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Abstract: The pleiotropic biochemical and antioxidant functions of vitamin C have sparked recent
interest in its application in intensive care. Vitamin C protects important organ systems (cardiovascular,
neurologic and renal systems) during inflammation and oxidative stress. It also influences coagulation
and inflammation; its application might prevent organ damage. The current evidence of vitamin C’s
effect on pathophysiological reactions during various acute stress events (such as sepsis, shock, trauma,
burn and ischemia-reperfusion injury) questions whether the application of vitamin C might be especially
beneficial for cardiac surgery patients who are routinely exposed to ischemia/reperfusion and subsequent
inflammation, systematically affecting different organ systems. This review covers current knowledge
about the role of vitamin C in cardiac surgery patients with focus on its influence on organ dysfunctions.
The relationships between vitamin C and clinical health outcomes are reviewed with special emphasis
on its application in cardiac surgery. Additionally, this review pragmatically discusses evidence on the
administration of vitamin C in every day clinical practice, tackling the issues of safety, monitoring, dosage,
and appropriate application strategy.

Keywords: vitamin C; ascorbic acid; cardiac surgery; antioxidant therapy; nutrient; oxidative stress;
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1. Introduction

1.1. Pathogenesis of Organ Dysfunction after Cardiac Surgery

Patients undergoing cardiac surgery experience a complex systemic inflammatory response syndrome
(SIRS). SIRS after cardiac surgery is induced by surgical trauma [1,2], foreign surface contact during
cardiopulmonary bypass (CPB) [2–9], CPB itself [1,9–12], ischemia-reperfusion-injury (I/R) [3,10,13],
endotoxemia [3,10] and blood transfusion [10,14,15], as shown in Figure 1. Each stimulus triggers both
the cellular and the humoral inflammatory response systems. Cellular mechanisms include the activation
of leukocytes, platelets and endothelial cells [2,3,10,12,13]. Humoral reactions are mainly the activation
of complement and coagulation systems, as well as the release of inflammatory mediators and reactive
oxygen species [2,5,10,13].
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Oxidative stress is defined as an imbalance between production of oxidants, mainly free radicals
and reactive metabolites, in relation to their elimination by protective mechanisms. In many acute
stages of disease, the production of reactive oxygen species (ROS) is initiated by several conditions,
for example I/R-injury, activation of the Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
oxidase, as well as severe alterations in the mitochondrial metabolism [16]. ROS play an essential role
in human biology and regulate different metabolic processes and signaling pathways. In critical illness,
such as trauma, surgery, ischemia and reperfusion, shock and sepsis, the ROS production increases
and often exceeds the natural antioxidant capacity, leading to damage of macromolecule structures.
Structural damage of macromolecules such as proteins, nucleic acids, lipids and carbohydrates
impairs their essential biological function and leads to significant damage of cell structure and organ
function [17]. General activation of the inflammatory system and oxidative stress lead to leukocyte
extravasation, intravascular leukostasis, lipid peroxidation, cell death, vasodilation and capillary fluid
leakage in tissues, which negatively influence patient outcome [13,18–22].

While SIRS is a well-known reaction to cardiac surgery, it can cause multiple acute and persistent
organ dysfunctions, which are explained in greater detail in Section 3. Postoperative complications,
especially organ failure and infections, are major determinants of morbidity and mortality, necessitating
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prolonged hospital and intensive care unit (ICU) length-of-stay (LOS), which is further associated
with high care-related costs and worse quality of life after cardiac surgery [2,3,10,11,23–25]. In fact, the
development of acute and persistent multi-organ dysfunction occurs in 15% of patients and is the most
important determinant of mortality, clinical outcome and quality of life for patients who underwent
cardiac surgery [23,25].

1.2. Basic Metabolism and Functions of Vitamin C

Vitamin C is an essential micronutrient involved in numerous biochemical and biological
processes. Two forms of vitamin C are present in plasma: Ascorbic acid (AA) and its oxidized
form dehydroascorbate (DHA). The latter contributes less than 10% to the total ascorbate in human
plasma [26]. The human body is unable to synthesize vitamin C due to lack of the last enzyme in the
biosynthetic process. An adequate intake of vitamin C of 200 mg/day, equaling approximately
five servings of fruit and vegetables is recommended, though food content varies due to its
lability [27]. Vitamin C is absorbed enterally, remains unbound in human plasma, and is dialyzable.
Renal elimination of vitamin C follows its glomerular filtration, if the concentration of vitamin C in the
urine is larger than the capacity of the responsible transport protein, which is achieved by vitamin C
uptake of 100 mg/day and a plasma concentration of 60 µmol/L [27].

Almost complete bioavailability was calculated in several models for dosages of 200 mg/day.
Levine et al. observed tissue saturation of vitamin C occurring at intakes of 100 mg/day in adult
healthy adult men [27,28]. Tissue saturation was assessed by vitamin C concentrations in lymphocytes,
monocytes, and neutrophils. A steep sigmoidal relationship between vitamin C dose and steady-state
plasma concentration was observed, where a dose of 200 mg produced approximately 80% plasma
saturation, while plasma saturation occurred at about 1000 mg of vitamin C. However, the saturation of
cells occurs at 100 mg/day due to active vitamin C transport, which saturates at about 60–70 µmol/L.
The peak plasma concentration is reached about 2 h after ingestion, while an exponential drop of
plasma levels is observed after intravenous application of vitamin C, where a half-life of vitamin C in
plasma of approximately one hour was observed [27].

Vitamin C acts as an electron donor and has pleiotropic functions in the human body, being
required by more than 60 enzymes. Among these, vitamin C dependent reactions are the synthesis of
norepinephrine, collagen and carnitine. Furthermore, vitamin C dependent mono- and dioxygenases
are involved in peptide amidation and tyrosine metabolism [29,30]. In addition, vitamin C plays
a pivotal role in the metabolism of cholesterol to bile acids and in steroid metabolism [29,30].
Besides, vitamin C is known to support the cytochrome P450 driven hydroxylation or aromatic
drugs and carcinogens [30] and to promote iron absorption in the small intestine [27].

Vitamin C enhances cell differentiation from somatic cells to induced pluripotent stem cells [31,32],
or from stem cells to cardiomyocytes [33,34], which may be an important feature during various
regenerating processes in chronically or acute critically ill patients. Previous studies have demonstrated
that vitamin C also acts on epigenetic mechanisms [35]. Yet, given the limited data available in the
setting of acute critical illness, studies are encouraged to explore this in the near future.

Based on its redox-potential and powerful antioxidant capacity, vitamin C has been called the
most important antioxidant that counters the influence of free radicals [36,37]. The most relevant
biochemical pathways concerning the development of organ dysfunctions are illustrated for each
individual organ system in Section 2. Although important, a more comprehensive description of the
underlying biochemical mechanisms and the influences of vitamin C are explained in greater detail
elsewhere [29,30,38–40].

1.3. The Influence of Vitamin C on Oxidative Stress and Inflammation

Vitamin C scavenges free radicals through the formation of ascorbyl radical and thereby prevents
damage to macromolecules such as lipids or the DNA. The dismutation of two ascorbyl radicals
produces one molecule of ascorbate and one molecule of DHA [41]. Additionally, vitamin C inhibits the
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expression of intracellular adhesion molecules and thereby inhibits the intake of immune cells into the
microcirculation [41]. Furthermore, an increase of the intracellular vitamin C concentration inhibits the
protein phosphatase type 2A and thereby protects the endothelial barrier from septic shock [42]. Due to
its pleiotropic functions in eight enzymatic processes, vitamin C not only mitigates oxidative stress,
but also restores vascular responsiveness to vasoconstrictors [43], ameliorates microcirculatory blood
flow, preserves endothelial barriers [40], prevents apoptosis [44] and augments bacterial defense [40].

1.4. Current Evidence of Vitamin C in Critically Ill Patients

Sepsis, trauma, burn and surgery are causes of systemic inflammatory responses and can lead to
similar pathologies in the human body, including microvascular dysfunction, refractory vasodilatation,
endothelial barrier dysfunction, edema and disseminated intravascular coagulation [45]. Vitamin C
concentrations are lowered in critical illness [46], in patients recovering from surgery [47,48], in patients
after cardiac surgery [49] and especially in patients heading towards multi-organ failure [19,50].
Fowler et al observed a lower rate of organ dysfunction as assessed by the sequential organ failure
assessment (SOFA) score and a reduced 28-day mortality after the application of vitamin C in patients
with sepsis and multi-organ-failure, whereas an influence on the ICU-LOS was not observed [51].
Zabet et al. demonstrated in 2016 patients a significantly reduced mean vasopressor demand and
shorter duration of vasopressor therapy and reduced mortality in 28 septic patients receiving vitamin
C [52]. In 2002, Nathens et al. observed a decreased risk of pneumonia, acute respiratory distress
syndrome (ARDS) and a tendency towards lower alveolar inflammation in a randomized controlled
trial (RCT) of antioxidant supplementation (1 g vitamin C and 1.000 IU vitamin E intravenously three
times per day for up to 28 days) in mostly trauma patients (n = 595), although the results of this
RCT did not reach statistical significance [53]. In severe burn patients, ascorbic acid reduced fluid
demand and increased urine production, in a retrospective review by Kahn et al. [54] and in an RCT
by Tanaka et al. [55]. In fact, the application of vitamin C is frequently considered in the treatment of
severe burn patients [56]. While an overview of the influence of vitamin C on organ dysfunction is
summarized in Table 1, Section 2 will take a closer look at each individual organ system.

Table 1. Summary of vitamin C’s influence on organ systems.

Organ System Influence of Vitamin C

Nervous system Elevated levels protect neurons from oxidative damage [49,57]
Reduces the infarct volume after ischemia [58]

Cardiovascular System

Attenuates myocardial damage and improves myocardial stunning [49]
Reduces vasopressor demand [52]
Reduces rate of atrial fibrillation [59,60]
Improves endothelial function [61,62]

Respiratory System Reduces intubation time [63]
Decreases risk of pneumonia and alveolar inflammation [53]

Renal System Reduces fluid demand and increases urine production [54,55]

Gastrointestinal System
Attenuates drug toxicity, decreases inflammatory reaction [64]
Lowers infiltration of neutrophils [64]
Reduces the expression of apoptosis related genes [44]

Coagulation System Restores platelet function and decreases capillary plugging [43]
Attenuates a sepsis-induced drop of thrombocytes [43]

Immune System Inhibits bacterial growth [47], enhances microbial killing [38]
Supports endothelial barrier function and promotes antioxidant scavenging [38]
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2. Influence of Vitamin C on Organ Systems in Cardiac Surgery Patients

2.1. Nervous System

2.1.1. Neuropsychological Dysfunction after Cardiac Surgery

Brain tissue is very susceptible to oxidative damage because of its high content of polyunsaturated
fatty acids and its high demand for oxygen. Neuropsychological complications are commonly seen in
patients undergoing cardiac surgery, leading to a prolonged ICU stay (Figure 2). The American College
of Cardiology and the American Heart Association defined two classes of neurological complications
after cardiac surgery: Type I neurological deficits include stroke and transient ischemic attack, coma
and fatal cerebral injury, Type II include delirium and postoperative cognitive dysfunction [65].

Cerebral ischemia due to stroke, microembolization, hypoperfusion, or hypoxemia contributes
considerably to cognitive impairment. New cerebral lesions occur in about 30–50% of cardiac surgery
patients, but most of them are clinically inapparent. The incidence of manifest stroke with clinical
deficits is about 1–2% after low-risk heart surgery [66–70]. Contributing factors are major bleeding
and transfusions of red blood cells, preoperative use of unfractionated heparin, and use of CPB [66].
Delirium is observed in a quarter and postoperative cognitive dysfunction is observed in 25–65% of
all patients, while most of these patients recover within the first months [67,71]. Cognitive function
is strongly influenced by systemic inflammation reaction, leading to increased permeability of the
blood-brain barrier and cerebral edema [3]. All neuropsychological complications are associated with
decreased quality of life, inability to work, loss of independence, and increased mortality [70].

Nutrients 2018, 10, x FOR PEER REVIEW  5 of 28 

 

2. Influence of Vitamin C on Organ Systems in Cardiac Surgery Patients 

2.1. Nervous System 

2.1.1. Neuropsychological Dysfunction after Cardiac Surgery 

Brain tissue is very susceptible to oxidative damage because of its high content of 
polyunsaturated fatty acids and its high demand for oxygen. Neuropsychological complications are 
commonly seen in patients undergoing cardiac surgery, leading to a prolonged ICU stay (Figure 2). 
The American College of Cardiology and the American Heart Association defined two classes of 
neurological complications after cardiac surgery: Type I neurological deficits include stroke and 
transient ischemic attack, coma and fatal cerebral injury, Type II include delirium and postoperative 
cognitive dysfunction [65].  

Cerebral ischemia due to stroke, microembolization, hypoperfusion, or hypoxemia contributes 
considerably to cognitive impairment. New cerebral lesions occur in about 30–50% of cardiac surgery 
patients, but most of them are clinically inapparent. The incidence of manifest stroke with clinical 
deficits is about 1–2% after low-risk heart surgery [66–70]. Contributing factors are major bleeding 
and transfusions of red blood cells, preoperative use of unfractionated heparin, and use of CPB [66]. 
Delirium is observed in a quarter and postoperative cognitive dysfunction is observed in 25–65% of 
all patients, while most of these patients recover within the first months [67,71]. Cognitive function 
is strongly influenced by systemic inflammation reaction, leading to increased permeability of the 
blood-brain barrier and cerebral edema [3]. All neuropsychological complications are associated with 
decreased quality of life, inability to work, loss of independence, and increased mortality [70]. 

 
Figure 2. Cerebral dysfunction after cardiac surgery. 

2.1.2. Role of Vitamin C in the Nervous System 

Vitamin C levels are elevated up to 80 times in the cells of the brain and up to four times in the 
cerebrospinal fluid, compared to plasma, due to its active transport via the sodium-dependent 
vitamin C transporter-2 (SVCT2) transporter [72,73], protecting neurons and leukocytes from 
oxidative damage [49]. Vitamin C is also essential for the myelination of the neurons [74] and a 
vitamin C deficiency through insufficient transporter molecules leads to hypomyelination and 
collagen-containing extracellular matrix deficits [72]. If oxidized, vitamin C can also be taken up by 
glucose transporters [73]. During I/R injury or stroke, the vitamin C is shifted from the intracellular 
to the extracellular compartment, leading to an intracellular vitamin C deficiency and perhaps 
neuronal damage [49].  

While there is evidence that vitamin C reduces infarct volume in cerebral ischemia, most 
evidence is derived from experimental studies inducing stroke or I/R-injury; reduced infarct volumes 
after experimental stroke models were demonstrated by Henry et al. [75] and Huang et al. [58]. This 
finding was supported by a recent study demonstrating that vitamin C protects from neuronal cell 
death in a model of ethanol-induced damage in early development age [57]. Ethanol thereby induced 
the development of oxidative stress. Amongst others, the protection was evaluated by reduced 

Figure 2. Cerebral dysfunction after cardiac surgery.

2.1.2. Role of Vitamin C in the Nervous System

Vitamin C levels are elevated up to 80 times in the cells of the brain and up to four times in the
cerebrospinal fluid, compared to plasma, due to its active transport via the sodium-dependent vitamin C
transporter-2 (SVCT2) transporter [72,73], protecting neurons and leukocytes from oxidative damage [49].
Vitamin C is also essential for the myelination of the neurons [74] and a vitamin C deficiency through
insufficient transporter molecules leads to hypomyelination and collagen-containing extracellular matrix
deficits [72]. If oxidized, vitamin C can also be taken up by glucose transporters [73]. During I/R injury
or stroke, the vitamin C is shifted from the intracellular to the extracellular compartment, leading to an
intracellular vitamin C deficiency and perhaps neuronal damage [49].

While there is evidence that vitamin C reduces infarct volume in cerebral ischemia, most evidence
is derived from experimental studies inducing stroke or I/R-injury; reduced infarct volumes after
experimental stroke models were demonstrated by Henry et al. [75] and Huang et al. [58]. This finding
was supported by a recent study demonstrating that vitamin C protects from neuronal cell death
in a model of ethanol-induced damage in early development age [57]. Ethanol thereby induced the
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development of oxidative stress. Amongst others, the protection was evaluated by reduced activation
of caspase-9 and 3 as well as reduced levels of cytochrome C [57]. Lagowska-Lenard et al. found
elevated antioxidant levels in the serum after vitamin C supplementation in a placebo-controlled RCT
in patients with ischemic stroke. However, in this small study, the clinical outcome was unchanged [76].

2.1.3. Vitamin C’s Influence on the Nervous System in Cardiac Surgery Patients

In the meta-analysis of Hu et al. 2017 including eight RCTs and 1060 patients, vitamin C
supplementation had no effect on the incidence of stroke (0.8% (vitamin C) vs. 2.0 % (control)) in cardiac
surgery patients [59]. To our knowledge, until now, no study evaluated the influence of vitamin C on
cognitive dysfunction or delirium in cardiac surgery patients.

2.2. Cardiovascular System

2.2.1. Cardiovascular Dysfunction after Cardiac Surgery

Surgical trauma, myocardial I/R, the excretion of inflammatory mediators, intraoperative
cardioplegic arrest, reduced coronary blood flow and microvascular occlusion lead to a decline
of myocardial contractility and a reduction of ventricular compliance and resulting function, as
displayed in Figure 3. Vasodilation and decreased systemic vascular resistance contribute to systemic
hypotension as well. Therefore, vasopressor treatment is commonly needed to support the circulation
perioperatively in cardiac surgery patients. While vasopressor treatment is required to maintain
adequate blood pressures, its use is associated with increased oxidative stress, endothelial dysfunction
and myocardial fibrosis [77].

Myocardial dysfunction and cardiovascular insufficiency after cardiac surgery can cause a
mismatch of oxygen delivery and metabolic demand and lead to tissue hypoxia. Ventricular systolic
and diastolic dysfunction occurs in up to 70% of cardiac surgery patients [78,79]. The low cardiac
output syndrome is clinically characterized by hypotension and signs of tissue hypoperfusion and
occurs in 5–15% after cardiac surgery [78,80]. Acute kidney injury (AKI) as well as neurologic and
pulmonary complications are the most common consequences of low cardiac output syndrome, leading
to a mortality rate of more than 20% [3,79,81]. Arrhythmias are very common after cardiac surgery.
Their impact on the clinical outcome depends on the kind of arrhythmia, its duration, ventricular
response rate and cardiac function [82]. Arrhythmias might be I/R- and inflammation-induced
and result from an increased intracellular calcium concentration due to calcium-influx through
the damaged, peroxided lipids in the cell membranes, as well as hindered calcium uptake by the
sarcoplasmic reticulum [49].
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2.2.2. Role of Vitamin C in the Cardiovascular System

Vitamin C affects the cardiovascular system through several pathways. Despite its capability
to scavenge free radicals, vitamin C also promotes the differentiation of embryonic and pluripotent
stem cells into cardiac myocytes [33,34]. Vitamin C has cardioprotective properties, which were
demonstrated in rat models, where vitamin C reduced oxidative damage in diabetic rats [83] and
during I/R-injury [84]. Vitamin C improved myocardial stunning and increased left ventricular
function in some animal studies, however, other animal studies showed no effect of vitamin C and
some only in combination with other antioxidants [49]. Therefore, preclinical data regarding the
myocardial protection through vitamin C in I/R-injury remains inconclusive, as discussed in detail in
a review by Spoelstra-de Man et al. [49].

Vitamin C inhibits the expression of inducible nitric oxide synthetase (iNOS) in endothelial
cells and neuronal nitric oxide synthetase (nNOS) and thereby lowers the plasmatic level of nitric
oxide (NO), which is responsible for the activation of guanylate cyclase that counteracts the effects
of vasoconstrictors. Vitamin C also prevents the impairment of vasoconstriction [43] and restores
inter-endothelial electrical coupling through connexin 37-contaning gap-junctions as well as through
protein kinase A-activation required for connexin 40 dephosphorylation [43]. Therefore, vitamin C might
increase vasopressor-sensitivity. However, in patients with endothelial dysfunction due to cardio-metabolic
diseases, such as hypertension, atherosclerosis, diabetes and smokers, vitamin C promotes endothelial-
and nitric oxide-dependent vasodilation [61]. Overall, vitamin C might improve micro-perfusion [43,47].

In extension, ascorbate also tightens the endothelial permeability barrier [61] and thus might
lead to reduced extravasation and edema [85]. A meta-analysis including 44 RCTs and 1129 patients
displayed an overall positive effect of vitamin C on endothelial function independently of baseline
plasma concentration or route of administration [62]. In the studies included in this meta-analysis,
endothelial function was assessed using ultrasound, plethysmography and pulse wave analysis.
The effects were significant in patients with cardio-metabolic disorders, especially with heart failure
(p < 0.02), atherosclerosis (p < 0.001) and diabetes (p < 0.001).

2.2.3. Vitamin C’s Influence on the Cardiovascular System in Cardiac Surgery Patients

In cardiac surgery with CPB, vitamin C levels decrease with the production of ROS and remain
low for days after surgery [49], indicating a greater demand of vitamin C in the setting of surgery
and I/R-induced oxidative stress. Oxidative stress and myocardial damage after cardiac surgery
with CPB might be decreased by the administration of vitamin C, as demonstrated in an RCT by
Dingchao et al. in the 1990s [86]. In this RCT including 85 patients, the intervention group received
a total of 250 mg/kg vitamin C before and after CPB. Markers for myocardial injury creatine kinase
(CK) and creatine phosphokinase isoenzyme muscle/brain (CK-MB), as well as malondialdehyde as
a marker for oxidative stress were significantly lower in patients receiving vitamin C. Clinically, the
cardiac index was higher, and the intervention-group patients were less likely to need defibrillation
after weaning from cardiopulmonary bypass and had shorter ICU- and hospital-LOS [86].

Vitamin C treatment also improves ventricular function, reduces vasopressor and fluid
demand [86,87] and increases the cardiac index. In a systematic review [88] and in 6 different
meta-analyses including 8–15 RCTs [59,60,63,89–91], vitamin C was shown to significantly reduce the
occurrence of postoperative cardiac arrhythmia, mainly atrial fibrillation (AF). However, the results of
these meta-analyses might be strongly influenced by publication bias, as discussed by Hemilae [92].
While postoperative AF gained increasing attention over the past years, and was investigated by
several RCTs and meta-analyses, to our knowledge, no large, multicenter study evaluated the effect of
vitamin C on other important outcomes, such as myocardial function or vasopressor and fluid-demand.
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2.3. Respiratory System

2.3.1. Pulmonary Dysfunction after Cardiac Surgery

Pulmonary dysfunction (Figure 4) occurs in up to 79% of patients after cardiac surgery, ranging
from mild subclinical functional changes to acute respiratory distress syndrome (ARDS) in less than
2% of patients [93]. Acute lung injury is characterized by inflammation, and tissue damage is dealt
mainly through oxidative stress and free radicals [94]. ROS like nitric oxide and superoxide can nitrate
and oxidize key amino acids in lung proteins, such as surfactant protein, disturbing their function [95].

Factors contributing to pulmonary dysfunction are poor lung mechanics, increased
intrapulmonary shunt and vascular resistance, pulmonary edema, changes in surfactant and alveolar
protein accumulation. The underlying pathomechanisms include inflammation and free radicals,
I/R-injury, transfusion-associated lung injury and drug toxicity. Pulmonary dysfunction causes
prolonged need for mechanical ventilation, increases ICU- and hospital-LOS and mortality, and
significantly affects long-term physical and psychological morbidity [3,96–100].
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2.3.2. Role of Vitamin C in the Respiratory System

Vitamin C functions as an antioxidant, preventing ROS-induced lung damage and rapid oxidation
of ascorbate occurs during acute inflammation in acute lung injury [95]. In a mouse-model, the
supplementation of vitamin C preserved lung barrier function and functionality of ion pumps in the
alveolar epithelium [101] and decreased the lung pathology in an in vivo study of influence virus
infected mice [102]. In rats, vitamin C attenuated lung injury caused by I/R [103].

A study conducted in 2016 found that vitamin C treatment of human bronchial epithelial cells
attenuates particulate matter induced ROS damage, IL-6 expression and increased cell viability [104].
Vitamin C additionally attenuated smoking induced pulmonary emphysema and vascular remolding
by reducing ROS induced protein oxidation [105]. In a study by Nathens et al. in 2002, the application
of vitamin C decreased risk for pneumonia and ARDS with lower alveolar inflammation in a cohort
of 270 mostly trauma patients [53]. Even though the results of this RCT did not reach statistical
significance, they sparked further investigations on the subject. In the OMEGA study, Rice et al.
supplemented antioxidant cocktails to ARDS patients and observed no benefit [106]. However, these
cocktails contained many components and the 2 g/day vitamin C was only a minor component.
In an RCT by Gadek et al., a combination of antioxidants, including vitamin C, decreased pulmonary
inflammation and showed beneficial effects on gas exchange and requirement of mechanical ventilation
in patients with ARDS [107].
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2.3.3. Vitamin C’s Influence on the Respiratory System in Cardiac Surgery Patients

Even if preclinical and clinical data seem promising, only very few studies addressed the effect
of vitamin C on pulmonary dysfunction in cardiac surgery. To our knowledge, the duration of
mechanical ventilation was the only outcome parameter measured in RCTs investigating this matter.
Reduced intubation time after cardiac surgery was shown in a meta-analysis including 3 RCTs and
575 patients (mean difference: −2.41, 95% confidence interval −3.82/−0.98, p = 0.001). However, the
heterogeneity of the included trials was high (p = 0.74) [63].

2.4. Renal System

2.4.1. Renal Dysfunction after Cardiac Surgery

Acute kidney injury (AKI) is clinically one of the most significant organ dysfunction and
occurs in about 28% of cardiac surgery patients [108], with 2–5% of patients requiring dialysis.
Contributing factors are oxidative stress during renal I/R-injury, inflammation, hemolysis, cholesterol
emboli, nephrotoxic drugs and toxins resulting in glomerular and tubular damage, reduced glomerular
filtration rates and impaired creatinine clearance, as shown in Figure 5. AKI is strongly associated with
the need for renal replacement therapy, increased hospital- and ICU-LOS, mortality and decreased
long-term quality of life [3,108–114].
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2.4.2. Role of Vitamin C in the Renal System

The protective properties of vitamin C on the renal system are also attributed to its anti-oxidant
capabilities. Vitamin C administration reduced serum creatinine levels in patients who experienced
contrast-mediated nephropathy after coronary angiography [115]. These findings were supported by a
meta-analysis including 1.536 patients in 9 RCTs in 2013 by Sadat et al., decreasing risk for AKI by 33%
(risk ratio 0.672, confidence interval 0.466–0.969, p = 0.034) [116]. In contrast, excessive and long-term
vitamin C consumption might lead to oxalate nephropathy. In a case report in 2012, Gurm et al.
described a woman who consumed 3–6.5 g of vitamin C daily [117]. A similar case was reported in 2015:
A 96-year-old woman was also diagnosed with oxalate nephropathy resulting from excessive vitamin
C intake [118]. The tubular injuries are thereby caused by crystalline deposits of calcium oxalate,
which might be metabolized from vitamin C. Therefore, the recurring formation of kidney stones,
as well as chronic renal failure and hyperoxaluria are contraindications for a high-dose long-term
vitamin C therapy, even though adverse effects seem unlikely in short-term administration [27,49].
In an RCT study including burn patients, decreased volume requirement for fluid resuscitation, as
well as increased urine output were observed [55].
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2.4.3. Vitamin C’s Influence on the Renal System in Cardiac Surgery Patients

A pilot study by Antonic et al. in 2017 with 100 on-pump coronary artery bypass graft
(CABG) surgery patients was not able to confirm the assumed benefits of vitamin C on renal
function [119]. Potential causes for the insignificance of the results might be a rather low dosage
and oral administration of vitamin C (2 × 1 g/day), as discussed in greater detail in Section 5.2. In any
case, further research is warranted to investigate the effect of a high-dosage intravenous vitamin C
application, to fully achieve the antioxidant and possibly nephroprotective effects.

2.5. Gastrointestinal System

2.5.1. Gastrointestinal Dysfunction after Cardiac Surgery

Gastrointestinal (GI) complications (Figure 6) occur in 0.2–4% [120], while a postoperative
gastrointestinal atony is observed in most cardiac surgery patients [121,122]. Inflammation and
I/R-injury increase GI permeability and can lead to bacterial translocation and systemic endotoxemia.
The most common GI complications are postoperative ileus and GI hemorrhage, while mesenteric
ischemia and intestinal perforation are GI complications with the highest mortality. GI complications
increase LOS and mortality [3,10,123–125].
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2.5.2. Role of Vitamin C in the Gastrointestinal System

The few available studies on the interaction of vitamin C with the GI system are derived from
oncology. Vitamin C treatment might mitigate GI adverse effects associated with cancer treatment [126],
where chemotherapy is often associated with damage to the mucous membrane. Al-Asmari et al.
found attenuated toxicity of the antineoplastic drug 5 fluorouracil when vitamin C was administered,
demonstrated by decreased activation of nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and cyclooxygenase-2 expression as well as lower infiltration of neutrophils [64]. The authors
suggested that the observed benefits were due to the antioxidative effects of vitamin C. Similar findings
were observed by Yamamoto et al. in 2010, who showed that vitamin C treatment attenuated the
expression of apoptosis related genes as well as DNA damage in crypt cells caused by radiation [44].

2.5.3. Vitamin C’s Influence on the Gastrointestinal System in Cardiac Surgery Patients

To our knowledge, no study of vitamin C in cardiac surgery reported beneficial or adverse effects
on the GI system.
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2.6. Coagulation System

2.6.1. Coagulation Disorders after Cardiac Surgery

Coagulation disorders—both prothrombotic activity and coagulopathy—have deleterious effects
on patient outcome (Figure 7). I/R induces the production of ROS by platelets and other
vascular sources. ROS can alter platelet function and increase platelet aggregation and thrombus
formation [127,128]. In a vicious circle, ROS-production and platelet-activation augment each other.
Therefore, ROS may act prothrombotic. Additionally, reduced NO-responsiveness of the platelets
might promote adhesion of the platelets to the endothelium, which is associated with increased
cardiovascular morbidity in patients with acute coronary syndrome [127]. On the other hand, intra-
and postoperative coagulopathy, commonly observed after cardiac surgery, lead to an increased
need for transfusion of blood products and surgical re-exploration. The definition of bleeding is still
debated [129], but mild bleeding occurs in almost one fifth and major bleeding in 3–12% of cardiac
surgery patients [130]. A mean blood volume of 470 mL is lost during the first 12 h after cardiac
surgery [131]. Contributing factors to coagulopathy are consumption and dilution of platelets and
coagulation factors and heparinization during CPB, as well as effects of preoperative drugs and
preexisting anemia and low fibrinogen-levels. The transfusion of the allogeneic blood products is
associated with inflammation, transfusion-associated lung- and kidney injury and increases risk of
stroke [66]. Overall, coagulopathy and major bleeding increase the risk of stroke, acute kidney injury,
infections, surgical reoperation, LOS and mortality [130–132].
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2.6.2. Role of Vitamin C in the Coagulation System

Vitamin C has a tremendous impact on cellular and plasmatic hemostasis in the human body
and has both pro- and anticoagulatory effects. The interaction between coagulation and vitamin C
supplementation was already discussed in the early 1960s by Dayton and Weiner [133].

On a cellular level, antioxidants such as vitamin C may inhibit platelets by scavenging ROS,
disrupting the vicious circle of ROS-platelet-activation, and restoring normal platelet function [127].
In healthy individuals, prostacyclin and NO prohibit platelet activation and prevent thrombosis.
Vitamin C, however, inhibits the expression of iNOS in endothelial cells and nNOS in neurons and
thereby lowers the plasmatic level of NO [43], hence acting pro-coagulatory. However, vitamin C also
prevents microthrombus formation through inhibition of thrombin-induced and P-selectin mediated
platelet aggregation and platelet-endothelial adhesion [43]. Even after the onset of microthrombus
formation, ascorbate injection reverses capillary plugging and platelet-endothelial adhesion [43]. Vitamin C
also inhibits the pH-dependent thrombin-induced release of plasminogen-activator-inhibitor-1 from
platelets [43].

Plasmatic coagulation is influenced by vitamin C via several pathways. ROS and other stimuli activate
NF-κB. The transcription factor NF-κB initiates the expression of cytokines and proteins involved in
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coagulation, such as tissue factor [134]. This suggests that coagulation via NF-κB can be affected by vitamin
C [135,136]. Furthermore, vitamin C decreases tissue plasminogen activator and von Willebrand-factor,
demonstrating an important link between inflammation, coagulation and vitamin C [136,137]. Vitamin C is
also known to restore the capacity for endogenous, endothelium-dependent fibrinolysis in smokers [138].

On a systemic level, the influence of vitamin C on hemostasis might be dose-dependent.
While depleted vitamin C levels are associated with gastrointestinal hemorrhage, especially in patients
undergoing acetylsalicylate-treatment [139], in very high dosages (0.5–1 g/kg), vitamin C was found
to promote the occurrence of thrombosis through pro-coagulant activation of erythrocytes in a rat
model [140]. Vitamin C abolished coagulation abnormalities in septic mouse blood [101] and attenuated
a sepsis-induced drop of thrombocytes in the systemic blood in septic patients [43].

2.6.3. Vitamin C’s Influence on the Coagulation System in Cardiac Surgery Patients

To our knowledge, only two studies of vitamin C in cardiac surgery have addressed the issue of
hemostasis. In one RCT from Sadeghpour et al. (n = 290), vitamin C reduced chest tube bleeding [141],
while no difference was shown in another RCT [87]. Clearly, further research is needed to determine
the influence of vitamin C on blood loss, need for transfusion and risk of thromboembolic events and
to translate biochemical pathways into clinically relevant outcomes.

2.7. Immune System

2.7.1. Immune Dysfunction after Cardiac Surgery

After cardiac surgery, infections are the most common non-cardiac complication [142], (Figure 8).
A quarter of all patients undergoing high-risk heart-surgery are diagnosed with a postoperative
infection [143], and nearly 5% experience major infection. Pneumonia is the most frequent nosocomial
infection in half of these cases. Surgical site infections and catheter- and device-associated infections
each make up 25% of infections [143,144]. Major infections have a tremendous effect on subsequent
survival and are associated with longer mechanical ventilation, ICU- and hospital stay and a higher
morbidity and mortality up to five years after the operation [93,142–152].
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2.7.2. Role of Vitamin C in the Immune System

Infections are associated with and accompanied by an increase of oxidative stress. The increased
ROS production during infection, and hypermetabolic vitamin C requirements are the reasons for
the observed vitamin C reduction [38,153]. Evidence regarding increased vitamin C requirements in
critical illness and after surgery will furthermore be discussed in Section 5.2.1.

Vitamin C is actively accumulated into the dermal cells and neutrophils via the sodium-dependent
vitamin C transporters (SVCT). Neutrophils further increase their intracellular vitamin C concentration
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through uptake of DHA via glucose transporters (GLUT) and metabolization to ascorbate [38].
The accumulation of vitamin C in phagocytotic cells can enhance chemotaxis, phagocytosis, generation
of ROS and microbial killing. Vitamin C is also necessary for apoptosis and the clearing of spent
neutrophils from the infected site and enhances the proliferation and differentiation of B and T-cells,
as well as antibody levels [38]. Vitamin C deficiency results in impaired immunity and thus, higher
susceptibility for infections.

Vitamin C supports endothelial barrier function against pathogens and promotes antioxidant
scavenging activity of the skin. Vitamin C is a known inhibitor of bacterial growth, such as S. aureus and
intestinal bacteria. One possible mechanism for the antibacterial function of vitamin C is the production
of hydrogen peroxide during its oxidation [47]. Vitamin C also shortens time for wound healing
through stimulation of proliferation, differentiation and migration of keratinocytes and fibroblasts, as
well as through the stimulation of lipid synthesis [38]. Vitamin C enhances microbial killing through
improved immune cells chemotaxis, motility and phagocytosis, and decreases necrosis through
facilitation of apoptosis and clearance [38].

However, increased ROS production by the immune system is an important response to invasive
pathogens. Therefore, suggesting that the radical-scavenging role of vitamin C is solely beneficial
remains a matter of debate and is most likely dose-dependent. The systemic effect of vitamin C on
bacterial and viral infections needs further research; current evidence demonstrates that vitamin C
might prevent the development (or help ameliorate) of the clinical course of pneumonia [154,155].
Vitamin C deficiency was associated with increased inflammation as measured in CRP, and patients
with septic shock were deficient in vitamin C in 40%, as observed in a study by Carr et al. [46].

2.7.3. Vitamin C’s Influence on the Immune System in Cardiac Surgery Patients

Unfortunately, again, there is little knowledge about the influence of vitamin C on postoperative
immune function and infections in cardiac surgery. Sadeghpour et al. reported a significant reduction
in composite outcome “complications”, defined as death, infection, impairment in renal function
and need for reoperation [141]. Neither the incidence of infection nor the influence of infection on
the combined outcome parameter were reported in this study. Jouybar 2012 et al. [156] showed
no difference in white blood count and inflammatory mediators using two bolus dosages of 3 g of
vitamin C, 12–18 h before surgery and during CPB initiation.

3. Influence of Vitamin C on the Overall Clinical Outcome of Cardiac Surgery Patients

Considering the above-mentioned evidence and the data gained from meta-analyses and RCTs,
as listed in Tables 2 and 3, vitamin C may have positive effects on many vital functions and organ
systems, which overall may have beneficial effects on patients’ short, mid and long-term outcomes.

• The overall effect is reflected by a reduced ICU-LOS in a meta-analysis of Geng et al. including
12 RCTs and 1584 patients [63] and Baker et al., including 11 RCTs and 1390 patients [89].

• Reduced hospital LOS was demonstrated in a systematic 2014 review including 5 RCTs [88],
as well as the meta-analyses of Geng [63] and Baker [89] and Shi et al., including 13 trials involving
1956 patients [90]. However, in the meta-analysis by Hu et al. including 8 RCTs and 1060 patients,
vitamin C application was not associated with reductions in ICU or hospital-LOS [59].

• Vitamin C might also reduce intubation time and postoperative complications as found by the
meta-analyses of Hu and Shi [63,90].

Effects on LOS in un-blinded studies are subject to performance bias due to co-interventions or
differentially applied policies on discharge. Additionally, none of the available RCTs included in these
meta-analyses was adequately powered to detect an influence of vitamin C on overall clinical outcomes,
such as on LOS or mortality, as discussed by Polymeropoulos et al. [60]. All meta-analyses found
significant clinical and methodological heterogeneity of the included studies, limiting the strength of
inferences. Therefore, there is an urgent need for additional large and well-designed clinical trials.
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Table 2. RCTs investigating the effects of vitamin C (Vit C) in cardiac surgery.

Author and Year Patients Dosage of Vitamin C p.o./i.v. Results

Knodell 1981 [157] 175+ hepatitis Preop: 4 × 800 mg/day for 2 days p.o. Elevations of plasma vitamin C, no influence on the hepatitis
Postop: 4 × 800 mg/day for 2 weeks

Li 1990 [158] 20 Preop: 250 mg/kg before the start of extracorporeal circulation N.A. Sign. reduction in lipid peroxidation

Dingchao 1994 [86] 85 CPB 125 mg/kg 30 min before surgery and at the end of CPB i.v. Decreased CK/CKMB, LDH, & rate of defibrillation, ICU- and
hospital LOS, improved CI

Carnes 2001 [159] 86 CABG
Preop: 1 × 2 g the night before

N.A. Lower rate of AFPostop: 2 × 0.5 g/day for 5 days

Demirag 2001 [160] 30 elective
Group 1: 2 × 50 mg/kg vitamin C at induction and end of CPB

i.v.
Prevention of lipid peroxidation no difference in myocardial
I/R-injuryGroup 2: vitamin C + diltiazem: bolus and 2 µg/kg/min until end of CPB

Eslami 2007 [161] 100 CABG
Preop: 1 × 2 g night before p.o. Lower rate of AFPostop: 2 × 1 g/day for 5 days

Colby 2011 [162] 24 CABG and/or valve
Preop: 1 × 2 g night before p.o. No difference in CRP, WBC, fibrinogen, Trend: decreased AF,

hospital- and ICU-LOSPostop: 2 × 0.5 g/day for 4 days

Papoulidis 2011 [163] 170 CABG
Preop: 1 × 2 g 3 h prior to surgery

i.v. Sign. lower rate of AF, hospital- and ICU-LOS
Postop: 2 × 0.5 mg/day for 5 days

Bjordahl 2012 [164] 185 CABG
Preop: 1 × 2 g night before surgery p.o. No difference in postoperative complications, mortality or AF
Postop: 2 × 1 g/day for 5 days

Jouybar 2012 [156] 40 CABG Preop: 2 × 3 g 12–18 h before surgery and during CPB initiation i.v. No difference in inflammatory cytokines, hemodynamics, blood
gases, urea nitrogen, creatinine, WBC, platelet counts & outcomes

Dehghani 2014 [165] 100 CABG
Preop: 1 × 2 g p.o. Sign. lower rate of AF, hospital- and ICU-LOS
Postop: 2 × 0.5 g/day for 5 days

Ebade 2014 [166] 40
Preop: 1 × 2 g

i.v.
Lower incidence of AF

Postop: 1 × 1 g 12 h after surgery, 3 × 1 g for 6 days after surgery Shortened ICU- and hospital-LOS

Sama-dikhah 2014 [167] 120 CABG
Preop: 1 × 2 g

p.o. Sign. lower rate of AFPostop: 1 × 1 g/day for 5 days
Plus atorvastatin 40 mg

Sadegh-pour 2015 [141] 290 CABG, valve
Preop: 1 × 2 g before surgery Preop: i.v.

Postop: p.o.
Sign. reductions in AF, hospital-LOS, intubation time, complications
(death, renal function, infection) and drainage, unchanged ICU-LOSPostop: 1 × 1 g/day for 4 days

Das 2016 [168] 70 elective low risk CABG Preop: 2 × 0.5 g for 7 days prior to surgery p.o. Lower vasopressors-demand, no difference in time to extubation,
ICU- and hospital-LOS, mortality or complications

Antonic 2016 [169] 105 CABG
Preop: 2 × 2 g: 24 and 2 h before surgery

i.v. Trend: decreased rate of AF, no difference in complications
Postop: 2 × 1 g/day for 4 days

Antonic 2017 [119] 100 CABG
Preop: 2 × 2 g: 24 and 2 h

i.v.
No sign. protective effect of ascorbic acid on the incidence of
postoperative AKIPostop: 2 × 1 g/day for 5 days

CPB = cardiopulmonary bypass, CABG = coronary artery bypass graft, p.o. = per os, i.v. = intravenous, sign. = significantly, N.A. = not available, WBC = white blood count, preop = before
surgery, postop = after surgery, LDH = lactate dehydrogenase.
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4. Vitamin C in Combination with other Antioxidant Therapies

Vitamin C has been combined with other antioxidant substances to minimize oxidative damage,
as well as with anti-arrhythmic drugs such as beta-blockers and diltiazem to reduce the incidence
of postoperative cardiac arrhythmia. In combination with beta-blockers, the incidences of AF and
ICU-LOS were significantly reduced compared to CABG-patients who only received beta-blocker
pre-surgery [87].

Vitamin C also regenerates α-Tocopherol (vitamin E); therefore, a combination therapy might
offer more benefits compared to a monotherapy [19]. A combination of vitamins C and E significantly
reduced 28-day mortality and duration of mechanical ventilation in ICU patients, in a study by
Crimi et al. [170]. Howe et al. observed a reduction of mechanical ventilation and a trend towards
reduced all-cause mortality and ICU-LOS in critically ill patients [171]. In cardiac surgery patients, the
combined vitamin C and E therapy lowered oxidative stress, as demonstrated by lower lipid oxidation
and lysosomal enzyme activity [172], improved function of the pulmonary vessels [173] and seemed to
have an anti-inflammatory effect, as measured in lower CRP levels in a study by Gunes et al. [174]; see
also Table 3.

Table 3. RCTs investigating antioxidant cocktails in cardiac surgery.

Author and Year N Treatment Outcomes

Barta 1991 [172] 20 Preop: 2000 IU Vit E: 12 h before surgery; 2 g vitamin C in the
morning on the day of surgery

Inhibition of the decrease of catalase Lower lipid oxidation
and lysosomal enzymes in intervention group

Westhuyzen 1997 [175] 76 Preoperative (7–10 days): 1 g vitamin C and 750 IU Vit E Supplementation of the vitamins prevented depletion, but
provided no clinical advantage

Angdin 2003 [173] 22
Preop: 900 mg Vit E for 10–14 days plus 1 × 2 g vitamin C and
600 mg allopurinol the evening before surgery, and
acetylcysteine during surgery

Reduction of pulmonary vascular endothelial dysfunction in
the group treated with ntioxidants

Castillo 2011 [176] 95
Preop: for 7 days n-3 PUFA 2 g/day
Plus, for 2 days preop until discharge vitamin C 1 g/day and
Vit E 400 IU/day

Decrease in oxidative stress-related biomarkers in atrial tissue

Gunes 2012 [174] 59 Preop: vitamin C 500 mg and Vit E 300 mg Postop: vitamin C
500 mg/day and Vit E 300 mg/day for 4 days Significant reduction of CRP

Rodrigo 2013 [177] 203 Preop: 1 g/day vitamin C plus PUFA and Vit E for 2 days
preop until discharge Decrease in oxidative stress-related biomarkers in atrial tissue

Stanger 2014 [178] 75

4 subgroups: control, vitamins, n-3 PUFAs, and a combination
of vitamins and n-3 PUFAs Attenuation of postop oxidative stress, Oxidative stress

associated with consumption of antioxidants and onset of AFVitamin group: 500 mg vitamin C + 45 IE Vit E 30 min before
reperfusion, postop and 120 min after reperfusion

Rezk 2017 [87] 100
3 days preoperatively Significantly lower incidence in vitamin C group, ICU-LOS,

need for inotropes and mechanical ventilationGroup 1: β-blocker: 5 mg bisoprolol and 2 g/day vitamin C
Group 2: β-blocker only

Vit E = vitamin E.

5. Practical Approach to Vitamin C Supplementation

5.1. Risks and Side Effects

As demonstrated above, many studies have supplemented vitamin C, but significant adverse
effects on patients in short term use have not yet been reported. This is true for low, as well as for
dosages of 200 mg/kg/day and up to extremely high dosages of 1500 mg/kg three times a week
in cancer patients [49]. Possible adverse effects are related to dosage, enteral route, and duration of
vitamin C supplementation and include:

• Diarrhea and abdominal bloating [27]
• False negative tests for gastrointestinal occult bleeding [27]
• Aggravation of iron overload in patients with hemochromatosis or other diseases requiring

frequent blood transfusions, such as thalassemia major and sideroblastic anemia [27]
• Possible adverse pro-oxidative effect in large dosages in case of iron overload [49]
• Possible hyperuricosuria [27]



Nutrients 2018, 10, 974 16 of 29

• Formation of kidney stones through precipitation of calcium oxalate, especially in patients with
chronic renal failure, hyperoxaluria and recurring formation of kidney stones [27,49]

• Hemolysis in patients with hereditary glucose-6-phosphate dehydrogenase (G6DP) deficiency,
when administered in high dosages of >4 g/day [27]

• False-high measurements of blood glucose in hand-held devices [179,180].

Importantly, vitamin C can act not only as antioxidant, but also as pro-oxidant in the presence of
redox-active transition metal ions [181]. In theory, the reduction of metal ions (e.g., iron or copper) by
vitamin C in vitro can result in the formation of highly reactive hydroxyl radicals via reaction of the
reduced metal ions with hydrogen peroxide, which is known as Fenton chemistry. Yet, this reaction
requires the availability of free, redox-active metal ions and a low ratio of vitamin C to metal ion, which
is unlikely to occur in human biology under normal circumstances [181–183]. Vitamin C might act as
prodrug to hydrogen peroxide even without metal chelators when administered in pharmacologic
concentrations but led to no hydrogen peroxide accumulation in the blood vivo [184]. In this context,
a few studies [185] have suggested a pro-oxidative effect of vitamin C, portrayed as an underlying
reason for negative effects, although none of these ever confirmed a causative relation.

5.2. Application Strategies

5.2.1. Dosing

Current literature does not support a specific vitamin C dosing strategy in cardiac surgery, in the
absence of a definitive trial. The dose typically administered by parenteral and enteral nutrition is
200 mg/day, which is recommended for the healthy population. In a study by Carr et al., standard
enteral or parenteral nutritional therapy with a mean of 125 mg/day did not prevent hypovitaminosis C
in critically ill patients [46]. Even after less invasive and elective surgery, such as maxilla-facial surgery,
higher dosages (500–2000 mg/day, mean 1150 mg/day) were required to increase plasma vitamin C levels
and compensate for the observed loss [47,186,187]. In patients experiencing significant inflammation and
oxidative stress, such as trauma, burn, sepsis and cardiac surgery patients, the vitamin C requirement seems
to increase dramatically. A dosage of 3–4 g/day parenterally seems necessary to normalize the vitamin C
plasma levels in patients with burns or sepsis [49] or critically ill trauma patients [48]. Probable causes
for this high demand are higher consumption due to the antioxidant capacity of vitamin C, as well as
increased renal clearance during vitamin C substitution.

Fowler et al. recently published a phase 1 clinical trial, suggesting that 200 mg/kg/day yields
higher plasma levels of vitamin C and more favorable Sequential Organ Failure Assessment (SOFA)
scores compared to 50 mg/kg/day in severely septic patients [51]. A very high dosage of 66 mg/kg/h
for the first 24 h was used in the study by Tanaka et al. in burn patients, which led to reduced fluid
demand and increased urine production [54,55].

In cardiac surgery patients, the dosing regimen used in the previously mentioned studies are extremely
heterogenous. Most studies use a single dose of 2 g once prior to surgery. Postoperatively, a very
small dosage of less than 1 g/day was administered in many studies [141,157,159,162,163,165,167].
However, single-dosages as high as 150 mg/kg [86] or 250 mg/kg have also been applied [158]. To our
knowledge, there is no dose-finding study on cardiac surgery patients yet.

5.2.2. Timing

Oxidative damage is highest minutes after reperfusion; hence, early administration may be
optimal. Logically, preoperative administration might refuel the body’s antioxidant capabilities,
preparing for CPB. Application of a dosage before the removal of the aortic cross-clamp and reperfusion
might achieve the minimal ROS-scavenging plasma-levels of 1–10 mmol/L [49].

In one study, the cardiac index was significantly higher in the first 6 h after the operation in
patients receiving a mega-dose of 125 mg/kg, suggesting that the effect of vitamin C might wear off
after that period of time [86]. Ruemelin et al. showed a rapid decrease in plasma concentration after



Nutrients 2018, 10, 974 17 of 29

the end of the infusion [187]. In a study by Tanaka [55], serum levels of vitamin C increased quickly
under continuous infusion, remained elevated until 12 h after infusion and decreased rapidly.

To our knowledge, no trial studied the duration of vitamin C administration in cardiac surgery
patients, or even in other critically ill patients. In cardiac surgery, the greatest trauma is related
to the surgery itself, as well as to ischemia/reperfusion after cardiopulmonary bypass. The most
relevant oxidative stress and inflammation is expected within the first hoursand days after surgery.
Bjugstadt et al. demonstrated that oxidative stress remained significant, even days after injury, while
the extent of oxidative stress on the fourth day after trauma was the most relevant for patients’
outcomes [188,189]. Therefore, the most reasonable duration for substitution might be 96 h and is also
used by Fowler et al. ([51] and NCT02106975).

5.2.3. Mode of Administration

The route of vitamin C administration may be of pivotal importance, but studies comparing the
oral versus intravenous application in patients are still missing.

Studies showed that serum vitamin C cannot be raised to physiological levels after surgery,
if administered orally, even if the highest tolerated dosage is administered enterally Intravenous
application of vitamin C results in much higher circulating ascorbate concentrations [46], while the
effects of these supra-physiological vitamin C concentrations have yet to be studied. On the other
hand, even an oral application of vitamin C was shown to be beneficial in RCTs by Sadeghpour [141],
and Dehghani [165].

Positive effects of high doses of vitamin C (if administered either orally or by infusion) on arterial
vasodilation have been reported (review in detail in [28]). Although comprehensive studies, evaluating
carefully the potential differences between oral and intravenous vitamin C, are missing, it is suggested
that intravenous application provides advantages due to higher bioavailability and faster action time
in the vascular system. When vitamin C is supplemented parenterally, supraphysiological dosages can
safely be administered and the antioxidant effects of vitamin C may be increased [49].

Another issue is the application strategy of the vitamin. One possibility to counteract rapid
metabolic clearance and drop of plasma vitamin C levels would be continuous infusion, which is
feasible and effective under UV-protection [55]. However, vitamin C’s lability allows for degradation
of the vitamin before it enters the patient. Another option might be frequent bolus dosing, as used in a
trial by Fowler et al. [51].

5.2.4. Monitoring

As outlined before, vitamin C can be measured in its oxidized form DHA. When monitoring DHA
in blood samples, it has to be kept in mind that ascorbic acid is sensitive to oxidation and degradation
during blood sampling, handling, storage and analysis. Therefore, the handling, storage and following
shipment to reference laboratories may be problematic [190]. Factors influencing the stability of DHA
in whole blood and serum are temperature, light-exposure, pH, contamination with copper or iron
and anticoagulant of the blood sample [26,191], as well as dissolved oxygen, solvent, ionic strength,
trace metals and oxidizing enzymes. In a refrigerator at 4 ◦C, the degradation of vitamin C within 24 h
is 1.8% in serum tubes and 7.2% in plasma tubes [192].

Therefore, blood samples should be drawn immediately, stored in crushed ice in a light protected
box, and be delivered within 2 h for reliable vitamin C measurements [193]. When whole blood
is immediately centrifuged, acidified and stored at −70 ◦C, ascorbic acid degrades very slowly
and can be analyzed for at least 6 years. However, due to different degradation rates depending
on the acid and anticoagulant used in sampling tubes, a quick analysis seems preferable [26,194].
High performance liquid chromatography (HPLC) with electrochemical detection is the current gold
standard of vitamin C measurement, which usually requires the stabilization of vitamin C through
acid or alcohol precipitation, usually combined with a metal chelator [191]. Robitaille and Hoffer
showed that the simpler UV light detection is equivalent to electrochemical detection [190]. A recent
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study by Pullar et al. demonstrated a good stability of DHA for up to a year at −80 ◦C, both as
plasma, as well as in extracts with perchloric acid (PCA) containing 100 µmol/l of the metal chelator
diethylenetriaminepentaacetic acid (DTPA) extracts, with a loss of 8% in 12 months [191].

Considering these influencing factors, the measurement of vitamin C is elaborate and costly and
therefore, not readily accessible in the ICU.

6. Discussion and Future Directions

The ways in which vitamin C attenuates inflammation and oxidative damage and its clinical
application is a current topic of interest. Preclinical as well as preliminary clinical studies have demonstrated
the beneficial effects of vitamin C on organ function during inflammation and oxidative stress.

No serious adverse events have been reported in any of the cited studies, highlighting the safety of
this pharmaco-nutrient. However, despite the outlined promising effects, only a few adequately designed
clinical trials have been conducted to provide robust evidence about vitamin C’s influence on organ
dysfunction. One cause might be the variance of the supplementation strategy (dose and timing) used in
the existing studies. Besides, the overall importance of existing RCTs is weakened by the heterogeneity
in outcome measuring and reporting, which hinders comparison of interventions. This problem is
encountered by so-called core outcome sets. These core outcome sets include minimal outcome parameters,
which should be measured and reported in clinical trials of a specific area. Their use ameliorates the
comparison of trials’ results and their combination, if appropriate [195]. In the future, a specific core
outcome set should be developed for trials investigating the effect of (pharmaco-)nutrition in cardiac
surgery. Larger and adequately designed clinical studies are urgently needed, before any recommendation
regarding the application of vitamin C in cardiac surgery can be made.

Any conclusive evidence of the benefits of vitamin C in cardiac surgery patients would lead to
rapid implementation of this promising therapy for four reasons: (1) The overall safety profile of
vitamin C may enable a broad use; (2) the feasibility of vitamin C administration without any dose
adjustments; (3) familiarity for clinicians and patients as a therapy for cancer and in some burn units;
(4) low costs to produce and administer.
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Abbreviations

AF Atrial Fibrillation
AKI Acute Kidney Injury
CABG Coronary Artery Bypass Graft
CPB Cardiopulmonary Bypass
CRP C-reactive Protein
DHA Dehydroascorbate
GI Gastrointestinal
ICU Intensive Care Unit
iNOS Inducible Nitric Oxide Synthetase
I/R Ischemia/Reperfusion
i.v. Intravenous
LOS Length of Stay
N.A. Not Available
NFκB Nuclear Factor kappa-light-chain enhancer of activated B cells
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nNOS Neuronal Nitric Oxide Synthetase
NO Nitric Oxide
PCA Perchloric Acid
p.o. Per Os
Postop Before Surgery
Preop After Surgery
RCT Randomized Controlled Trial
ROS Reactive Oxygen Species
Sign. Significantly
SIRS Systemic Inflammatory Response Syndrome
SOFA Sequential Organ Failure Assessment
SVCT2 Sodium-dependent Vitamin C Transporter-2
TNFα Tumor Necrosis Factor α
Vit C Vitamin C
Vit E Vitamin E/α-Tocopherol
WBC White Blood Count
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