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Abstract 
 
The heat shock response (HSR) is a conserved cellular mechanism critical for adaptation to 
environmental and physiological stressors, with broad implications for cell survival, immune 
responses, and cancer biology. While the HSR has been extensively studied at the proteomic 
and transcriptomic levels, the role of lipid metabolism and membrane reorganization remains 
underexplored. Here, we integrate mass spectrometry-based lipidomics with RNA sequencing to 
characterize global lipidomic and transcriptomic changes in HeLa cells exposed to three 
conditions: control, heat shock (HS), and HS with eight hours of recovery. Heat shock-induced 
extensive lipid remodeling, including significant increases in fatty acids, glycerophospholipids, 
and sphingolipids, with partial normalization during recovery. Transcriptomic analysis identified 
over 2,700 upregulated and 2,300 downregulated genes under heat shock, with GO enrichment 
suggesting potential transcriptional contributions to lipid metabolism. However, transcriptional 
changes alone did not fully explain the observed lipidomic shifts, suggesting additional layers of 
regulation. Joint pathway analysis revealed enrichment in glycerophospholipid and sphingolipid 
metabolism, while network analysis identified lipid transport regulators (STAB2, APOB), stress-
linked metabolic nodes (KNG1), and persistent sphingolipid enrichment during recovery. These 
findings provide a comprehensive framework for understanding lipid-mediated mechanisms of 
the HSR and highlight the importance of multi-omics integration in stress adaptation and 
disease biology. 
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1. Introduction 
 

The heat shock response (HSR) is a conserved cellular mechanism enabling cells to 
adapt to environmental and physiological stressors, such as elevated temperatures, oxidative 
stress, and metabolic challenges [1,2]. This response is classically characterized by the 
induction of heat shock proteins (HSPs), which act as molecular chaperones to maintain protein 
homeostasis [3,4]. However, beyond protein regulation, the HSR encompasses broader cellular 
reprogramming, including significant changes in lipid metabolism and membrane composition [5-
7]. These lipidomic changes are critical for maintaining membrane integrity, cellular signaling, 
and stress adaptation [8-10]. 

Lipids play a central role in cellular stress responses by contributing to membrane 
remodeling, intracellular signaling, and energy storage [11-13]. Heat stress induces profound 
lipidomic changes, including increased levels of fatty acids, sphingolipids, and 
phosphatidylserine (PS) [14,15]. These changes alter the biophysical properties of the plasma 
membrane (PM), such as fluidity and rigidity, which are essential for stress sensing and cellular 
adaptation [8-10]. For example, elevated sphingolipids and ceramides have been implicated in 
membrane stabilization during stress, while increases in PS facilitate signaling pathways critical 
for the stress response [12]. Additionally, changes in cholesterol levels and 
phosphatidylethanolamine (PE) influence the organization of lipid rafts, which serve as hubs for 
signal transduction [16]. 

Despite the well-characterized role of transcriptional regulation in the heat shock 
response, how lipid remodeling is regulated at the molecular level remains unclear [17-20]. Prior 
studies suggest that transcriptional changes alone may not fully account for lipidomic shifts 
during heat stress, indicating that alternative regulatory mechanisms, such as enzyme activity 
and lipid trafficking, may be at play [18,21]. Emerging evidence suggests that these lipidomic 
shifts may not be primarily driven by transcriptional regulation but by enzymatic activity, 
metabolic flux adjustments, and post-transcriptional modifications [22-25]. This evidence 
underscores the need to investigate non-genomic mechanisms governing lipid metabolism in 
stress adaptation [19,26]. 

Across biological systems, lipid remodeling is a conserved adaptive strategy for coping 
with thermal and metabolic stress [18,21-25]. In plants, bacteria, and mammalian cells, 
membrane composition, and lipid biosynthesis shifts support stress tolerance by modulating 
membrane fluidity, vesicle trafficking, and energy homeostasis [21,27-30]. Similar lipidomic shifts 
are observed in cancer cells, where altered lipid metabolism is a hallmark of malignancy [31-33]. 
Cancer cells reprogram lipid biosynthesis to sustain rapid proliferation and survive in hostile 
microenvironments, such as hypoxia and oxidative stress [31,34,35]. For instance, increased 
sphingolipid metabolism and fatty acid synthesis are associated with enhanced cell survival and 
metastasis, while altered phosphatidylcholine (PC) to PE ratios disrupt membrane homeostasis 
and signaling [33,36]. The parallels between lipid remodeling during the HSR and in cancer 
suggest that these processes share overlapping mechanisms, highlighting the importance of 
lipids in both physiological and pathological stress responses [37,38]. 

In this study, we integrate mass spectrometry-based lipidomics with transcriptomic 
analyses to dissect the regulation of lipid remodeling in the heat shock response. Because lipid 
metabolism may be primarily regulated at the enzymatic and post-transcriptional level [39], this 
multi-omics approach provides a comprehensive framework for understanding the metabolic 
adjustments that enable cells to withstand thermal stress [40,41]. Our study focuses on 
identifying key pathways and molecular processes driving lipidome reorganization. By 
addressing the critical gap in understanding how lipid metabolism contributes to the HSR, we 
aim to elucidate mechanisms that could inform therapeutic strategies for diseases linked to 
stress adaptation, including cancer. 
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2. Results 

 
2.1. Global Lipidomic Changes in Response to Heat Shock 

 
Principal Component Analysis (PCA) Reveals Distinct Lipidomic Profiles 
Principal component analysis (PCA) was performed to assess the global variance in lipid 
composition across control, heat shock (R0), and recovery (R8) conditions. The scree plot 
(Figure 1A) demonstrates that the first three principal components explain more than 95% of the 
total variance, with PC1 capturing the majority of separation between experimental conditions. 
The PCA score plot (Figure 1B) shows an apparent clustering of lipid profiles based on 
treatment, with R0 samples diverging significantly from control along PC1. Interestingly, R8 
samples shift away from R0 and toward the control cluster, indicating a partial lipidome recovery 
after 8 hours. These results confirm that heat shock induces a widespread reorganization of the 
lipidome, which begins to normalize during recovery. 

 
Figure 1. Principal Component Analysis (PCA) of Lipidomic Profiles reveals distinct clustering of 
lipidomic profiles across experimental conditions. (A) A scree plot shows that the first three principal 
components explain >95% of the total variance. (B) PCA score plot demonstrating distinct clustering of 
lipidomic profiles based on experimental conditions. PC1 primarily separates heat shock (R0) from control 
and recovery (R8), with R8 samples shifting closer to control, indicating partial lipidome normalization. 
 
 
 
ANOVA Identifies Lipids Significantly Altered by Heat Shock 
A one-way ANOVA followed by Fisher's least significant difference post hoc test identified 771 
lipids with significant abundance changes (p < 0.05) across experimental conditions (Figure 2). 
Most significantly altered lipids were observed in R0 vs. control, suggesting that the immediate 
heat shock response involves substantial lipid remodeling. The number of differentially 
abundant lipids remains high in R8 vs. R0 but with a distinct subset exhibiting sustained 
elevation or return to baseline levels, suggesting dynamic regulation of lipid metabolism 
throughout the stress-recovery process. 
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Figure 2. Heat Shock significantly alters the lipidome. Volcano plot displaying 771 lipids with 
significant abundance changes (One-way ANOVA; P < 0.05) across experimental conditions. Each dot 
represents an individual lipid, with red indicating significantly altered lipids identified through Fisher's 
Least Significant Difference (LSD) post hoc test, while green dots represent non-significant changes. The 
y-axis (-log10(P-value)) indicates the statistical significance of lipid changes, with higher values reflecting 
more substantial evidence for differential abundance. The x-axis represents different lipid species 
arranged arbitrarily. 
 
 
General Shifts in Major Lipid Classes 
Total lipid abundance was quantified across conditions (Figure 3A, B) to evaluate broad 
lipidomic changes. Heat shock resulted in a 35% increase in total lipid content compared to 
control, primarily driven by changes in phospholipids, sphingolipids, and free fatty acids. By R8, 
total lipid abundance showed a partial reduction, suggesting activation of lipid turnover 
mechanisms during recovery. 

Proportional composition analysis (Figure 3C, D) revealed that membrane-associated 
lipid classes exhibited the highest shifts, and phospholipid subclasses and sphingolipids 
increased significantly in response to heat shock. These shifts suggest that membrane 
remodeling is a key feature of the heat shock response, potentially altering biophysical 
properties such as fluidity and curvature. 
 
 
Heatmaps Reveal Distinct Lipidomic Clusters Across Conditions 
Hierarchical clustering heatmaps were generated to visualize further the lipidomic shifts across 
conditions (Figure 4 and Supplementary Figure S1). These heatmaps demonstrate the apparent 
clustering of samples based on lipid composition, aligning with PCA results (Figure 1B). The R0 
condition exhibits a striking increase in specific lipid subclasses, while R8 samples display a 
partial return toward the control profile. Notably, clusters of phospholipids and sphingolipids 
showed persistent elevation in R8, suggesting a prolonged role in membrane remodeling and 
stress recovery. These heatmap findings support the PCA and ANOVA results, confirming that 
lipidomic remodeling during heat shock follows a dynamic, condition-dependent pattern 
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. 
Figure 3. Global Lipidomic Changes in Response to Heat Shock. (A, B) Total lipid abundance 
increased by 35% upon heat shock (R0), with a partial reduction at R8, indicating lipid turnover during 
recovery. Phospholipids, sphingolipids, and free fatty acids showed the most pronounced changes, while 
sterol lipids remained relatively stable. (C, D) Lipid class composition shifts in response to heat shock and 
recovery. Phospholipid subclasses (PS, PE, PG, PI, PC), sphingolipids, and ceramides significantly 
increased during heat shock, supporting membrane remodeling and stress adaptation. Free fatty acids 
(FA) increased sharply at R0 and continued rising in recovery (R8), suggesting sustained metabolic 
activity. Sterol lipids remained essentially unchanged. Boxplots display median (center lines), 25th and 
75th percentiles (box limits), and whiskers extending 1.5 times the interquartile range. Dots represent 
outliers, crosses indicate sample means, and bars represent 95% confidence intervals (n = 6 biological 
replicates). 
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Figure 4. Hierarchical Clustering of Lipidomic Profiles demonstrates that PC species dominate the 
top 25 differentially abundant lipids, implying dynamic lipidome remodeling in response to heat 
shock. Heatmap depicting hierarchical clustering of the top 25 differentially abundant lipids (One-way 
ANOVA; P < 0.05) across experimental conditions. Lipid intensities are represented as Z-scores, with 
blue indicating decreased abundance and red indicating increased abundance relative to the mean. 
Experimental groups are color-coded at the top: control (green), HS_T0 (red; heat shock), and HS_T8 
(blue; recovery at 8 hours post-heat shock). Lipid subclasses such as phosphatidylcholines (PCs), 
sphingomyelins (SMs), and phosphatidylethanolamines (PEs) exhibit significant shifts upon heat shock. 
Some lipids remain partially elevated at R8, suggesting prolonged lipid remodeling and delayed recovery 
dynamics. The clustering pattern highlights lipidomic reorganization as a critical component of the heat 
shock response. 
 
 
Paired Univariate Statistical Analysis Highlights Key Lipid Changes 
Volcano plots from paired univariate statistical analysis (Figure 5 and Supplementary Figure S2) 
revealed specific lipid species with significant fold changes across conditions. Paired univariate 
statistical analyses demonstrated that over 70% of the lipidome exhibited significant abundance 
shifts under heat shock (R0 vs. control), with a subset maintaining altered levels during recovery 
(R8 vs. R0). 
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Figure 5. Differential Lipid Abundance in Heat Shock and Recovery highlights major lipidomic 
shifts post-stress. Volcano plot displaying the distribution of differentially abundant lipids in the R0 vs. 
control comparison. More than 70% of the lipidome exhibits significant changes upon heat shock. Lipids 
with increased abundance following heat shock are shown in red, whereas lipids with decreased 
abundance are in blue. Lipids in grey either fail to meet the fold-change cutoff (|FC| > 1.5) or do not reach 
statistical significance (P. adj < 0.05). Selected lipids of interest are labeled with their PubChem 
Compound Identifiers (CID), highlighting major lipid species undergoing rapid reorganization in response 
to heat stress. 

 
Specifically, In the R0 vs. control comparison, 494 lipids were significantly upregulated, 

while 213 lipids were downregulated. For the R8 vs. control comparison, 268 lipids showed 
significant upregulation, reflecting sustained metabolic adaptation even during recovery. The R8 
vs. R0 comparison identified 40 upregulated and 213 downregulated lipids, demonstrating a 
transition from stress to recovery states. These results confirm that lipid regulation during heat 
shock and recovery is highly dynamic, with specific lipids playing key roles in each phase. 

 
 

2.2. Specific Lipid Alterations and Pathway Enrichment 
 
Characterization of Lipid Subclasses and Their Heat Shock Response 
Individual lipid subclasses were analyzed for specific trends in abundance changes to further 
resolve the nature of lipidomic alterations under heat shock. A breakdown of lipid categories 
(Figure 3 and Supplementary Figure S1) revealed significant shifts across phospholipids, 
sphingolipids, and free fatty acids, highlighting their potential roles in stress adaptation.  
 
Fatty Acid and Phospholipid Dynamics 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.18.638884doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.18.638884
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heat shock resulted in a substantial increase in free fatty acids (Figure 3), with the most 
pronounced changes observed in unsaturated species, suggesting their involvement in 
membrane fluidity modulation and stress signaling. Unsaturated fatty acids are known to 
increase membrane flexibility, which could facilitate stress-induced remodeling of the plasma 
membrane [8-10]. 

Among phospholipids, phosphatidylcholine (PC), phosphatidylserine (PS), and 
phosphatidylethanolamine (PE) were the most dynamically altered lipids, exhibiting significant 
enrichment during heat stress, followed by partial normalization during recovery (Figures 3, 4 
and Supplementary Figure S1). The increase in PS and PE is particularly relevant, as these 
lipids are known regulators of membrane curvature and vesicular trafficking, which may aid in 
the relocalization of stress-associated proteins during heat shock [8-10]. The sustained elevation 
of these phospholipids in R8 suggests lipid-driven membrane remodeling may persist beyond 
the immediate stress phase, contributing to cellular adaptation. 

 
Sphingolipid Remodeling Under Heat Stress 
Sphingolipids, particularly ceramides and sphingomyelins, exhibited marked increases following 
heat shock (Figures 3 and 5). Sphingomyelin levels peaked during heat stress but remained 
elevated during recovery, suggesting a sustained role in membrane stability and stress 
signaling. Increased ceramide abundance is particularly noteworthy, as ceramides are key 
regulators of apoptotic pathways and cellular stress responses. Their accumulation suggests 
that, under extreme stress conditions, sphingolipid metabolism may contribute to both protective 
adaptation and programmed cell death mechanisms. 

These lipidomic alterations reveal that heat-induced stress triggers a coordinated 
remodeling of membrane lipids involving structural (phospholipid) and signaling (sphingolipid) 
changes. The observed shifts in lipid composition are likely to affect membrane biophysical 
properties, such as fluidity, curvature, and protein-lipid interactions, facilitating the activation of 
downstream stress-response pathways [42]. 
 
Pathway Enrichment Analysis 
Pathway enrichment analysis (Figure 6, Supplementary Figure S3, and Supplementary Table 
S1) provided further insight into the biological processes driving lipidomic alterations. Over-
representation analysis using KEGG and SMPDB databases identified key metabolic pathways 
impacted by heat stress. However, after correction for multiple comparisons, most pathways did 
not reach statistical significance. Though not statistically significant, the most enriched pathways 
included glycerophospholipid metabolism, sphingolipid metabolism, and biosynthesis of 
unsaturated fatty acids. Glycerophospholipid metabolism was enriched due to the widespread 
remodeling of membrane lipids, consistent with the observed increases in PS and PE, which 
play a role in stress adaptation and vesicle trafficking. Sphingolipid metabolism was also among 
the most affected pathways, with increased ceramide and sphingomyelin levels suggesting a 
role in stress signaling and membrane stability. Additionally, biosynthesis of unsaturated fatty 
acids appeared enriched, aligning with the elevated levels of free fatty acids following heat 
shock. 

These findings establish a clear metabolic trajectory wherein lipid remodeling during 
heat stress is driven by distinct but dispersed molecular changes rather than a single dominant 
pathway. The following section will explore transcriptomic responses to heat shock to elucidate 
further the regulatory networks orchestrating these lipidomic changes. 
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Figure 6. Pathway Enrichment Analysis of Lipids after Heat Shock. Over-representation analysis 
using (A) KEGG and (B) SMPDB databases revealed no statistically significant metabolic pathway 
enrichment after post hoc corrections. The x-axis shows -log10(P-value), where higher values indicate 
greater statistical significance. The y-axis lists the enriched pathways, with a focus on lipid metabolism. 
Each dot represents a metabolite set, colored by P-value (red = more significant, yellow = less 
significant). Dot size represents the enrichment ratio, with larger dots indicating greater pathway 
involvement. 

 
 

2.3. Transcriptomic Responses to Heat Shock 
 
Principal Component Analysis (PCA) of Transcriptomic Changes 
Principal component analysis (PCA) was performed to assess global variance in gene 
expression across control, heat shock (R0), and recovery (R8) conditions. The scree plot 
(Figure 7A) indicates that the first five principal components explain the most variance, with PC1 
(43.8%) capturing the most considerable differences between conditions. The PCA score plot 
(Figure 7B) shows an apparent clustering of experimental groups, with R0 samples diverging 
significantly from the control along PC1, while R8 samples shift closer to the control, suggesting 
transcriptional recovery. 

Figure 7. Principal Component Analysis (PCA) of Transcriptomic Profiles in Response to Heat 
Shock. (A) A scree plot displays the proportion of variance explained by the first five principal 
components (PCs). The first two PCs capture the majority of transcriptomic variance, with PC1 
contributing the most. (B) PCA score plot showing distinct clustering of experimental groups. R0 (red) 
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samples diverge significantly from control (blue) along PC1 (43.32% variance explained), indicating a 
strong immediate transcriptional response to heat shock. R8 (green) samples shift back toward the 
control group along PC1 and PC2 (22.45% variance explained), suggesting a partial recovery of 
transcriptomic profiles after 8 hours. 
 
Differential Gene Expression Analysis 
Using DESeq2, we identified differentially expressed genes (DEGs) across experimental 
comparisons. In the R0 vs. control condition, 2,729 genes were upregulated, while 2,377 genes 
were downregulated (adjusted P-value < 0.05). Volcano plot analysis further highlighted 1,371 
significantly upregulated genes and 434 downregulated considerably genes (|log₂FC| > 1.5, 
adjusted P-value < 0.05) (Figure 8). In the R8 vs. control condition, 2,183 genes were 
upregulated, while 2,264 genes were downregulated, with a subset of 543 upregulated and 403 
downregulated genes meeting stringent significance thresholds (Supplementary Figure S4A). 
The R8 vs. R0 comparison exhibited the most pronounced transcriptomic shifts, with 4,194 
genes upregulated and 4,154 genes downregulated, including 569 genes with significant 
upregulation and 1,420 genes with significant downregulation (Supplementary Figure S4B). 
These results indicate a large-scale transcriptional reorganization in response to heat shock, 
followed by a partial recovery phase in R8. 

Figure 8. Differential Gene Expression Analysis identifies key upregulated heat shock genes and 
stress-responsive factors. Volcano plot depicting differentially expressed genes in R0 vs. control. Each 
point represents a single gene, plotted by log2(Fold Change) on the x-axis and -log10(P-value) on the y-
axis. Upregulated genes (red): Genes significantly increased in expression upon heat shock (log2FC > 
1.5, adjusted P-value < 0.05). Heat shock proteins (HSPA1A, HSPA1B, HSPA6) and stress-responsive 
factors (DNAJB1, BAG3, IER5) are among the most highly upregulated. Downregulated genes (blue): 
Genes significantly decreased in expression (log2FC < -1.5, adjusted P-value < 0.05), including CCN1, 
SGK1, and AFP. Non-significant genes (black): Genes that do not meet statistical thresholds (|log2FC| ≤ 
1.5 or adjusted P-value ≥ 0.05). The overall pattern suggests a strong heat shock response, with 
molecular chaperones and stress-associated genes strongly induced, while other pathways, potentially 
related to normal cellular function, are repressed. 
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Gene Ontology (GO) and KEGG Pathway Enrichment 
Functional enrichment analysis using gene set enrichment analysis (GSEA) and topGO 
revealed key biological pathways involved in the heat shock response. Gene Ontology (GO) 
enrichment analysis identified a significant overrepresentation of cellular stress response 
pathways, including those related to molecular chaperone activity, unfolded protein response, 
and translational regulation (Figure 9, Supplementary Figure S5, and Supplementary Table S2). 

Figure 9. Heatmap of Differentially Expressed Heat Shock Response Genes reveals distinct 
transcriptional shifts. The heatmap illustrates the hierarchical clustering of differentially expressed 
genes (DEGs) across experimental conditions, with each column representing an individual sample and 
each row corresponding to a specific gene. Genes upregulated in response to heat shock are shown in 
red, while downregulated genes are displayed in blue. The clustering highlights distinct transcriptional 
shifts, with a pronounced separation between control and heat shock (R0) conditions and a partial return 
to baseline expression levels in the recovery phase (R8). Upregulated genes include key molecular 
chaperones, stress-response regulators, and transcription factors, reinforcing the activation of heat shock 
pathways. Downregulated genes primarily include those associated with normal cellular homeostasis, 
suggesting temporary suppression of non-essential functions under stress.  
 

Additionally, KEGG pathway analysis highlighted ribosome biogenesis, sphingolipid 
metabolism, and oxidative stress response as enriched pathways in response to heat shock. 
The transcriptional signature of heat shock-exposed cells included genes associated with 
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protein refolding and metabolic adaptation. Notably, pathways related to RNA processing, 
chromatin regulation, and ribosome function exhibited dynamic regulation across conditions, 
emphasizing the interplay between transcriptional and translational control in the heat shock 
response. However, no single pathway fully accounted for the observed lipidomic shifts, 
suggesting a complex regulatory network rather than a direct transcriptional control mechanism. 
These findings indicate that while heat shock broadly affects gene expression, lipid metabolism-
specific transcriptional responses are more subtle, necessitating further integrative analyses. 

 
 

2.4. Focus on Lipid Metabolism Genes 
 
 
Targeted Enrichment Plots & Manual Verification of GO Analyses 
Initial gene ontology (GO) and pathway enrichment analyses did not highlight lipid metabolism 
as a major transcriptional response to heat shock. This observation suggests that lipidomic 
changes may be regulated at levels beyond transcription. Therefore, we used a more targeted 
approach to investigate lipid-related pathways and genes that might have been overlooked in 
the broader analyses. 

GO results were manually verified by extracting and analyzing genes associated with 
lipid-related biological processes, molecular functions, and cellular components. A custom script 
was used to reconstruct the human GO network locally and filter for lipid-related terms 
(Supplementary Table S3) [43]. This process identified 352 genes in R0 vs. control and 444 
genes in R8 vs. R0 associated with lipid-related GO terms. Still, only a small subset met 
differential expression cutoffs (|log2FC| > 1.5, adjusted P-value < 0.05). These findings reinforce 
the idea that lipid metabolism genes are transcriptionally responsive but do not dominate the 
stress response signature. 
 
 
Custom Gene Set Heatmap and LFC Analyses 
A series of heatmaps and log fold change (LFC) analyses were performed on predefined lipid 
metabolism gene sets to refine our understanding further. Heatmaps of variance-stabilized 
transformed (VST) counts revealed that while most lipid metabolism-related genes exhibited 
relatively stable expression, a subset of 60 genes appeared to undergo differential expression in 
response to R0 (Figures 9 and 10 and Supplementary Figure S6). These genes included 
ACACA, FASN, PLA2G4C, LPIN1, and PCK1, which are known regulators of lipid biosynthesis, 
fatty acid metabolism, and phospholipid remodeling. 

However, quantitative evaluation using LFC values confirmed that only 13 genes met 
stringent differential expression cutoffs across multiple lipid metabolism pathways. These 
included SOCS1, CD74, ALOXE3, B3GALT4, and PLA2G4C (Supplementary Figure S6). 
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Figure 10. Heatmap of Lipid Metabolism-Related Genes highlights the hierarchical clustering of 
genes involved in lipid biosynthesis, remodeling, transport, and degradation. The heatmap 
presents the hierarchical clustering of lipid metabolism-related genes differentially expressed across 
experimental conditions. Each row corresponds to a gene associated with lipid biosynthesis, remodeling, 
transport, or degradation, while each column represents a sample. Genes upregulated in response to 
heat shock (R0) appear in red, whereas downregulated genes are displayed in blue.  
 
 
qPCR Validation of Lipid Metabolism Genes 
Given the extensive lipidomic remodeling observed in response to heat shock, we performed 
qPCR (Figure 11) of key lipid metabolism-related genes to determine whether the transcriptional 
changes detected in RNA-seq correlated with lipid abundance shifts. The selection of genes 
was guided by specific lipidomic trends identified in our analysis. The observed increase in free 
fatty acids (FA) following heat shock suggested upregulation of de novo lipogenesis, warranting 
the inclusion of fatty acid synthase (FASN) in our validation panel. Additionally, the enrichment 
of unsaturated fatty acids indicated potential alterations in lipid desaturation pathways, leading 
us to examine fatty acid desaturase genes (FADS1 and FADS2). 

Similarly, since phosphatidylserine (PS) levels were significantly elevated in response to 
heat shock, we included phosphatidylserine synthase genes (PTDSS1 and PTDSS2) to 
determine whether their transcriptional regulation contributed to PS accumulation. Given the 
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role of lipases in lipid remodeling, we analyzed phospholipase A2 group IVB (PLA2G4B), while 
genes associated with fatty acid oxidation (ACOT2, SLC27A1), sphingolipid biosynthesis 
(UGCG), and lipid hydrolysis (OLAH, ENPP7) were selected to assess broader metabolic 
changes. 

 
Figure 11. qPCR Validation of Lipid Metabolism Genes. (A) Quantitative panel summarizing the mean 
log₂ fold change (log₂FC) and standard deviation (SD) of selected lipid metabolism-related genes 
measured by qPCR for 0RvsCnt and 8RvsCnt comparisons. Most lipid-related genes exhibit minimal 
transcriptional changes, aligning with RNA-seq findings. (B, C) Scatter plots comparing log₂FC values 
obtained from RNA-seq and qPCR for the 0h (B, blue) and 8h (C, orange) conditions. A strong correlation 
is observed for HSPA1A, confirming heat shock-induced upregulation. 

 
Despite clear lipidomic shifts, qPCR results (Figure 11) confirmed that none of these 

genes exhibited substantial transcriptional changes, consistent with RNA-seq findings. This 
finding reinforces the notion that heat shock-induced lipid remodeling is not primarily driven by 
transcriptional regulation. Instead, post-transcriptional mechanisms, enzymatic activity 
modulation, and metabolic flux adjustments are likely responsible for the observed lipidomic 
phenotype.  

These findings further support the need for multi-omics integration, where we examine 
whether joint lipidomic-transcriptomic analyses can reveal underlying regulatory mechanisms 
governing heat-induced lipid remodeling. 

 
2.5. Multi-Omics Integration: Linking Lipidomics and Transcriptomics 

 
Joint Pathway Analysis Reveals Coordinated Lipid-Gene Responses 
To explore the interplay between lipidomic and transcriptomic responses to heat shock, we 
conducted a joint pathway analysis using MetaboAnalyst's multi-omics integration module. This 
analysis incorporated differentially abundant lipids and differentially expressed genes (DEGs) 
across conditions to identify enriched metabolic pathways with concurrent transcriptional and 
lipidomic regulation. 
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The joint pathway analysis identified several key metabolic pathways significantly 
enriched in response to heat shock, including biosynthesis of unsaturated fatty acids, 
sphingolipid metabolism, and alpha-linolenic acid metabolism (Figure 12, Supplementary Figure 
S7, and Supplementary Table S4). Notably, glycerophospholipid metabolism was also 
highlighted, further supporting the role of membrane remodeling as a major adaptive 
mechanism to heat stress. These pathways were consistently enriched across multiple 
comparisons (R0 vs. control, R8 vs. control, and R8 vs. R0; Supplementary Table S4 and 
Supplementary Figure S7), suggesting a tightly regulated response coordinating lipid 
metabolism and gene expression.  

 
 
 
Figure 12. Integrated Pathway 
Analysis of Lipidomic and 
Transcriptomic Data identifies 
coordinated changes after heat 
shock. Key metabolic pathways, 
including biosynthesis of unsaturated 
fatty acids, alpha-linolenic acid 
metabolism, fatty acid biosynthesis, and 
sphingolipid metabolism, exhibit 
significant coordination between 
lipidomic and transcriptomic changes in 
response to heat shock. Dot size 
represents pathway enrichment, while 
color intensity corresponds to statistical 
significance (-log₁₀(P-value)), with 
darker red indicating higher 
significance. 
 
 
 
 

 
Network Analysis Identifies Key Regulatory Nodes in Stress Adaptation 
To further dissect interactions between lipid species and gene expression, we performed a 
network analysis to visualize molecular hubs integrating lipidomic and transcriptomic changes. 
This analysis identified key regulatory nodes in stress adaptation, highlighting genes and lipid 
species with high betweenness centrality in metabolic subnetworks (Figure 13). 

For the R0 vs. control comparison, network analysis revealed a core subnetwork 
centered around STAB2 and APOB, genes involved in lipid transport and metabolism (Figure 
13A). These genes exhibited high betweenness centrality and were directly linked to 
sphingomyelin (SM) and cholesterol ester levels, which were significantly altered under heat 
shock (Figure 2 and Supplementary Figure S1). The enrichment of SM and cholesterol esters 
within this network suggests an adaptive response to maintain membrane integrity during acute 
stress. In the R8 vs control condition, KNG1 and arachidonic acid emerged as key regulatory 
nodes, linking lipid signaling pathways with inflammatory and stress-related responses (Figure 
13B). Finally, in the R8 vs R0 network, ALB (albumin), APOB, STAB2, and PTGER1 formed 
central hubs, suggesting a role in lipid transport and metabolic recovery post-stress (Figure 
13C). The network also highlighted arachidonic acid, oleic acid, palmitic acid, and other lipids as 
key metabolites with multiple gene interactions. These findings provide a systems-level 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 23, 2025. ; https://doi.org/10.1101/2025.02.18.638884doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.18.638884
http://creativecommons.org/licenses/by-nc-nd/4.0/


perspective on how lipidome and transcriptome responses coordinate stress adaptation and 
membrane remodeling. 
 
Overlapping Signatures Between Lipidomics and Transcriptomics 
Despite the extensive lipid remodeling observed in response to heat shock, initial global 
transcriptomic enrichment analyses did not highlight lipid metabolism as a primary feature 
(Supplementary Figure S4).  

The joint pathway and network analyses reinforce the importance of membrane lipid 
reorganization during heat shock adaptation. Although transcriptomic changes alone did not 
fully explain the lipidomic phenotype, multi-omics integration revealed functionally relevant 
pathways where gene expression changes align with lipidomic shifts (Figure 12 and Figure 13). 
These findings highlight the necessity of integrating molecular datasets to uncover regulatory 
mechanisms governing cellular adaptation to stress. 

 

 
Figure 13. Lipid-Gene Interaction Network highlights key metabolic connections and 
transcriptional regulators associated with lipid metabolism. Network representations of lipidomic and 
transcriptomic interactions, where squares represent lipids and circles represent genes. (A) Displays lipid-
protein interactions, highlighting associations between specific lipids such as PC(16:0/16:0) and capric 
acid with lipid-binding proteins, including ALB, APOB, and STAB2. (B) Shows metabolic connections of 
alpha-linolenic acid, arachidonic acid, and oleic acid with lipid-related genes such as PLA2G4C, GPR132, 
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and NR4A1. (C) Expands the network to include additional lipids and genes, illustrating connections 
between fatty acids such as arachidonic acid, palmitic acid, and capric acid with multiple transcriptional 
regulators. Lines indicate interaction edges linking lipids and genes. 
 
 

3. Discussion 
 
The heat shock response (HSR) is a well-conserved adaptive mechanism that protects cells 
from proteotoxic stress by activating molecular chaperones, altering protein homeostasis, and 
triggering broad metabolic reprogramming [2,4,44]. While the transcriptional regulation of HSR is 
well characterized, the role of lipid remodeling in cellular stress adaptation remains 
underexplored. This study integrates lipidomics and transcriptomics to elucidate the metabolic 
adjustments accompanying heat shock, revealing that heat-induced lipidomic changes are not 
primarily driven by transcriptional regulation. 

Lipidomics analysis revealed a global shift in lipid composition during heat shock, with 
specific enrichment of fatty acids, phospholipids, and sphingolipids. The significant increase in 
phosphatidylserine (PS) and phosphatidylethanolamine (PE) suggests a role for membrane 
restructuring, vesicle trafficking, and stress-induced lipid signaling [45]. Sphingolipid metabolism 
was also highly enriched, consistent with its known roles in cellular stress signaling, apoptosis, 
and membrane integrity regulation [46]. These lipid changes are likely to alter the biophysical 
properties of the plasma membrane (PM), such as fluidity and rigidity, which are essential for 
stress sensing and cellular adaptation [8,47-50]. Membrane composition is critical in modulating 
protein-lipid interactions and organizing signaling platforms. The sustained enrichment of PS 
and PE suggests prolonged alterations in membrane dynamics, which may affect protein 
localization, vesicle trafficking, and membrane-associated signaling events that facilitate stress 
adaptation [8,47-51].  

Despite the significant lipidomic changes observed, pathway enrichment analyses did 
not identify a single dominant metabolic pathway driving the heat shock response. This finding 
suggests that lipid remodeling during heat stress is governed by dispersed metabolic 
adjustments rather than a single transcriptionally regulated program [21]. The lack of strong 
pathway enrichment may be due to the complexity of lipid metabolism, where multiple 
overlapping pathways contribute to lipidomic shifts [52], or due to limitations in annotation 
databases that do not fully capture the dynamic remodeling of lipids in acute stress conditions. 

RNA-seq analysis identified thousands of differentially expressed genes (DEGs) 
responding to heat shock and recovery, clustering into distinct transcriptional response groups. 
As expected, genes involved in chaperone activity, unfolded protein response, and cellular 
stress signaling were among the most upregulated in R0, shifting toward metabolic adjustment 
during recovery (R8) [53,54]. However, global transcriptomic enrichment analyses did not 
highlight lipid metabolism as a dominant feature of the heat shock response. Despite the 
widespread lipidomic alterations observed, genes involved in fatty acid biosynthesis, 
phospholipid remodeling, and sphingolipid metabolism did not exhibit statistically significant 
transcriptional upregulation. The observation that lipid remodeling occurs without strong 
transcriptional enrichment suggests that additional layers of regulation—such as enzyme 
activity, metabolic flux adjustments, or post-transcriptional modifications—may be involved. 
Lipid metabolism is often controlled by substrate availability, enzyme activity, and post-
translational modifications rather than transcriptional upregulation [18,19,21-26]. The sustained 
increase in fatty acids (FA), ceramides (Cer), phosphatidylserine (PS), 
phosphatidylethanolamine (PE), and sphingolipids in R8 further suggests that stress-induced 
lipid remodeling is not transient but persists beyond the immediate heat shock response, 
potentially through altered lipid trafficking and turnover.  
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Lipid remodeling is a key adaptive strategy across different biological systems to cope 
with thermal and metabolic stress. Previous studies have shown that heat stress induces a shift 
from membrane lipids to storage lipids as a protective mechanism against damage ([13,55]. In 
plants, lipid remodeling during heat stress is highly coordinated, adjusting membrane fluidity and 
metabolic fluxes to enhance survival [22,23,28-30,49]. Similarly, stress-induced lipidomic 
alterations in human cells impact membrane stability, protein trafficking, and energy metabolism 
[56]. The findings of this study align with these observations, reinforcing the idea that heat stress 
triggers lipidomic shifts essential for maintaining cellular integrity. The increase in phospholipids 
involved in membrane remodeling and sphingolipid-associated stress signaling suggests lipid 
metabolism is integral to cellular stress tolerance. 

The metabolic rewiring observed in the HSR shares similarities with lipid metabolic 
adaptations in cancer. Cancer cells frequently reprogram lipid metabolism to support rapid 
proliferation, membrane biosynthesis, and survival under stress conditions [31]. For example, 
fatty acid metabolism and lipid storage mechanisms are upregulated in tumors to buffer 
oxidative and proteotoxic stress. Furthermore, cancer cells manipulate lipid metabolic pathways 
to evade cell death mechanisms such as ferroptosis, a form of iron-dependent lipid peroxidation 
[57]. The results suggest lipid remodeling during heat shock mirrors metabolic adjustments 
observed in cancer cells, particularly in phospholipid and sphingolipid metabolism. 
Understanding these lipidomic changes in a stress context may provide new insights into how 
cancer cells exploit lipid metabolism for survival and therapy resistance. Targeting lipid 
metabolic vulnerabilities in cancer—such as sphingolipid metabolism or fatty acid synthesis—
could provide novel therapeutic strategies for disrupting stress-adaptive mechanisms in tumor 
cells. 

Given the absence of potent lipid metabolic enrichment in global transcriptomic 
analyses, targeted enrichment analyses and manual verification of lipid-related pathways were 
performed. These analyses identified a subset of lipid metabolism genes with condition-
dependent expression changes, including PCK1, PLA2G4C, and ACACA, which are involved in 
phospholipid biosynthesis and fatty acid metabolism. qPCR validation confirmed that these 
genes followed similar expression trends to RNA-seq, and the overall changes in expression 
were not large enough to account for the lipidomic phenotype. This finding reinforces the 
hypothesis that lipid remodeling during heat shock is not transcriptionally driven but rather 
controlled via post-transcriptional mechanisms, enzymatic activity, or metabolic flux 
adjustments. 

Joint pathway and network analyses revealed that lipid remodeling is coordinated with 
stress adaptation pathways but does not strongly correlate with direct transcriptional changes. 
Integrating lipidomic and transcriptomic data identified key metabolic pathways with concurrent 
lipid and gene regulation, such as glycerophospholipid metabolism, sphingolipid biosynthesis, 
and fatty acid metabolism. While individual transcriptomic or lipidomic analyses did not fully 
explain the regulatory mechanisms underlying heat shock adaptation, the integration of both 
datasets revealed key metabolic pathways with concurrent lipidomic and transcriptional 
regulation. Network analysis identified central hubs linking lipid transport (APOB, STAB2), 
stress signaling (STAB2), and stress adaptation (KNG1, ALB), reinforcing the role of lipid 
remodeling in cellular resilience to thermal stress. These findings highlight the necessity of 
multi-omics approaches to uncover functionally relevant stress adaptation pathways that may 
not be apparent through single-layer analyses. 

While this study provides new insights into lipidomic and transcriptomic integration in the 
heat shock response, some limitations should be acknowledged. A single transformed cell line 
(HeLa) may not fully represent lipidomic and transcriptomic responses in other cell types, mainly 
primary or non-cancerous cells. Additionally, while RNA-seq provided a broad overview of 
transcriptional changes, it does not capture post-transcriptional modifications or enzyme activity, 
which are critical regulators of lipid metabolism. The lipidomic analysis, while extensive, was 
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constrained by database limitations, meaning some lipid species are not yet fully annotated, and 
consequently, not all measured lipids could be mapped to specific activity networks. Future 
studies can expand these findings to multiple cell types, integrate proteomics and metabolomics 
for a more complete picture of lipid regulation, and employ functional assays to validate key 
genes involved in lipid remodeling under heat stress. 

Understanding how cells dynamically reprogram lipid metabolism in response to stress 
has broad implications beyond heat shock adaptation. Given the parallels between stress-
induced lipid remodeling and cancer metabolism, further research into lipidomic regulation may 
uncover new therapeutic targets for diseases characterized by altered lipid homeostasis, 
including cancer and metabolic disorders. 

 
 

4. Materials and Methods 
4.1. Cell Culture 

HeLa cells (ATCC® CCL-2™), originally derived from Henrietta Lacks, were obtained from 
ATCC in December 2016 and verified bi-annually. Cells were maintained in Minimum Essential 
Medium (MEM) supplemented with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 0.1 mM 
non-essential amino acids (NEAA), 1 mM sodium pyruvate, and penicillin-streptomycin. Cultures 
were grown in a humidified atmosphere containing 5% CO₂ at 37°C and passaged every 2–3 
days to maintain optimal growth. 
 

4.2. Heat Shock Treatment 
To examine lipidome changes following heat shock, HeLa cells were subjected to one of three 
conditions: control (37°C), heat shock (42°C for 60 minutes), or heat shock followed by recovery 
at 37°C for 8 hours. Cells were seeded into 175 cm² flasks and cultured to ~80% confluency 
using low-passage cells (passages 4–7). For each experiment, three biological replicates per 
condition were prepared: one flask was maintained at 37°C as a control, while two flasks were 
subjected to heat shock. Of the heat-shocked flasks, one was harvested immediately after heat 
shock (0 hours recovery, 0R), and the other was allowed to recover at 37°C for 8 hours (8 hours 
recovery, 8R). Cells were harvested by trypsinization, washed with PBS, pelleted, and stored at 
-80°C for subsequent lipidomics and transcriptomics analyses. 
 

4.3. Lipid Quantification and Analysis 
Sample Preparation: Six biological replicates were prepared for lipidomic analysis, each 
containing four million HeLa cells. Cells were pelleted and stored at -80°C before use. 
 
Mass Spectrometry and Lipidomics: Lipid extraction and analysis were conducted using a 
biphasic lipid extraction method at the UC Davis West Coast Metabolomics Center. Lipids were 
separated using a C18-based hybrid bridged column with a ternary 
water/acetonitrile/isopropanol gradient and analyzed on a ThermoFisher Scientific Q-Exactive 
HF mass spectrometer with electrospray ionization. MS/MS data were acquired in data-
dependent mode, and accurate masses were normalized using constant reference ion infusion. 
Lipid annotations were processed using MS-DIAL vs. 4.90, with precursor mass errors <10 
mDa, retention time matching, and MS/MS matching to corresponding lipid classes [58]. Lipid 
intensities were sum-normalized by representing each lipid as a fraction of total lipids within the 
sample, scaled by the median intensity for each treatment group [37]. Detailed results are 
provided in Supplementary Table S5.  
 
Lipidomics Analysis: Mass spectrometry-identified lipids were annotated using PubchemPy and 
MetaboAnalyst to resolve identifiers from InChI Keys, SMILES, or common names into 
PubChem CID, HMDB, and KEGG formats. The provided InChI Keys were converted into 
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PubChem identifiers using the "get_compounds" function in PubchemPy via custom scripts 
(https://github.com/lesolano/MS-Thesis). If automated resolution failed or discrepancies 
occurred, manual queries of PubChem, LipidMaps, and HMDB databases were performed to 
identify the best matches. MetaboAnalyst's Metabolite ID Conversion tool further converted 
Pubchem identifiers to HMDB and KEGG formats for downstream analyses [59]. 

Lipid abundance data were visualized using boxplots and heatmaps to represent total 
and proportional lipid class abundances across experimental conditions. Heatmaps were 
generated with MetaboAnalyst's hierarchical clustering tool, using Euclidean distances and 
Ward's clustering method, to group samples by lipid profiles and highlight lipidomic changes. 
Boxplots depicted lipid abundance variations across major lipid classes [59]. 

Statistical analyses were conducted in MetaboAnalyst [59]. Univariate analyses included 
fold-change and Student's t-tests to identify significantly altered lipids for each condition 
comparison (R0 vs. control, R8 vs. control, R8 vs. R0). Multivariate analyses involved one-way 
ANOVA with Fisher's LSD post hoc tests to assess differences in lipid abundance across 
conditions, with results visualized as plots of lipid abundance vs. -log10(P-value). The false 
discovery rate (FDR)-adjusted P-value cutoff was set to 0.05 for all tests. 

Dimensionality reduction techniques were applied to simplify the lipidomic dataset. 
Principal component analysis (PCA) was used to identify major sources of variation and 
estimate effect sizes, with results visualized as scree and 2D score plots. Hierarchical clustering 
heatmaps provided further insight into sample grouping and lipid group changes in response to 
heat shock. 

Enrichment and pathway analyses were performed to explore metabolic pathway 
involvement. Qualitative over-representation analysis identified enriched metabolite sets and 
pathways using KEGG and SMPDB databases, producing bar charts, dot plots, and network 
views [59]. Quantitative pathway analyses further quantified pathway-level impacts, mapping 
lipid abundance to pathways and generating scatter plots and pathway network overlays. 
Analyses used KEGG and SMPDB libraries, with criteria for pathway inclusion set to at least two 
metabolites per pathway or set. 

Final outputs from these analyses included detailed statistics, visualizations (e.g., bar 
charts, dot plots, scatter plots), and pathway maps that collectively highlighted lipidomic 
changes under heat shock and recovery conditions. 
 

4.4. RNA Sequencing and Analysis 
Sample Preparation, cDNA Library Preparation, and Sequencing: Cells from the control, 0R, 
and 8R conditions were sent to Novogene (Sacramento, CA) for RNA extraction, library 
preparation, and sequencing. Total RNA was isolated using the Qiagen RNeasy Kit. RNA 
quality and integrity were assessed using 1% agarose gel electrophoresis, a NanoPhotometer® 
spectrophotometer (IMPLEN, CA, USA), and the Agilent Bioanalyzer 2100 system. Sequencing 
libraries were constructed using the NEBNext® UltraTM RNA Library Prep Kit for Illumina® 
(NEB, USA). 

Poly-A mRNA was isolated using oligo-dT magnetic beads, fragmented under elevated 
temperature, and reverse transcribed into cDNA. Second-strand cDNA synthesis used DNA 
Polymerase I and RNase H. The cDNA was end-repaired, adenylated, and ligated to NEBNext 
adaptors. Fragments of 150–200 bp were selected using AMPure XP beads (Beckman Coulter, 
USA) and amplified via PCR with Phusion High-Fidelity DNA polymerase and indexed primers. 
Library quality was validated on the Agilent Bioanalyzer 2100 system. 

Paired-end sequencing was performed on the Illumina NovaSeq S4 PE100 platform, 
generating at least 30 million reads per sample. RNA-seq data were processed to ensure high-
quality reads for differential gene expression analysis. 
 
Transcriptomics Analysis (additional detailed methods in [53]) 
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Read Processing and Quality Control: Paired-end sequencing reads in FASTQ.gz format were 
obtained from Novogene and processed on a Linux-based system using BBDuk for quality 
control. Reads were trimmed for adapters, filtered for PhiX sequences, and subjected to phred-
based quality filtering (Q ≥ 10) to ensure high-quality inputs for downstream analyses [60,61]. 
Trimmed reads were saved with updated file naming conventions and accompanied by 
summary statistics for verification. 
Reference Genome Indexing and Alignment: Reads were aligned to the human reference 
genome (GRCh38.p13) using the STAR aligner, which was configured for splice-aware two-
pass mapping. Before alignment, the reference genome was indexed using Gencode primary 
assembly annotation files and STAR's genome generation mode [62]. Alignment outputs 
included sorted BAM files, unmapped reads in FASTQ format, and gene count files for 
downstream analyses. 
Gene Feature Counting: Feature counting was performed using HTSeq, which quantified 
mapped reads per gene from sorted and indexed BAM files. Input included the GRCh38.104 
GTF annotation file, and outputs comprised raw gene count matrices annotated with gene IDs 
and expression values [63]. 
Differential Gene Expression Analysis: Raw gene count matrices were imported into R and 
analyzed with DESeq2. Gene expression levels were modeled using negative binomial 
regression to identify differentially expressed genes (DEGs) for three pairwise comparisons: R0 
vs. control, R8 vs. control, and R8 vs. R0. Results included log2 fold change (LFC), P-values, 
and FDR-adjusted P-values, which were visualized as volcano plots using ggplot2 [64]. All data 
can be found in [53]. 
Dimensionality Reduction: Variance-stabilizing transformation (VST) was applied to normalize 
gene counts and mitigate heteroscedasticity. Principal component analysis (PCA) was used to 
identify primary sources of variance, visualized via 2D score plots, while heatmaps of Z-score-
scaled VST data highlighted gene expression patterns and sample clustering [65]. 
Functional Enrichment and Gene Set Analysis: Competitive gene set enrichment analysis 
(GSEA) was performed using the Hallmark (H), curated (C2), computational (C4), ontology (C5), 
and oncogenic (C6) collections from MSigDB to identify enriched pathways. GSEA ranked 
genes by LFC and evaluated enrichment significance using normalized enrichment scores 
(NES). Outputs included dot plots of top pathways and enrichment statistics [66,67]. Gene 
Ontology (GO) analysis with topGO provided hierarchical insights into biological processes, 
molecular functions, and cellular components enriched in the data [66,67]. 
Custom Gene Set and Lipid-Specific Analyses: A curated list of lipid-related GO terms and 
pathways was generated by parsing GO and QuickGO databases. DESeq2-calculated LFC 
values and DEG statistics were mapped to these custom gene sets to identify transcriptional 
changes associated with lipid metabolism. Heatmaps of Z-score-scaled VST data were created 
for targeted lipid-related gene sets, highlighting key genes and pathways involved in lipid 
homeostasis during heat shock [65,68]. 
Summary and Visualization: All processing and analysis outputs, including summary statistics, 
gene set enrichment plots, heatmaps, PCA plots, and DEG results, were consolidated into Excel 
files using Power Query for streamlined comparisons across experimental conditions. 
 
Quantitative Polymerase Chain Reaction (qPCR) 
Following the manufacturer's protocol, RNA was isolated using 4 million HeLa cells per 
condition (control cells, 0 h recovery, 8 h recovery; different batches from the ones used for 
RNA-seq) using the Direct-Zol RNA mini-prep Kit (ZymoResearch, Irvine, CA, USA). Following 
the manufacturer's protocol, cDNA was synthesized from 1μg of total RNA using the Superscript 
IV First-Strand synthesis system (ThermoFisher Scientific, Waltham, MA, USA) and Oligo (dT)20 
primers. cDNA samples were diluted to a concentration of 50 ng/μL. qPCR reactions were 
prepared with the Power SYBR™ Green PCR Master Mix (ThermoFisher Scientific, Waltham, 
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MA, USA) according to the manufacturer's instructions. Three biological replicates were run for 
each gene and condition [Gene names and primers (generated using NCBI's primer-blast utility) 
are shown in Supplementary Table S6]. qPCR was performed using the CFX96 Touch Real-
Time Detection System (Bio-Rad, Hercules, CA, United States). The relative normalized 
expression [69] of the raw transcript levels was calculated using the Livak method for each gene 
[70] using the software provided with the instrument [71]. The reference genes used in this 
method were ACTB and GAPDH. Statistical significance was assessed using one-way ANOVA 
(Analysis of Variance) followed by post-hoc Tukey HSD (Honestly Significant Difference) and 
Bonferroni tests. A p value < 0.05 was considered statistically significant. Results were plotted 
via boxplot using BoxPlotR [72]. 
 

4.5. Integration of Lipidomics and Transcriptomics 
Joint Pathway Analysis: To uncover insights unavailable from single-dataset analyses, 
MetaboAnalyst's joint pathway analysis module was used to integrate lipid abundance and gene 
expression data [59]. Inputs included quantitative lipid abundance data and differentially 
expressed genes (DEGs) with accompanying fold changes. Enrichment analysis utilized a 
hypergeometric test, while topology measurements were based on degree centrality. Combined 
gene and metabolite queries were cross-referenced with KEGG and SMPDB databases to 
identify enriched pathways [73-76]. Outputs included summary statistic files, enriched pathway 
plots, and network visualizations with genes and lipids highlighted. Pathways containing both 
gene and lipid data were prioritized for further analysis. 
Network Analysis: Gene-metabolite interaction networks were constructed using 
MetaboAnalyst's network analysis module [59]. This tool aggregated subnetworks of 
metabolites and genes based on known interaction networks. Subnetworks were defined as 
having at least three nodes and could be filtered by node type, regulation status (up/down), or 
database-specific queries (e.g., KEGG, Reactome, GO, motif). Outputs included pathway 
names, interaction counts, and P-values for filtered queries. The overall gene-metabolite 
interaction network was visualized and saved as an image for interpretation. 
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