
in digital pathology images (20). Wang et al. used a support
vector machine (SVM) network for glioma grading in digital
pathology images. Yonekura et al. proposed an improved disease
stage classification with a convolutional neural network for
glioma histopathology images (21). They obtain classification
accuracy of 87.15% for differentiating LGG and HGG. Ertosun
et al. proposed a glioma grading method using convolutional
neural networks (CNN) (16) and mitosis analysis for glioma
classification. In (22), the authors proposed morphologic
features, including mitosis and apoptosis, to improve glioma
classification using a CNN. Even though histopathology-based
tumor grade classification has been the standard of care, there
can be high intra- or inter-observer variability (4, 23). Because of
this variability in tumor grade classification using only tumor
morphology, the updated WHO integrated genetic information
to better classify gliomas and help guide clinical decision-making
for treatment planning and management of tumor patients (7,
10, 24, 25).

Structural MRI-Based Method
Standard clinical practice of biopsy or resection and then
pathologic assessment for brain tumor classification is invasive
and, therefore, non-invasive structural MRI may be an
alternative source for glioma type and subtype classification
(26). There are many works using MRIs for glioma
classification in the literature. One of disadvantages of
these conventional imaging methods is the need to extract
hand-crafted features before further analysis. To overcome the
issue, deep learning-based methods are proposed for glioma
grading on MRI images. Sajjad et al. proposed a brain tumor
classification using deep CNN with extensive data augmentation
(27). Ye et al. propose a glioma grading based on 3D multimodal
CNN and privileged learning (28). Deepak utilized a deep CNN
features via transfer learning for brain tumor classification (29).
The current WHO criteria for glioma grading requires both
genomics and phenomics information. Only MRI-based glioma
grading may be a complementary approach and may not be
suitable for clinical use (30–33).
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Molecular-Based Method
Molecular studies of brain tumors have been critical to
understanding the genetic underpinnings of neoplasms. For
infiltrating gliomas, molecular classification more reliably
reflects underlying tumor biology than traditional morphology
(34). Molecular underpinnings of primary CNS tumors have
changed the process of tumor diagnosis and classification (34).
IDH1 or IDH2mutations have been shown to be present in about
80% of grade II and grade III LGG and previously designated
“secondary glioblastomas” (HGG) (35). Patients with IDH-
mutated gliomas have significantly longer survival than for
those with IDH wild-type tumors (9). Molecular alterations,
such as IDH 1/2 mutations, ATRX mutations, 1p/19q
codeletion, TERT promoter mutations, and MGMT promoter
methylation have also been highly studied for glioma molecular
classification and prognostication (36).

Following the relationship between IDH mutation status and
glioma classification, Chang et al. utilized a residual
convolutional neural network to determine IDH status in low-
and high-grade glioma from MR imaging (37). By analyzing
Japanese glioma patients with IDH mutations, Mukasa et al.
found that IDH mutations with intact chromosomes 1p/19q is
useful when assessing prognosis of LGG grade III patients (38).
This finding was further confirmed by analysis of The Cancer
Genome Atlas Research Network (39). 1p/19q co-deletion is a
biomarker of oligodendrogliomas and predicts better survival for
both grade II and grade III oligodendrogliomas (40). The
presence of 1p/19q co-deletion has a role as an important
positive prognostic biomarker of disease. In addition, in
infiltrating astrocytic neoplasms, a strong association has been
found between IDH canonical mutations and alpha thalassemia/
mental retardation syndrome X-linked (ATRX) gene mutations,
whereas 1p/19q codeletion and ATRX mutations barely exist
simultaneously (41). In combination with IDHmutations, ATRX
mutation status is one of the critical defining markers used for
molecular classification of gliomas. Among infiltrating grade II
and grade III astrocytomas, 75% show ATRX gene mutations
(42). Leeper et al. proposed an improved molecular classification
method using 1p/19q codeletion, IDH mutations, and ATRX
mutations for grade II diffuse gliomas (43). Promoter
meythlation of the O6-methylguanine-DNA methyltransferase
(MGMT) and IDH1/IDH2 has a particularly high prevalence in
LGG (44), and methylation of theMGMT promoter is predictive
for treatment response in glioblastoma patients (45). In
Reference (25) the authors study glioma groups based on 1p/
19q status and IDH and telomerase reverse transcriptase (TERT)
promoter mutations in tumors. They found that molecular
groups are interdependently associated with overall survival
among LGG grade II and grade III patients, but not among
patients with glioblastoma.

Even though these works achieve good performance on
glioma classification, there are still drawbacks. According to
the WHO, using only histologic examination may not be
adequate for robust low-grade glioma (LGG) classification, in
particular when deciding between an astrocytoma and
oligodendroglioma in which there can be a lot of overlap (3).
July 2021 | Volume 11 | Article 668694
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Conventional MRI can be used as an alternative source, but it is
not the standard source for glioma grading and not always 100%
accurate. Therefore, we propose enhanced tumor classification
using deep convolutional neural network (DNN) analysis
following the 2016 WHO guidelines integrating phenotypic
and genotypic information. In addition, we also experiment
with the efficacy of a morphologic cellularity feature to
augment glioma type and subtype grade classification.
METHOD

In the section, we discuss the proposed method using DNN for
glioma type and subtype grading. The subsections include
region-of-interest (ROI) extraction, image pre-processing for
color normalization and cellularity computation.

ROI Selection
Considering the massive size of a whole slide image (WSI), which
may be larger than 1 GB, extraction of ROI is desired. In the
literature, splitting of the WSI into tiles and then using one or
more tile(s) as the ROI has been reported (6, 16, 46). However,
we argue that the tiles may not be representative.

To effectively select ROIs from a WSI, we propose a new
strategy that utilizes an over-segmentation technique. Instead of
splitting WSI into tiles, we apply an over-segmentation
technique to select the ROI as shown in Supplementary
Figure 1. We obtain thumbnail images of the WSI, then
perform over-segmentation (47) on the thumbnailed image to
produce many super-pixels based on the tissue similarity.
Subsequently, we sort the super-pixels according to the mean
intensity and select top candidate super-pixels with low mean
intensity at 10-percentile of all super-pixels, which reflects cell
proliferation and cellular density. Using centroid as the center of
the selected super-pixel, we compute the relative location in the
WSI. Finally, we crop the image with desired size as the final
object from the WSI using the relative location.

An appropriate example of selecting ROI from WSI using
over-segmentation is shown in Supplementary Figure 2A. Note
that using a simple pen-marker on WSI may result in a wrong
ROI selection as shown in Supplementary Figure 2B. Hence,
human intervention may be needed for cases such as shown in
this example.

Color Normalization of WSI
In pathology, tissue sample images are stained with a
combination of hematoxylin and eosin (H&E). Hematoxylin
binds to nuclei with a bluish-purple color, and eosin stains
acidophilic proteins with a red-pink color. The stained tissue
can be digitally imaged and are easy to share and analyze with
computer algorithms (48). Color normalization can help both
pathologists and software in comparing different tissue samples
by standardizing the image appearance. In this work, we utilize a
structure-preserving color normalization and sparse stain
separation proposed in (49) to normalize H&E stained tissue
images. A given RGB image is converted to an optical density (X)
Frontiers in Oncology | www.frontiersin.org 4
based on Beer-Lambert law, then the stain separation is
decomposed by non-negative constraints on the stain density
(L) and color appearance matrix (W), which yields,

min
W,L

1
2

X −WLk k2F+lor
j=1 L(j, : )k k1, (1)

where j is the stain index. Then, the stain separation of source
(Xs) and target Xt images are factorized into color appearance
and stain density maps (WsLs and WtLt). To preserve structure
color normalization, we normalize the color appearance of a
source image s to of a target image t. Finally, the color normalized
image of the target image is computed as:

Lnorms j, :ð Þ = Ls j, :ð Þ
LRMs j, :ð Þ L

RM
t j, :ð Þ,  j = 1,⋯, r, (2)

Xnorm
s = WtL

norm
s , (3)

where LRMi = RM(Li) ∈ Rr�1,   i ∈ s, t and RM computes the
pseudo maximum of each row vector at 99%. The registered
normalized source image is represented by:

Inorms = I0exp −Xnorm
sð Þ,   (4)

where I0 is the illuminating light intensity on the sample (49).
Supplementary Figure 3 shows three examples of color

normalization for different types of H&E tiles. Supplementary
Figure 3A shows LGG grade II oligodendroglioma with mutant
IDH, wild-type (WT) ATRX, 1p/19q codeletion and methylated
MGMT. Supplementary Figure 3B is LGG grade III astrocytoma
with mutant IDH , mutant ATRX, intact 1p/19q, and
unmethylated MGMT. Finally, Supplementary Figure 3C
shows HGG glioblastoma with WT IDH, WT ATRX, intact 1p/
19q, and unmethylated MGMT.

Cellularity Computation in WSI
Assessment of cellularity is an important component of tumor
burden assessment. Cellularity is usually estimated by
pathologists in clinical practice and has been used in breast
cancer analysis (18, 50). The cellularity of a given image is
computed as the ratio of the area of a cancerous cell over the
whole image area. To identify the cancerous cell in computer-
aided methods, nuclei segmentation is desired. There are many
works on nuclei segmentation, including conventional machine
learning-based and advanced deep learning-based methods (19,
51, 52). In general, LGG grade II is defined to have a lower
cellularity value while HGG has a higher value of cellularity. In
some work, cellularity is suggested to be calculated as the ratio of
dilated cancerous cell over the whole image area. Both Akbar,
and Peikari et al. applied image dilation, and then computed the
cellularity (18, 53). In our work, we investigate efficacy of
cellularity in brain tumor WSI with different image dilation
size for glioma grading.

Proposed Tumor Grading Method
We use a cascaded convolutional neural network (11) as the
underlying model for tumor grading. A multi-class (LGG grade
July 2021 | Volume 11 | Article 668694
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II, LGG grade III, and HGG grade IV) classification problem is
posed as a stepwise binary classification problem. In the first step,
we discriminate HGG and LGG using regular DNN. For LGG,
we further apply a residual neural network [ResNet (54)] to
distinguish between LGG II and III. The proposed pipeline is
shown in Supplementary Figure 4. Note as our proposed
method utilizes both digital pathology images and molecular
information, the resulting pipeline uses two types of DNNs.
Finally, cellularity information is shown to improve tumor type
and subtype grading performance for the first time in literature.

Accurate classification of LGG grade II from LGG grade III is
more challenging as the two tumor types can have a very similar
histopathologic appearance. The DNN model used for LGG
grade II/III is similar to that of LGG/HGG; however, the
network contains more layers which may capture a subtle
difference between two similar tumor grades. The network
used here with more layers is ResNet at the second step. The
detailed structure of these DNNs is listed in Supplementary
Table 1.
DATASET

We use 549 whole slide images (WSIs) with molecular
information for key alterations (IDH, ATRX, 1p/19q, and
MGMT promoter) from The Cancer Genome Atlas (TCGA)
dataset in the Genomic Data commons (GDC). The 549 WSIs
contain 201 LGG grade II, 229 LGG grade III and 119 HGG
grade IV, respectively. We select the top super-pixel as the final
ROI of size 1000 × 1000 from WSI following the ROI selection
strategy introduced in Methods section. Therefore, we have an
overall 549 ROIs for the study. For nuclei segmentation, we
utilize UNet architecture (55). The training H&E staining data is
obtained from Multi-Organ nuclei segmentation challenge
(MoNuSeg), which contains 30 images and around 22000
nuclear boundary annotations for several organ tissues (56).
We take one image from the MoNuSeg as a reference, then
apply color normalization to the 549 ROI images, so that all
objects have a similar color appearance that preserves original
structure. The ground truths of the experimental data in this
work are obtained from consensus expert ground truths in
TCGA. All diagnoses and molecular information are derived
directly from the TCGA data set. Diagnoses were made from the
contributing institutions and molecular data were obtained using
a combination of whole exome sequencing, DNA copy-number
analysis, mRNA sequencing, and DNA methylation profiling. A
neuropathologist reviewed the histology images and confirmed
the validity of the given diagnoses (KJ).

To evaluate the proposed method, we use 5-fold cross
validation. The dataset is randomly split into training and
testing data based on tumor grade of LGG grade II, LGG grade
III, and HGG with ratio 8:2. Moreover, in order to increase data
samples, we crop sub-regions of patches with size of 512 × 512.
In addition, we also apply data augmentation techniques
(random rotation of 90°, 180°, 270°, random flipping image
along axis, and random scaling image by 0.95~1.1) to increase
the number of training samples. In our experiments, we consider
Frontiers in Oncology | www.frontiersin.org 5
IDH1/2, ATRX, 1p/19q, and MGMT promoter methylation as
the key molecular information. Both IDH and ATRX has mutant
type (MT) and wild-type (WT). The 1p/19 has non-codeletion
(NC) and codeletion (CD). TheMGMT has unmethylated (UM)
and methylated (ML) types. The molecular information
distribution used in this paper is listed in Supplementary
Table 2. In the study, there are 154 astrocytomas (AA), 112
oligoastrocytoma (OA), 164 oligodendroglioma (OD), and 119
glioblastomas (GBM), respectively. It is worth noting that
oligoastrocytoma is strongly discouraged in new WHO
classification (3), but these diagnoses were given at referring
institutions prior to 2016. For the purposes of this study, we will
be combining astrocytomas and oligodendrogliomas based on
grade (e.g. diffuse astrocytoma and oligodendroglioma = lower
grade glioma grade II).
EXPERIMENTS AND RESULTS

All experiments in this study are performed in accordance with
relevant guidelines and regulations as approved by the
institutional IRB committee at Old Dominion University.

Nuclei Segmentation and Cellularity
We first apply a UNet to segment nuclei by using the MoNuSeg
dataset and then obtain the cellularity feature. Supplementary
Figure 5 shows three cases of nuclei segmentation. The proposed
DNN is implemented using PyTorch 1.0 on high-performance
cluster with Nvidia V-100 GPU. The minibatch size is set as 2 as
the tile size is large and maximum training epoch is set as 80. We
use binary cross-entropy as objective function. In training phase,
we minimize the cross-entropy loss (57) to optimize the model as
follows:

loss = −o∀xp xð Þ log q xð Þð Þ, (5)

where p is the true distribution, and q is the estimated
distribution of class. In training phase, we use Adam (58)
optimizer with initial learning rate of lr0 = 0.001, and the
learning rate (lri) is gradually decreased as:

lri =   lr0* 1 −
i
N

� �0:9

, (6)

where i is epoch counter, and N is a total number of epochs
in training.

Tumor Type Classification
In order to investigate the impact of molecular information to
the classification performance, we construct a paired data with/
without the genomic information. In addition, we also explore
the impact of network by applying a regular CNN and a ResNet
for distinguishing HGG vs. LGG, and LGG II vs. LGG II,
respectively. We evaluate the proposed method using five-
fold wcross validation. The result summary is shown in
Supplementary Figure 6.

The performance comparison in Supplementary Figure 6
shows that ResNet offers better performances than that of
July 2021 | Volume 11 | Article 668694
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regular CNN under the same experimental condition. Fusion of
molecular information with pathology consistently improves the
classification accuracy. Inclusion of all information (pathology
intensity, molecular, and cellularity) achieves the best
performance. In comparison, cellularity shows improvement in
the ability of ResNet to capture subtle difference among all glioma
subtypes and may help to significantly improve the classification
accuracy for distinguishing LGG II vs. III. The confusion matrix
of the proposed method for ResNet with cellularity is shown in
Supplementary Table 3.

This experiment investigates effect of different combinations
of patient data using 5-fold cross validation for tumor type
classification. The result is shown in Supplementary Table 4.
The highest classification accuracies for HGG vs. LGG, and LGG
II vs. LGG III are 93.81% ± 1.98% and 73.95% ± 3.73%,
respectively. The small standard deviation indicates robust
model performance with minimal overfitting.

Tumor Subtype Classification
In this experiment, we study the effect of cellularity feature to
discriminate between IDH mutation status that may indicate
glial aggressiveness within a specific type of brain tumor. The
results show potential correlation between cellularity and IDH
types as shown in Supplementary Table 5. It shows the average
cellularity value and variance among different grade gliomas. A
higher-grade glioma has a higher value of cellularity. For LGG
grade III and HGG, cellularity of tumors with wild-type IDH is
higher that of mutant IDH. However, for LGG II, the mutant
type IDH has a higher value than that of wild type. In recent
literature, grade II or III astrocytomas that are IDH-wildtype
actually show molecular features of glioblastoma and should be
considered as glioblastoma despite low cellularity and lack of
histologic evidence of malignancy (13).

Effect of Dilation on Cellularity Computation
In recent literature, morphological dilation step is applied on the
malignant nuclei to expand the malignant cancerous cells that
may account for the presence of cytoplasm around each nucleus
(18, 53). The dilation size is set as 11 as in (18, 53). Cellularity
value ranges within 0 and 1. In this study, we also investigate the
impact of cellularity with dilation on tumor grading. The average
cellularity with different dilation size (0, 10, 12, and 15) is shown
in Supplementary Table 6. The classification accuracy
comparison is listed in the Supplementary Table 7. Inclusion
of cellularity with dilation size of 12 offers the best performance
in both tasks, however, the improvement is trivial comparing to
the result without dilation.

The results show the best tumor type classification accuracy is
obtained for both LGG vs HGG, and LGG grade II vs LGG grade
III when all different types of patient information in this study
(DNN analysis of pathology images, molecular and cellularity) are
considered. ResNet offers better classification accuracy for
discriminating grade tumor (e.g., LGG grade II and LGG grade
III). However, inclusion of cellularity with dilation cannot grant
the performance improvement. Choosing a proper dilation size is
also challenging. For example, in our experiment, the
performances of dilation size of 10 and 15 are smaller than that
Frontiers in Oncology | www.frontiersin.org 6
of without any dilation. According to our experiment and work in
(18, 53), the dilation size is recommended as 11 or 12 if needed.

Molecular Classification
In this section, we investigate molecular classification (IDH
status, 1p/19q codeletion, and ATRX status) based on different
features extracted from digital pathology images, cellularity,
histological type, and tumor grade. We construct a neural
network in R with repeated 5-fold classification. The 5-fold
cross validation and test results are shown in Supplementary
Tables 8, 9 respectively.

Our results show that the performance of the molecular
classification improves after we add the histology type and the
tumor grade information.

Comparison With State-of-the-Art
We compare our result in this work with existing works in
literature as shown in Supplementary Table 10. Note the
comparison is qualitative rather than quantitative as the
patient data, methods, and number of patients are all different
for these works. The comparison Table shows that for tumor
type classification, our work is comparable in differentiating
HGG vs LGG, and offers the best performance on
distinguishing LGG grade II vs LGG grade III. With addition
of molecular information, our proposed method offers the
highest accuracy for LGG grade II vs. grade LGG grade III
classification. Supplementary Table 10 shows that we have the
most number of patient cases (549) in this experiment, which is
much more than other studies reported in this comparison. The
comparison of our work to that of (20) suggest that both use
same type (WSI+molecular) information. However, the number
of cases in (20) is very small with only 66 cases, and the
performance on discriminating HGG vs LGG is lower than our
work. Furthermore, unlike (20) this current study also include
grading of LGG II vs LGG III tumor. Supplementary Table 1
also shows that while (42) offers the best LGG II and LGG III
tumor grading, the sample size is small with only 146 patients.
Therefore, our proposed method offers competitive
performances for both HGG and LGG, and LGG II and LGG
grade III classifications using WSI+molecular data, as required
by the most recent WHO guidelines, respectively.
CONCLUSION

In this work, we propose a DNN-based method for brain tumor
classification and grading using both pathology and molecular
data following the latest 2016 WHO classification criteria. The
classification method, for the first time in literature, integrates a
cellularity feature which is derived from morphology of brain
tumor histopathology images to improve the performance. We
also propose a new ROI selection strategy for histopathology
WSIs by utilizing over-segmentation technique. The experiments
show that while type of DNN may not be critical in
discrimination of low-grade from high-grade glioma, deep
learning may have significant impact for discriminating LGG
grade II versus LGG grade III tumors. Moreover, it has long been
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suggested in pathology literature that glioma cellularity increases
along with grade, but it has never been proven until now. Even
though DNN-based methods outperform the traditional feature-
based methods, one of the common concerns is the feature
interpretability. The results may be more actionable if the
underlying interpretability is also presented to the medical
experts. In the future, we plan to develop an interpretable DNN
method for glioma subtype classification, and also evaluate the
proposed methods using larger patient data to validate the
findings in this study for improved tumor classification.
Furthermore, the proliferation marker, Ki-67, offers a promising
direction in brain tumor grading in recent literature. Integration
of the Ki-67 proliferation index for modeling in the current study
can be an interesting future work for glioma grading. Finally, we
aim to develop an advanced model for CNS tumor classification
following the forthcoming WHO brain tumor classification
criteria that is expected to follow recommendations of the
cIMPACT-NOW soon.
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