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Abstract

CD4 T cells harboring HIV-1/SIV represent a formidable hurdle to eradicating infection, and

yet their detailed phenotype remains unknown. Here we integrate two single-cell technolo-

gies, flow cytometry and highly multiplexed quantitative RT-PCR, to characterize SIV-

infected CD4 T cells directly ex vivo. Within individual cells, we correlate the cellular pheno-

type, in terms of host protein and RNA expression, with stages of the viral life cycle defined

by combinatorial expression of viral RNAs. Spliced RNA+ infected cells display multiple

memory and activation phenotypes, indicating virus production by diverse CD4 T cell sub-

sets. In most (but not all) cells, progressive infection accompanies post-transcriptional

downregulation of CD4 protein, while surface MHC class I is largely retained. Interferon-

stimulated genes were also commonly upregulated. Thus, we demonstrate that combined

quantitation of transcriptional and post-transcriptional regulation at the single-cell level

informs in vivo mechanisms of viral replication and immune evasion.

Author summary

HIV-1, and its simian counterpart, SIV, infect and kill CD4 T cells, resulting in their mas-

sive depletion that ultimately leads to AIDS in the absence of antiretroviral therapy. With

effective therapy, these cells are largely preserved, but a subset harbors latent virus that

can persist for decades and reemerge upon therapy interruption, preventing HIV-1 cure.

To prevent or eliminate productive cellular infection, there is tremendous demand to

identify host factors expressed by these cells in vivo, which may serve as unique biomark-

ers or drug targets. Here we provide the first detailed combined transcriptomic and

protein expression profile of SIV-infected cells directly ex vivo using novel single-cell

technologies. Our survey of activation markers, interferon-stimulated genes, and viral
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restriction factors identified multiple host genes differentially expressed by SIV-infected

cells and will inform future therapeutic strategies.

Introduction

CD4 T lymphocytes that support HIV-1/SIV replication are central to the development of

AIDS-defining illness as well as to the establishment of cell-associated viral reservoirs that per-

sist despite years of antiretroviral therapy [1, 2]. Despite the clinical importance of these

infected T cells, their properties are poorly defined at the cellular level due to the difficulty of

characterizing them in vivo or directly ex vivo [3]. Barriers include their low frequency, esti-

mated at 10−3–10−6 during chronic untreated HIV-1 infection [2, 4, 5], and lack of defining

markers on their surface. Consequently, most data about infected cells is derived from either

in vitro infection models or analysis of ex vivo bulk cell populations comprised mostly of unin-

fected cells.

Ex vivo studies employing methodology to specifically identify and characterize rare in vivo
HIV-1/SIV-infected cells, as defined by expression of viral RNA, DNA or protein, are essential

to gaining a better understanding of cells harboring virus. To date, only a few studies have

accomplished this feat, and typically only a small number of surface markers were measured.

From these, there is compelling evidence for cell surface CD4 (and CD3 for SIV) downregula-

tion, a hallmark of in vitroHIV-1/SIV infection, in vivo [6–10], although an earlier report dem-

onstrated CD4 retention [4]. MHC class I downregulation, another well-described in vitro
phenomenon, has also been observed ex vivo, albeit subtly and not consistently in all hosts [7,

8]. Markers of T cell exhaustion (CTLA-4, PD-1, and TIGIT), peripheral follicular helper cells,

Th17 cells [10], T cell memory, and activation (HLA-DR) also appear elevated. These basic

phenotyping findings warrant more extensive investigation examining a greater number of

markers and including the application of more sensitive methodology not reliant on viral pro-

tein detection to identify infected cells.

To further overcome this long-standing challenge to the field and establish a more detailed

profile of elusive in vivo infected cells, we integrated two complementary approaches into a

single technology, measuring the simultaneous expression of surface proteins (by flow cytome-

try) and over 90 host genes (by highly multiplexed qPCR) with single-cell resolution [11].

Using PCR assays specific for multiple forms of viral RNA, we identify SIV-infected cells

directly ex vivo in different stages of the viral life cycle spanning early to highly productive

states. Cell surface protein and transcriptional profile is compared across each infection stage

to determine differential expression patterns associated with infection in individual cells.

Moreover, we demonstrate post-transcriptional regulatory events in single infected host cells

and correlate these events with viral gene expression.

Results

Quantitative multiplex SIV and host RNA expression within single CD4 T

cells directly ex vivo

Progression through the HIV/SIV life cycle is characterized by sequential accumulation of

multiply-spliced, singly-spliced, and unspliced viral RNA (vRNA), which thereby distinguish

discrete infection stages. We used RT-qPCR assays to identify cells transcribing SIV by expres-

sion of spliced (tat/rev, env), unspliced (gag), and total (LTR) vRNA (S1 Fig). In vitro, cell-asso-

ciated spliced viral transcript expression followed expected kinetics during SIVmac239 infection

of rhesus macaque PBMCs (S1 Fig) [12, 13], and reverse transcriptase inhibition blocked de
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novo tat/rev expression, confirming specificity for transcription from proviral DNA. In sum,

the spliced vRNA assays identify active viral transcription, while gag and LTR detect more

prevalent vRNA species not necessarily specific for gene expression.

We determined the frequency of infected cells in vivo during acute and chronic SIV infec-

tion of 14 rhesus macaques (Macaca mulatta; S1 Table), which reproduce most clinical and

virological features of HIV-1 infection in humans [14]. Unmanipulated viable memory CD4 T

cells from multiple tissues were sorted by flow cytometry at serial 3-fold dilutions in replicate

to estimate the percent positive for spliced or unspliced vRNA (Fig 1A, top). tat/rev (multiply-

spliced) RNA+ cells ranged from <0.01 to 6.4% (mean 2.0%) of memory CD4 T cells at 9-14d

post-infection (Fig 1B, S2 Fig). On average, gag+ cells were present at ~10-fold higher fre-

quency than tat/rev+ cells, comprising 0.2–80% (mean 26%) of memory CD4 T cells. Control

experiments performed in the absence of RT for three lymph node samples yielded a two-fold

reduction in gag+ cells (Fig 1B; 3%, 20%, and 36%), similar to but slightly less than previously

reported frequencies of viral DNA+ T cells during acute SIV infection [15]. We attribute the

DNA signal in our assay primarily to cytoplasmic reverse transcription products rather than

integrated provirus as the latter is not efficiently recovered by the cell lysis protocol (S3 Fig),

which may explain our lower DNA values. Not surprisingly, the frequencies of tat/rev+ and

gag+ cells were strongly correlated with one another as well as with both total cell-associated

proviral DNA measured in bulk memory CD4 T-cells and plasma viremia (Fig 1C and 1D).

These results are consistent with virus production by tat/rev+ cells detected by our assay and

recapitulate similar correlations observed in HIV-1 infection [16, 17].

To characterize viral gene expression in individual cells, we measured co-expression of

vRNAs in FACS-sorted single cells directly ex vivo from six acutely SIV-infected macaque

specimens (Fig 1A, bottom). Notably, this quantitation is sensitive and linear at the single-

copy per cell level [11]. PBMC, lymph node (LN), and jejunum tissues were chosen for analysis

based on predetermined infected cell frequencies�1% within memory CD4 T cells (Fig 1B).

Four distinct subsets of vRNA+ cells were apparent based on the quantity and identity of

vRNA species within a cell: 1) gag+ and/or LTR+, spliced vRNA–; 2) tat/rev+ only; 3) tat/
rev+env− and gag+ and/or LTR+; and 4) tat/rev+env+ and gag+ and/or LTR+ (Fig 1E and 1F).

The profile of cells positive for gag, LTR, or both, in the absence of either of the spliced tran-

scripts (hereafter referred to as stage 1) is consistent with early, abortive, or latent infection

[18, 19]. In cells positive for multiple vRNAs, vRNA levels were highly correlated with one

another (S4 Fig). 102−105 vRNA copies were expressed per cell, similar to estimates from

HIV-infected cells [17]. Compared to tat/rev−(stage 1) infected cells, tat/rev+ cells (stages 3–4)

contained ~100-fold more gag RNA, indicating expression of large quantities of unspliced

vRNA. Notably, the env−subset of tat/rev+ cells (stage 3) expressed less tat/rev per cell than the

env+ (stage 4) cells, as would be expected early in the viral life cycle prior to nuclear export of

partially processed vRNA and Tat-mediated transcriptional activation of the viral promoter.

Thus the combination and quantitative expression of viral transcripts can be used to determine

the stage of the viral life cycle in individual cells (Fig 1F).

Single-cell viral gene co-expression analysis among tat/rev+ cells revealed that the majority

(40–70%) of tat/rev+ cells also expressed gag, LTR, and env, while the remainder was largely

env–gag+LTR+ (25–45%) (Fig 1G). An unusually low proportion of env+ cells (16%) was pres-

ent in animal 08D227 (PBMC), despite abundant tat/rev RNA (Fig 1E and 1G). This may

reflect viral sequence divergence from consensus SIVsmE660 in this animal, limiting detection

by the env assay. Jejunum contained a unique subset (stage 2; 21%) in which tat/rev was the

only vRNA detected, and at very low copies per cell. Together, these data further support tat/
rev expression as a marker of virus-producing cells [18, 19], and we therefore consider these

cells productively infected.

Phenotype, transcriptome of ex vivo SIV RNA+ cells
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To identify cellular factors associated with viral infection at the single-cell level, differential

host gene expression between uninfected cells and cells at each infection stage (Fig 1F) was

assessed. Genes involved in T-cell activation, cell cycle regulation, signaling, viral restriction,

Fig 1. in vivo SIV-infected cell frequency and single-cell viral RNA expression. SIV-infected macaque

specimens from 14 animals were surveyed for spliced and unspliced nucleic acid positive memory (CD95+)

CD4 T-cells by limiting dilution FACS sorting and qPCR. Animals are described in S1 Table. (A) Schematic of

the experimental workflow. (B) The frequency of tat/rev+ and gag+ cells are plotted alongside (left) and against

each other (right), against total proviral DNA (gag) in bulk sorted memory CD4 T-cells (C), and against

concurrent viremia (D). gag DNA+ cell frequency, determined by excluding reverse transcriptase (“RT–“), is

also shown for a subset in (B); bars represent means. In bivariate plots, each animal is represented by a unique

symbol and chronic infection by circles. (E) Single-cell SIV transcript levels within memory CD4 T cells from

d10 SIVmac251 (AY69, n = 3 tissues) and d14 SIVsmE660 (PBMC, n = 3 animals) infected rhesus macaques

(subset from B-D). The relative (Et) and absolute quantity of env and tat/rev (top) and gag and LTR (bottom)

transcripts per cell is shown. Undetectable mRNA is plotted as a scatter near the origin for visualization.

Symbol color corresponds to the number and type of viral transcripts detected in each cell; number of cells

analyzed is provided in S3 Table. (F) Pictorial of viral life cycle with corresponding combination of viral genes

present and symbol colors used herein. See also S1 Fig. (G) Pie charts depict the proportion of tat/rev+ cells

expressing additional viral genes. Experiments were performed once for each animal and all data is shown.

https://doi.org/10.1371/journal.ppat.1006445.g001
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and interferon response were selected for analysis (S2 Table). Differential gene expression was

performed as previously described [20], with cell infection status modeled as a discrete covari-

ate and each infection stage coefficient tested against uninfected cells (stage 0). Both the pro-

portion of cells positive for a gene and the RNA copies per positive cell were considered.

Among PBMC specimens, nine of the measured genes were altered in one or more infected

cell populations, of which CD28, ICOS,NKG7, and TCF7 differed in multiple animals (Fig 2A–

2D, S5 Fig). Over 35 genes were differentially expressed by infected cells in lymph node and

jejunum from animal AY69, and several of these genes were common to both tissues (Fig 2E–

2H). As with PBMC, these included several activation markers and interferon-stimulated

genes. Among productively infected (stages 3–4) cells, BAX, CD28,CTLA4, FLIP, ICOS,

CXCL10, and OASL were upregulated. BAX and ICOSwere differentially expressed in all three

tissues form this animal. Genes encoding host proteins essential for viral infection and replica-

tion, the co-receptor CCR5 and vRNA nuclear export factor XPO1, were also upregulated in

lymph node infected cells. The largest magnitude differences between uninfected and produc-

tively infected cells were observed in the jejunum, with>2-fold increases in BAX, CTLA4,

ICOS, IFIT3, IL2RG, IL6R, LAT, OAS2,OASL, PRKACB, TNF, and USP18. The considerable

heterogeneity in host gene expression across animals, tissue type, and cell infection status indi-

cates that viral expression occurs in a wide range of distinct subsets of CD4 T cells–making

selective targeting of infected cells, necessary for cure modalities, a much greater hurdle.

Single-cell post-transcriptional CD4 downregulation and MHC class I

protein expression by SIV RNA+ CD4 T cells

Combining flow cytometric single-cell immunophenotyping and RNA quantitation for each

cell allows us to define post-transcriptional gene regulatory events within single cells. In in
vitromodels, HIV/SIV downregulate expression of several surface proteins on infected cells

via putative post-translational mechanisms [21–29], but the degree to which this occurs in vivo
is largely unknown. By comparing surface CD4 protein levels on uninfected and stage 3–4

infected CD4 T cells, we confirmed CD4 protein downmodulation on in vivo infected cells,

but only on a subset of cells in jejunum and lymph node (Fig 3A). Indeed, the majority of tat/
rev+ cells in PBMC (>95%) and lymph node (>70%) retained surface CD4 at levels compara-

ble to uninfected cells. Expression was not reduced in stage 1 (spliced vRNA-) infected cells

(S6 Fig). Because SIV Nef also downregulates CD3 [22], sorting from the three additional

PBMC specimens included CD3-negative cells (S2 Fig) and surface CD4 was indeed dimin-

ished on 40–55% of stage 3–4 cells and downregulation correlated with decreased CD3 (Fig

3B, S6 Fig). Overall, the decrease in surface CD4 on downmodulated cells was ~90%, indicat-

ing residual surface CD4 despite active SIV transcription. Remarkably, the nine stage 2 (tat/
rev+ only) cells observed only in jejunum expressed significantly more surface CD4 (and CD3)

than uninfected cells, supporting the classification of this population as a unique subset of

infected cells distinct from stages 3–4. Taken together, CD4 downmodulation in vivo is hetero-

geneous, varying across anatomical sites and among infected cells within a specimen, and indi-

cates that this process may not be critical to viral pathogenesis.

To explore the mechanism of CD4 downmodulation within single cells infected in vivo, we

quantified tat/rev and CD4 transcript levels. At the one-cell level, surface CD4 protein was

inversely associated with tat/rev RNA (Fig 3C and 3D). CD4 protein downmodulation was

not due to decreased CD4mRNA (Fig 3D and 3E, S6 Fig); in fact, we observed an association

with higher CD4mRNA levels. Moreover, we observed a progression of CD4 (and CD3) pro-

tein downmodulation, and increased CD4 gene expression, in concert with viral transcription.

These findings demonstrate CD4 regulation by SIV in vivo via either post-transcriptional or

Phenotype, transcriptome of ex vivo SIV RNA+ cells
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post-translational mechanisms. Of note, despite similar tat/rev expression (>1000 copies/cell)

observed in AY69 PBMC, lymph node, and jejunum, surface CD4 was unchanged on tat/rev+

Fig 2. Differential host gene expression by in vivo SIV-infected T cells. (A) Genes showing a change in

expression level or proportion in single cells from one or more infection states compared to uninfected cells in

PBMC from one or more animals (n = 4). Significant changes (FDR < 0.1) are indicated (*). Plots display the MAST

estimates of average frequency of expression (x-axis) and average expression level in cells when a gene is

expressed (y-axis) for each gene by cell infection state (ellipse). Boundaries reflect the 90% bivariate Wald test

confidence interval (Chi-square, 2 degrees of freedom). Contours with minimal or no overlap are more likely to be

associated with a significant difference. The number of cells analyzed from each infection state is shown in S3 Table.

(B) PBMC Z-statistics (standardized model coefficients) show expression across animals and infection stages by

combining (using Stouffer’s method) the frequency of expression and continuous expression. Expression is mean

centered by row. (C) Venn diagram of DE genes identified by the hurdle likelihood ratio test, common to PBMC from

multiple animals. (D) Estimated average expression of four significant genes from (A) by cellular infection state. For

each animal, significant differences from uninfected cells (at the 10% level after multiple testing adjustment across

92 genes tested) are marked with an asterisk. Unadjusted 95% confidence bounds are shown for the expression

level. (E-G) Analyses of animal AY69 lymph node and jejunum as in (A-C). (H) Venn diagram of DE genes common

across tissues within animal AY69. Two genes common to all tissues are indicated. Experiments were performed

once for each specimen and all data is shown.

https://doi.org/10.1371/journal.ppat.1006445.g002
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PBMC. Thus while high levels of tat/rev correlate with lower expression of CD4 protein, robust

tat/rev expression is not sufficient for decreased expression, and therefore may require tissue-

specific factors.

Post-translational downregulation of MHC class I HLA-A/B/C proteins from the surface of

in vitroHIV/SIV-infected lymphocytes suggests that this may be a mechanism for evading

cytotoxic T cell recognition in vivo [30–32]. Surprisingly, we found no consistent evidence of

MHC class I downregulation on productively infected tat/rev+ cells, with the vast majority pos-

itive for HLA-A/B/C surface staining, even in cells that substantially downregulated CD4 pro-

tein (Fig 3F and 3G, S6 Fig). Decreased MHC class I surface expression was observed in tat/
rev+ cells in two animals (08D108, p = 0.006 and 8–116, p = 0.04), although the amount of

Fig 3. Post-transcriptional CD4 downregulation and MHC class I preservation on in vivo infected T cells.

(A) FACS staining distribution of surface CD4 protein on SIV tat/rev+ productively infected (green; n = number of

cells analyzed) memory CD95+ CD4 T cells from animal AY69 PBMC, lymph node, and jejunum compared to

uninfected cells (gray). (B) FACS surface staining for CD3 and CD4 on tat/rev+ cells from memory CD3+/- CD4 T

cells in PBMC from 3 additional animals. (C) FACS CD4 surface fluorescence is plotted against tat/rev mRNA

copies. Dot colors correspond to Fig 1F. (D) tat/rev (top) and CD4 (bottom) mRNA copies per tat/rev+ cell is plotted

by surface CD4 protein expression. (E) Surface CD4 protein (fluorescence) is plotted against CD4 mRNA (left) or

surface CD3 protein (right). Dot size corresponds to tat/rev mRNA copies per cell. FACS surface staining of

surface MHC class I (F) and co-expression with surface CD4 (G) on tat/rev+ cells. Experiments were performed

once for each specimen and all data is shown.

https://doi.org/10.1371/journal.ppat.1006445.g003
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protein expressed per cell remained within the range observed for uninfected cells. Sequence

analysis of the nef coding region in the SIVsmE660 inoculum did not reveal evidence of muta-

tions known to impair MHC downmodulatory activity (S6 Fig) [23, 30]. Taken together, we

find that MHC class I downregulation is limited in vivo and thus this proposed mechanism of

immune evasion may not operate in pathogenic SIV infection.

Surface activation and memory markers on SIV RNA+ CD4 T cells

To define phenotypic traits that distinguish infected cells, we measured expression of activa-

tion and differentiation surface markers. Productively infected tat/rev+ cells were nearly exclu-

sively CD28+ central memory (CM) in lymph node and jejunum (Fig 4A, S4 Table). Among

PBMC, 3–74% of tat/rev+ cells were effector memory (EM), suggesting preferential infection

of CM, EM or no bias across hosts. The activation state of tat/rev+ cells was also diverse. In

AY69, tat/rev+ jejunal cells largely expressed CD69 with variable CD38, while tat/rev+ PBMCs

were exclusively CD69–, and lymph node was mixed (Fig 4B). tat/rev+ PBMCs from the other

animals were also remarkably heterogeneous. Surprisingly, the presence of CD69–CD38– tat/
rev+ cells in multiple animals and tissues suggests that cellular activation may not be required

Fig 4. Surface phenotype of in vivo SIV-infected CD4 T cells. (A) Memory differentiation status of tat/rev+

infected cells. CD28 and CD95 surface protein expression by tat/rev+ cells (green) is overlaid atop the profile

of SIV negative cells (gray). The percentage of cells negative for CD28 is indicated for each population. Inset

pie charts depict the proportion of tat/rev+ cells that are central (CM; white) and effector memory (EM; black).

See also S4 Table. (B) Surface staining for activation markers, CD38 and CD69, is shown for tat/rev+ cells.

(C) Surface protein expression distribution of CD95, ICOS, CD38, CD69, and HLA-DR by uninfected (gray),

gag+ and/or LTR+ (orange; early, latent or abortive infection), and tat/rev+ (green) cells. Significant differences

were determined by ANOVA across the three populations (p<0.05) followed by Student’s t-test between

populations (p<0.05, *). Experiments were performed once for each specimen (n = 6) and all data is shown.

https://doi.org/10.1371/journal.ppat.1006445.g004
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for abundant viral gene expression in vivo. In addition, the activation profiles of uninfected T

cells varied markedly among animals, likely reflecting variable degrees of host immune activa-

tion during acute infection. These findings are summarized in S4 Table.

These differential surface protein expression profiles were further quantified by comparing

the staining distribution of uninfected, tat/rev− (stage 1), and tat/rev+ (stage 3–4) infected cells.

CD95 and ICOS showed higher expression on both tat/rev+ and tat/rev− infected cells com-

pared to uninfected cells (Fig 4C). Surface expression of CD38, CD69, and HLA-DR was also

elevated on tat/rev+ cells in one or two specimens, while there was either no significant differ-

ence or diminished expression on tat/rev+ cells for other specimens. Of note, within animal

AY69, specific activation markers were upregulated dependent on the tissue: CD69 in lymph

node versus CD38 in jejunum. Overall, the broad distribution of these activation markers on

the surface of tat/rev+ cells indicates highly variable expression among virus-producing cells.

In most cases, differentiation and activation marker expression did not differ between produc-

tive tat/rev+ and non-productive tat/rev− infected cells. Exceptions included elevated CD95,

ICOS, and CD38 (jejunum) or CD95 and CD69 (lymph node) by tat/rev+ cells. Conversely,

the stage 1 infected cells, which presumably represent cells at the time of or shortly after infec-

tion, exhibited significantly higher surface CD4 and CD3 relative to uninfected (and tat/rev+)

cells in some specimens (S6 Fig). The distinct protein phenotype of stage 1 cells relative to

uninfected cells with respect to CD4, CD3, CD95, and ICOS (among others shown in Fig 4C)

provides independent validation of the gag and LTR assays to identify a discrete subset of

infected cells.

Discussion

We integrated single-cell transcriptomic and flow cytometric technologies and successfully

quantified and characterized rare in vivo SIV-infected CD4 T cells, including demonstration

of post-transcriptional gene regulation at the one-cell level. Within single cells, different

combinations of viral RNA molecules were co-expressed in distinct patterns and quantities,

consistent with a continuum of virus replication stages. Productively infected tat/rev+ cells

commonly, but not universally, expressed elevated levels of host cell genes and proteins associ-

ated with T cell activation. Protein profiling revealed broad similarities to uninfected cells and,

surprisingly, remarkable heterogeneity among tat/rev+ cells with respect to CD4 downregula-

tion, memory phenotype, and activation state, along with a lack of consistent evidence of

MHC class I downregulation, even within CD4dim cells. Ample viral gene expression in mem-

ory cells devoid of multiple T cell activation surface markers indicates that an activated state is

not required for productive CCR5-tropic virus infection, corroborating several previous stud-

ies primarily investigating CXCR4-tropic virus [33–36].

Our finding that MHC class I downregulation was limited on the surface of productively in
vivo infected CD4 T cells is at odds with several prior studies demonstrating the importance of

this SIV Nef function in vivo [30, 37]. In these studies, strong selective pressure resulted in

either reversion of a Nef point mutation or compensatory mutations elsewhere in Nef that

restored MHC-downregulating activity. However, it is also possible that other unknown Nef

activities were affected by these mutations and contributed to the selective pressure. One limi-

tation of our approach was the use of a pan-MHC class I antibody. Maintenance of nonclassi-

cal MHC class I molecules (e.g.Mamu-E) on the cell surface may mask downregulation of

classical class I molecules and thus corroboration with additional antibody specificities is war-

ranted. Nonetheless, our data calls into question the extent to which MHC class I is downregu-

lated in vivo and the relevance of the hypothesis that the virus modulates the expression of

MHC as a mechanism of immune escape.
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Paradoxically, several ISGs with known antiviral properties were upregulated in produc-

tively infected cells, suggesting ineffective inhibition of SIV replication within CD4 T cells by

these ISGs. Increased ISG expression may reflect a more activated state that predisposes cells

to express viral genes. Alternatively, productive infection may directly or indirectly trigger ISG

expression following autocrine or paracrine interferon signaling, respectively. It should be

emphasized that gene expression differences between infected and uninfected cells may indi-

cate pre-infection profiles, post-infection virus-induced modulation, or a combination

thereof.

The phenotype and host/viral transcriptome of infected cells varied considerably across the

different tissues analyzed. First, a rare subset of tat/rev+ infected cells lacking other vRNA mol-

ecules (stage 2) was present only in the jejunum, and not in PBMC or LN (Fig 1). This may

reflect greater basal T cell activation in jejunum fostering low-level viral transcription without

progression to a more productive state. Indeed, CD69 expression was greatest in jejunum,

both among vRNA− and vRNA+ cells (Fig 4B). Second, the largest fold-changes in host gene

expression by infected cells were observed in the jejunum; specifically among cells in the highly

productive stage 4 (Fig 2G). Third, some differentially expressed genes were upregulated

among infected cells in one tissue, while downregulated in a different tissue (e.g. IL6R, LEF1,

NKG7, and TCF7), even within the same animal. Fourth, CD4 downmodulation, while

observed in all three tissues, was greater in jejunum than LN and PBMC. These inter-tissue dif-

ferences do not appear to be associated with viral transcription levels as infected cells in each

tissue expressed comparable quantities of the vRNAs measured. Rather, other factors inherent

to the anatomical site, such as cellular activation, metabolism, cytokine milieu, and interferon-

responsiveness may contribute to the divergent, tissue-specific properties of in vivo infected

cells [38]. Given that the lymph node and jejunum analyses were derived from a single animal,

these observations will need to be confirmed in additional animals in future studies.

Some caveats to our findings should be considered. First, the SIV gene expression assays do

not distinguish between viral DNA and RNA. As a result, the gag and LTR assays, neither of

which relies on RNA splicing, measure the presence of RNA, DNA, or both. Therefore positiv-

ity for these viral genes in the absence of spliced RNA (stage 1) is unlikely to reflect viral tran-

scription and we refer these cells as most likely residing in early, latent, or abortive infection

states. We cannot distinguish between these different infection stages using the current tech-

nology. For example, virion-derived genomic RNA, nascent cytoplasmic reverse transcribed

proviral DNA, and silent integrated proviral DNA (although inefficiently detected in our sys-

tem) would all be similarly characterized as gag and/or LTR positive. This distinction also has

important implications for measuring infected cell frequencies. By capturing both genomic

viral RNA and DNA, our approach may report higher values than previous studies reliant on

DNA alone, particularly during acute viremia when virion RNA is pervasive. The reduction

from 60% to 36% infection among memory CD4 T cells in one lymph node sample when

vRNA was excluded is consistent with a substantial vRNA contribution.

Second, the viral life cycle staging we assigned to single infected cells should be considered

a theoretical framework rather than a definitive consecutive series. Productive infection (stages

3 and 4), for example, may be followed by transition to a quiescent state in which low levels of

unspliced RNA but little to no spliced RNAs are expressed (stage 1); a status that has been

described in studies of treatment suppressed HIV-1 infection [18, 39]. However, given the con-

text of untreated acute infection from which all of our single-cell analyses were derived, we

believe the ordered staging likely applies to most cells. Viral cytopathic effects and cell-medi-

ated immunity are expected to rapidly eliminate most stage 3–4 infected memory CD4 T cells.

Third, the number of host factors and cell types investigated in our single-cell approach was

limited. Flow cytometric indexed single-cell sorting is currently limited to ~15 parameters,
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while the Fluidigm Biomark qPCR gene expression platform measures 96 user-determined

genes. Furthermore, in the present study, for pragmatic reasons (to enrich for vRNA+ cells),

we examined memory CD4 T cells at peak viremia time points. The extent to which our find-

ings apply to naïve T cells, non-lymphoid cells, and post-acute infection settings requires fur-

ther investigation.

Given the remarkable phenotypic and transcriptional diversity of in vivo infected cells

observed here, therapeutic strategies that aim to target infected cells must address an eclectic

mix of CD4 T cells. Future studies employing single-cell RNA-Seq technology and 35-

40-parameter flow cytometry sorting will further increase the power of this approach, as will the

incorporation of DNA assays to specifically identify latent infection. These data illustrate the

increased information content from integrating these single-cell technologies for revealing

immunobiology of viral infections, including, for the first time, the ability to quantify post-tran-

scriptional regulation at the single-cell level. This technology will have broad applicability in

defining regulatory normal and aberrant mechanisms in cell biology and pathogenic infections.

Materials and methods

In vitro SIV infection

Rhesus macaque PBMC were stimulated with PHA-P (Sigma L9017) for three days followed

by spinoculation with SIVmac239 virus generated by plasmid transfection of 293T cells

(ATCC CRL-3216). Infected cell cultures were maintained in recombinant human IL-2 (1 U/

μl; R&D Systems 202-IL) and indinavir (2 μm) to limit virus replication to a single round.

Lamivudine (3TC; 10μM) was used to prevent productive infection. Cells were lysed for RNA

extraction at serial time points (RNaqueous kit, Ambion) or stained for intracellular Gag

expression (BD Fix/Perm kit, Coulter KC57RD1 anti-p24). cDNA was synthesized from RNA

using the DyNAmo cDNA Synthesis Kit (Thermo Scientific) as per the manufacturer’s instruc-

tions. Reverse transcription was primed with random hexamers. The following reagents were

obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH: Indinavir Sulfate, Lamivudine.

Quantitative RT-PCR for SIV gene expression

Viral genomic sequences from thirteen SIVmac251 and SIVsmE660 isolates were used to

identify conserved sequences within individual SIV tat/rev, env, and LTR for maximal cross-

reactivity. Probes for spliced genes span exon-exon junctions to minimize amplification of

unspliced cDNA. Primer/probe sequences were optimized on bulk RNA extracts from SIV-

mac239 and SIVsmE660 in vitro infected cells. qPCR was performed using Platinum Taq poly-

merase as per manufacturer’s instructions (Life Technologies). Unspliced viral genomic RNA

was measured using SIV gag qPCR primer and probe sequences previously described [40]. The

SIV LTR.U3 qPCR primer probe set consisted of the following: forward: equimolar amounts of

5’-TAC CCA GAA GAG TTT GGA AGC AAG TCA-3’ and 5’-TAC CCA GAA GAG TTT

GGT AGT AAG TCA-3’; reverse: equimolar amounts of 5’-TTG TCA GCC ATG TTA AGA

AGG CCT CTT G-3’ and 5’-TTG TCA GCC ATT TTA WWA AKG CCT CTT G-3’; probe:

equimolar amounts of 5’-CTG TCA GAG GAA GAG GTT AGA AGA AGG CTA AC-3’ and

5’-TTG TCA GAG GAA GAG GTA AAG AGA AGG CTA AC-3’. The SIV env assay consisted

of the following: forward: 5’-AGA GGC CTC CGG TTG CA-3’; reverse: equimolar amounts of

5’-CTT ACT TGT TTG ATG CAG AAG ATG-3’ and 5’-CTT ACT TGT TTG ATG CAG RAR

RTG-3’; probe: 5’-TTA GYC TTA GYC TTY TTC GGA GTT CTT CTT-3’. The SIV tat/rev
assay: forward: equimolar amounts of 5’-GAA CTC CGA AAA AGG CTA AGG CTA ATA

CA-3’ and 5’-GAA CTC CGA ARA AGR CTA AGR CTA ATM CA-3’; reverse: equimolar
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amounts of 5’-CCK TCT CCT TCT TCT CCT TCT TTG GTT-3’ and 5’-CCG TCT CRT TCT

TTG CCT TCT CTG GTT-3’; probe: equimolar amounts of 5’-CTGCATCAAACAACCCA

TATCCAACAGGACC-3’ and 5’-CTG CAT CAA ACA A ATC CCT ATC CAC AAG GRC

C-3’.

Animals and SIV infection

Fourteen colony-bred Indian-origin male and female rhesus macaques (age 3 to 9 years old)

were infected with various SIV strains administered as follows: intravenous SIVmac251 (100

MID50; VRC animal protocols 150.1, 356, 417), intrarectal SIVmac251 (AID50; VRC 211.3), and

intrarectal SIVsmE660 (AID30; VRC 332) (S1 Table). Virus preparations of 1.0 ml were inocu-

lated via the saphenous vein or a lubricated feeding catheter inserted into the rectum. Infection

duration ranged from 4 days to 8 months.

Cell sorting and flow cytometry

Viable mononuclear cell suspensions were stained with fluorochrome-conjugated monoclonal

antibodies from BD Biosicences (San Jose, CA, unless otherwise indicated) to CD4 (clone

OKT4, BioLegend #317434), CD3 (SP34-2, #557757), CD8 (RPA-T8, in-house Qdot655 conju-

gate), CD28 (CD28.2, #555730), CD95 (DX2, #558814). Dead cells and monocytes were

excluded by: LIVE/DEAD Aqua (ThermoFisher) and CD14 (M5E2 in-house Ax700PE). Mem-

ory (CD95+) CD8- CD3+ T-cells were sorted on a BD FACSAria (BD Biosciences) as either

serial limiting 3-fold dilutions ranging from 3–1000 cells per well for frequency calculations or

as single cells (n = ~1850) for Biomark transcriptomic analysis in 96-well plates (Fig 1A, top

and bottom, respectively). The total number of cells sorted for limiting dilution analysis is

shown in S1 Table for each specimen. For example, a typical limiting dilution sort plate con-

sisted of 6 replicates each of 500 and 150 cells/well and 12 replicates each of 50, 15, and 5 cells/

well (n = 4740 cells analyzed). For animals 08D108, 08D227, and 8–116, CD3- cells were

included to account for CD3 downmodulation by SIV Nef [22] while CD16 (3G8, BioLegend

#302048) and CD20 (2H7, in-house Ax700PE) were used to exclude NK and B cells. Addi-

tional markers recorded for indexed phenotyping of single cells mapped by well position

were HLA-DR (L243, #339194), CD69 (FN50, in-house Ax594), ICOS (C398.4A, BioLegend

#313505), CD38 (OKT10, NHP Reagent Resource, PE), CCR7 (150503, in-house Ax680), and

MHC class I (W6/32, BioLegend #311430) [41]. All clones were previously determined to cross-

react with rhesus macaques (NHP Reagent Resource) and lots were individually titrated to iden-

tify optimal concentration per test. Cells were deposited into 96-well PCR plates (GeneMate,

Bioexpress) for immediate lysis (within ~100 μsec from protein detection) and RNA extraction.

3D8 cells containing a single copy of integrated SIV DNA [42] were FACS sorted in control

experiments and as standard curves for absolute DNA quantitation. To minimize changes in

cell RNA and protein expression prior to analysis, cell samples were maintained on ice at all

times, with the exception of the surface stain (15 min) and elapsed sorting time (~30 min). All

samples were previously cryopreserved, which was determined not to impact viral gene expres-

sion (S1 Table). 96-well PCR collection plates were maintained on pre-chilled aluminum blocks

during and after the sort. FACS data was analyzed using FlowJo v9.8. Cells unlikely to be CD4

T-cells were excluded from downstream FACS analyses if they met the following three criteria:

CD4 fluorescence intensity below cut-off (<175 for AY69 LN;<500 for 08D227, 08D108,

8–116), undetected CD4mRNA, and undetected CD40LGmRNA expression. Undetected

CD3EmRNA was used as an additional exclusion criteria for animals 08D108, 08D227, and

8–116. tat/rev+ cells with downregulated CD4 (“dim”) were defined by fluorescence staining

intensity as follows:<1100 in lymph node and PBMC;<3000 in jejunum.
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Limiting dilution and single cell qRT-PCR

RNA from sorted cells collected in 10 μl of SuperScript III-Platinum Taq One-step qRT-PCR

mastermix (Life Technologies) was directly reverse transcribed and PCR pre-amplified, as pre-

viously described [11], with the following thermocycling conditions: 50˚C for 15 minutes, 95˚C

for 2 minutes, followed by 18 cycles of 95˚C for 15 seconds and 60˚C for 4 minutes. Gene-spe-

cific primers were used for priming both the RT and PCR pre-amplification reactions. cDNA

was diluted 5-fold and subjected to either conventional qPCR on an ABI 7900 real-time PCR

instrument for 40 cycles or multiplexed qPCR on a Fluidigm Biomark HD system. The fre-

quency of cells expressing a given viral transcript was calculated by plotting the fraction of rep-

licate wells positive by RT-qPCR at each limiting dilution versus the number of cells sorted per

well, followed by Poisson distribution analysis of the cell dilution corresponding to one posi-

tive cell per well, based on the expected frequency of 63.2% of wells positive at that dilution

(Fig 1A). All qPCR was performed in dedicated plasmid-free workspaces. Multiple PCR exper-

iments were negative for all viral genes, including animal AY69 pre-infection PBMC and day 4

post-infection AZ26 and ZC55 PBMC (S1 Table), indicating minimal SIV RNA or DNA PCR

contamination.

Quantitative gene expression in single cells was measured using the Fluidigm Biomark

microfluidic chip platform (Fig 1A). TaqMan assays (Life Technologies) consisted primarily

of FAM-MGB probes that span exon-exon junctions (S2 Table) and passed qualification tests

to establish both efficient and linear amplification as well as multiplexing capability [11].

Assays not specific for exon-exon junctions or otherwise capable of detecting genomic DNA

(suffix “s1” and “g1”) were considered unlikely to influence our gene expression results

because: 1) genomic DNA is not readily accessed by our cell lysis protocol (S3 Fig), and 2) all

cells are expected to contain the same number of genomic DNA copies. Samples and assays

were loaded on the 96.96 Biomark Dynamic Array Chip for Gene Expression following manu-

facturer’s instructions. Briefly, 3.6 ul of 1:5 diluted cDNA was mixed with 4.4 ul of a 1:10 mix-

ture of Fluidigm Sample Loading Regent and Taq Universal PCR Master Mix to create the

real-time reaction sample mix. Equal volume of 20X TaqMan assay and Fluidigm GE Assay

Loading Reagent prior were combined to generate the 10X assay mix. 5 μl of each mix was

loaded on the chip inlets. Biomark qPCR was performed using the GE 96.96 Standard V.1 pro-

tocol with 40 cycles of PCR and analyzed using the auto initialized Ct thresholds for each

detector. Relative qPCR values are reported as expression threshold (Et, where Et = 40-Ct).

Absolute RNA copies were calculated as 2(Et-13), given Et = 13 corresponds to a single copy of

RNA using this protocol [11]. Positivity for either gag or LTR within single cells likely reflects

variable qPCR assay detection at�2 copies.

Differential gene expression analysis

Single cell gene expression data was analyzed using the hurdle model framework implemented

in the MAST package [43]. Data was filtered for cells with low cellular detection rate (CDR)

(< 12.5% of genes expressed, 9 cells) [43]. Additional cells not flagged by this method that

expressed a frequency of genes similar to that of excluded events were also omitted from analy-

sis to eliminate all potential outlier cells (S7 Fig). For samples sorted to include CD3- cells,

there was substantial variation that could not be explained by potential confounders such as

animal or chip after filtering. A subset of cells from stage 0 (viral RNA negative) from different

animals formed a distinct cluster in tSNE space (S7B Fig, red, 55 cells) that was not associated

with cellular detection rate. Because we are interested in differences between cellular infection

states within each animal, we assessed gene expression differences between this outlier cluster

and cells not in the cluster (S7C Fig). Monocyte genes, NLRP3 and NOD2, were enriched in
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this cluster, while T cell genes, CD3, CD28, and CD40LG, were relatively absent, indicating that

these cells are most likely not T cells. This provided biological justification for excluding this

cell cluster from the downstream analysis. The number of cells in each infection state from

each animal is shown in S3 Table. Differential gene expression analysis was performed as pre-

viously described [20, 43]. Gene expression in infected cell subsets, defined by the number and

type (unspliced or spliced) of viral genes expressed (Fig 1E and 1F), was modeled using the

hurdle generalized linear model implemented in MAST and differences between infected cell

subsets in each animal and tissue were tested using the hurdle likelihood ratio test. The MAST

hurdle model tests for a difference in proportion (percent cells positive for a gene) and a differ-

ence in conditional mean (Et) and provides a combined likelihood ratio test that includes both

sources of information. Multiple testing adjustment was applied using the Benjamini Hoch-

berg FDR method across all tests and significance was called at a false discovery rate threshold

of 10%. Differentially expressed genes were visualized by plotting point estimates of group

effects from the continuous and discrete parts of the model with simultaneous 90% bivariate

confidence ellipses (Chi-square, 2 d.f.) around the estimates. These generally agree with the

likelihood ratio test, but can be less conservative for small sample sizes in some instances. The

estimated average expression level for cells from each subject and group was calculated from

the hurdle model (controlling for CDR) fit to the single cell expression data, as described [43–

45]. Briefly, the estimate combines the discrete and continuous estimates, with standard errors

derived via the delta method, and can be interpreted as the average expression that would be

expected to be observed in a bulk cell experiment.

Statistics

Significant differences in gene or surface protein (mean fluorescence) expression between two

cell populations were determined by the Student’s t-test (p<0.05). For protein comparisons

involving three or more populations, differences were first assessed by ANOVA (p<0.05) fol-

lowed by Student’s t-test. All single cell protein and gene expression experiments were per-

formed on six biological replicates with multiple cells measured per animal. Sample size was

determined by available resources, i.e. number of SIV-infected animals and viable cells from

each specimen. Given previous experience analyzing Biomark single-cell data, the available

number of cells was deemed sufficient.

Ethics statement

All animals were cared for in accordance with guidelines set by the NIH Guide for the Care

and Use of Animals. The NIH Vaccine Research Center IACUC approved all animal protocols

and procedures. Animal protocols included ASPs 150, 356, 417, 211, and 332.

Data availability

All data for the single-cell gene expression analysis are available at https://zenodo.org/record/

803385.

Supporting information

S1 Fig. SIV gene assays and in vitro SIV gene expression detection by real-time qPCR. (A)

qPCR assays to detect the indicated SIV RNA molecules are depicted by arrows positioned at

location of forward (right arrow) and reverse (left arrow) primers for amplification of tran-

scripts encoding the gene(s) in the corresponding color. For spliced transcripts env and tat/rev,
probes span the splice junction. Shading indicates region amplified; introns are represented by
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dashed lines. Viral life cycle stages characterized by expression of each SIV RNA is shown at

right. (B) SIV gene expression in rhesus macaque PBMC infected in vitro with SIVmac239 in

the absence or presence of 3TC (open symbols). Bulk RNA harvested at the indicated time post-

infection was reverse transcribed and analyzed for viral and alb cDNA by qPCR in triplicate;

mean and standard deviation are plotted. Relative gene expression was calculated as: 2^

(EtvRNA—Etalb). (C) In vitro SIV gene expression analysis as in (B) with SIV env assay included.

(TIF)

S2 Fig. Flow cytometric gating scheme for isolation of memory CD4 T cells. (A) FACS gat-

ing tree employed for limiting dilution and single cell sorting of memory CD4 T cells from

jejunum, lymph node, and PBMC from animal AY69. (B) FACS gating tree employed for lim-

iting dilution and single cell sorting of memory CD4 T cells from PBMC of animals 08D108,

08D227, and 8–116.

(TIF)

S3 Fig. Inefficient recovery of integrated SIV proviral DNA using standard one-step

RT-PCR lysis protocol. 3D8 cells containing a single copy of integrated SIV DNA were FACS

sorted at 30 cells per well (n = 6 replicates) followed by lysis for RNA / DNA recovery by the

indicated protocol and qPCR for integrated SIV DNA using Alu-LTR nested PCR. Protocols

included: 1) “Manufacturer’s lysis” (blue), ThermoFisher SuperScript III—Platinum Taq One-

step qRT-PCR protocol as described in Materials and Methods; 2) “Proteinase K lysis” (green),

commonly used for harvesting cell-associated DNA; and 3) “modified manufacturer’s lysis”

(red), which incorporates a Proteinase K lysis step into the one-step qRT-PCR protocol. The

relative gene copies is plotted as 2(Et), where Et = 40-Ct. Alu-LTR copies increased 10,000-fold

by addition of a Proteinase K nuclear membrane lysis step to the manufacturer’s lysis protocol.

Low level qPCR amplifcation of unintegrated LTR sequences is known to occur in this assay

via Alu-independent read-through transcription of RNA or DNA primed by a single LTR

primer in the first round PCR, and subsequent qPCR amplification by the LTR-specific for-

ward and reverse primers during the second round. This likely explains the signal in samples

lysed with the manufacturer’s standard protocol, in which cytoplasmic viral RNA containing

LTR would be readily accessible. All lysis conditions were subjected to the same number of

pre-amplification PCR cycles and qPCR template was normalized by cellular input.

(TIF)

S4 Fig. Correlation between viral genes co-expressed within a cell. Bivariate plots of the SIV

RNA expression by individual memory CD4 T cells isolated from d10 SIVmac251-infected

AY69 rhesus macaque lymph node. RNA copies expressed per cell is plotted for each viral

gene versus all other viral genes. Linear regression analysis is shown in red with correlation

coefficient and p-value indicated. Dot colors correspond to infection states depicted in Fig 1F.

(TIF)

S5 Fig. Single cell differential host cell gene expression across vRNA+ cell subsets. Violin

plots depict single-cell continuous and proportional gene expression for PBMC (A), AY69

lymph node (B), and AY69 jejunum (C). Each cell is represented by a dot and infection state is

indicated along the x-axis. Blue lines and gray shading indicate empirical mean and 90% confi-

dence intervals. Asterisk indicates FDR <10% in combined likelihood ratio test comparisons

relative to uninfected cells (0).

(TIF)

S6 Fig. CD4, CD3 downregulation on in vivo infected T cells. FACS staining distribution

of surface CD4 (A) and CD3 (B) protein on memory CD8- CD3+ T cells sorted from SIV-
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infected rhesus macaque specimens described in Fig 1E. The staining profile of cells positive

for gag or LTR (orange), gag and LTR (brown), tat/rev only (purple), and tat/rev plus at least

one additional SIV gene (green) is overlaid atop that of uninfected cells within the same sample

(gray). The number (n) of RNA+ cells depicted is indicated. (C) Single-cell FACS CD4 surface

staining is plotted against CD4mRNA copies for the samples in Fig 3A and 3B. (D) Surface

MHC class I protein staining versus CD4 downregulation status. Histogram and dot plot col-

oring corresponds to Fig 1E and 1F. (E) SIVsmE660 stock sequence did not present any nef
mutations known to alter MHC-I downregulation (red). Mutations known to alter CD4 and

CD28 downregulation (blue) were also wild-type.

(TIF)

S7 Fig. Single cell gene expression quality control. (A) Heat map depicts expression of 96

genes (columns) in gray scale for each PBMC cell (rows) analyzed on the Biomark for animal

AY69. Cells flagged by the algorithm for expression of an unusually high or low number of

genes are indicated at left in red, while cells with more typical expression profiles are indicated

in blue. (B) For animals 08D108, 08D227, and 8–116, principal component analysis was used

to identify additional outlier SIV RNA- cells (red) not associated with cellular detection rate.

(C) Violin plots of genes differentially expressed by the outlier cell cluster (“+”) in (B) com-

pared to non-outlier cells (“-”).

(TIF)

S1 Table. SIV-infected macaque specimens analyzed for frequency of cells expressing viral

RNA.

(TIF)

S2 Table. Real-time qPCR TaqMan assays used for quantitative gene expression.

(TIF)

S3 Table. Number of single cells included in differential gene and protein expression anal-

yses from each specimen.

(TIF)

S4 Table. Memory and activation phenotype of SIV-infected CD4 T cells by infection stage

for each specimen analyzed at single-cell resolution.

(TIF)
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