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Abstract

Array technology to genotype single-nucleotide variants (SNVs) is widely used in genome-wide association studies
(GWAS), clinical diagnostics, and linkage studies. Arrays have undergone a tremendous growth in both number and content
over recent years making a comprehensive comparison all the more important. We have compared 28 genotyping arrays on
their overall content, genome-wide coverage, imputation quality, presence of known GWAS loci, mtDNA variants and
clinically relevant genes (i.e., American College of Medical Genetics (ACMG) actionable genes, pharmacogenetic genes,
human leukocyte antigen (HLA) genes and SNV density). Our comparison shows that genome-wide coverage is highly
correlated with the number of SNVs on the array but does not correlate with imputation quality, which is the main
determinant of GWAS usability. Average imputation quality for all tested arrays was similar for European and African
populations, indicating that this is not a good criterion for choosing a genotyping array. Rather, the additional content on the
array, such as pharmacogenetics or HLA variants, should be the deciding factor. As the research question of a study will in
large part determine which class of genes are of interest, there is not just one perfect array for all different research questions.

This study can thus help as a guideline to determine which array best suits a study’s requirements.
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Introduction

Massive parallelization of solid support-based oligonu-
cleotide hybridization approaches has led to the develop-
ment of the most widely used platform for genetic analyses,
i.e., genotyping arrays based on single-nucleotide variants
(SNVs). Since 2005, genotyping arrays have been used for
many applications, including clinical diagnostics of chro-
mosomal abnormalities, genome-wide association studies
(GWAS), fine mapping of known loci, and linkage studies.
No matter the application, genotyping arrays measure from
many hundreds of thousands to millions of SNVs across the
genome, which are then assessed in relation to the research
question or phenotype of interest. The number of available
genotyping arrays is steadily increasing as more arrays are
brought on the market, each with its own specific properties
and content.

Of all the possible applications of genotyping arrays,
traditionally its primary use has been GWAS, which has
proven to be a successful research approach to discover
genetic factors for complex diseases, toxicities, and traits
[1-3]. An important factor in GWAS is “genome-wide
coverage,” which is the extent to which SNVs on the array
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are evenly spread across the genome. Genome-wide cover-
age is a function of the number of genotyped SNVs and
the capacity of these SNVs to tag adjacent (untyped)
SNVs through patterns of linkage disequilibrium, which can
be population-specific. For GWAS, one would ideally
choose the genotyping array that provides the best genome-
wide coverage for the studied population, however, these
arrays tend to be more expensive. Of course, there are many
other considerations for choosing a genotyping array such as
the possibility to customize the content, the demands and
wishes of a consortium or investigators (i.e., an interest in
specific gene categories), and the imputation quality, all of
which may influence the final decision.

As consumer genetics by companies like 23andMe has
increased tremendously, the public need for including
complex genetic information in the healthcare system is
increasing [4]. In response, healthcare centers across the
world have started programs to test the applicability of
genotyping arrays in clinical practice for variant finding,
pharmacogenetic testing, and polygenic risk scores (PRS)
[5-7]. Due to this development, the presence of clinically
applicable variants on arrays has become increasingly
important.

In 2014, Ha et al. compared the performance of 12 arrays
of different content released by Affymetrix/Thermofisher
(hereafter called Affymetrix) and Illumina, for European,
Asian, and African ancestries [8]. However, some of the
investigated arrays are no longer available and new arrays
have been launched since. In addition, only genome-wide
coverage was considered by the authors, ignoring the cov-
erage of specific frequently investigated genes and SNVs as
well as the achieved quality when using the specific geno-
typed SNVs as template for imputation.

We, therefore, updated the previous study by Ha et al.
and investigated all current genotyping arrays from Illumina
and Affymetrix for their suitability for GWAS in the three
major ethnicities (European, Asian, African). Also, we
included in all comparisons two commonly used older and
no longer available arrays (i.e., Human660Quad, Affy6.0)
as reference. Furthermore, we included comparisons based
on often studied gene categories with potential clinical
applications (i.e., mitochondrial (mt)DNA, American Col-
lege of Medical Genetics (ACMG) actionable genes [9],
pharmacogenetic genes, and human leukocyte antigen
(HLA) genes). In addition, we report the SNV density per
gene and in 1-Kb/1-Mb windows, an influencing factor for
specificity of copy-number variant (CNV) analyses, an
important part of clinical screening. Our goal is to provide a
comprehensive overview of the content of current geno-
typing arrays for both research and clinical applications. We
will specifically not focus on how the design, costs, and
automatization can influence the array choice from a
laboratory standpoint. Nor will we focus on how
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collaborations (in a consortium) or previously available data
can influence the choice of array, though an overview of
array overlap is provided for those with existing genetic
array data.

Methods
Array characteristics and genome-wide coverage

We examined 28 arrays (10 from Affymetrix and 18 from
[llumina), including the newest generation of genotyping
arrays (Table 1). To examine the general characteristics of
the included arrays, we downloaded the manifest files from
the respective manufactures’ websites. These manifests
were harmonized to the UCSC hgl9 reference genome
(and lifted over if required) and annotated using an
Annovar-based pipeline to obtain detailed information on
all loci [10]. The variants per array were grouped as auto-
somal, X-chromosomal and Y-chromosomal SNVs, exonic
and splice-site variants, copy-number variations (CNVs),
and mitochondrial DNA (mtDNA) variants. In addition, the
overlap between arrays was calculated based on chromo-
some and position of each variant. The manifest files were
further used for the majority of comparisons presented here.
A short overview of the datasets and comparisons per-
formed in each of the analyses described can be found in
Fig. 1.

Genome-wide coverage was defined as the fraction of all
SNVs in the 1000 Genomes Project phase 3 version 5
(1KGPp3v5) reference that can be captured by the array
[11, 12]. The reference panel was divided in three separate
groups based on genetic background, namely European (n =
379), Asian (n=286), and African ancestry (n=246).
Genome-wide coverage was calculated using the equation
defined by Li et al. [12]

G »

in which L denotes the number of SNV tagged by SNVs on
the array (r2 >(.8), R denotes the total number of SNVs in
the reference panel, and T denotes the total number of
variants on the array. Whereas, G represents an estimate of
the total number of SNVs in the human genome. Currently
the number of validated SNVs with a minor allele frequency
(MAF) > 1% in the NCBI database is ~19 million. For each
previously mentioned genetic background, the reference
panel was filtered to keep variants with a MAF of 1% or
higher. The majority of investigated arrays were designed to
capture variants with a MAF > 1% of their specific design
populations only and comparing the arrays on their genome-
wide coverage of lower MAF would therefore not be
appropriate. After filtering, the reference set contained
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Table 1 General characteristics of investigated arrays.

Content

Overall ~ SNPs/INDELs CNVs MT
Distributor  Array ShortName* Total autosomal X Y Exonic  Splice-site
Illumina Exome V1.1 Exome 242,901 242,682 237,436 5107 139 225,826 2082 0 219
Illumina Immuno V2 Immuno 252,604 252,603 249,285 2115 1203 6840 280 0 1
Tllumina Cytol2 Cytol2 297,481 296,540 278,181 15,988 2371 5125 21 941 0
Tllumina Core Core 298,930 298,725 288,675 8107 1943 33,327 5237 0 205
Illumina DrugDev DrugDev 475,233 475,035 459,659 13,405 1971 74,732 1025 0 198
Tllumina Onco Onco 498,315 498,195 483,528 14,355 312 25,602 360 0 120
Illumina PsychArray Psych 570,100 569,789 554,577 13,890 1322 266,517 7451 0 311
Affymetrix Axiom_GW_ASI Axiom_ASI 630,191 629,957 610,467 17,268 2222 14,598 40 0 234
Tllumina 660w-Quad 660w-Quad 652,132 587,527 573,493 14,015 19 11,189 37 64,484 121
Affymetrix Axiom_GW_CHB Axiom_CHB 657,615 657,520 632,267 24,273 980 10,283 282 0 95
Affymetrix Axiom_NL Axiom_NL 671,222 670,931 647,127 23,033 771 19,760 624 0 291
Affymetrix Axiom_GW_EUR Axiom_EUR 674,996 674,897 661,452 13,155 290 16,634 64 0 99
Tllumina OmniExpress OmniExpress 715,322 715,322 695,789 18,166 1367 23,603 80 0 0
Tllumina GSAvl GSAvl 618,540 618,406 601,120 16,100 1186 75,481 6231 0 134
Illumina GSAvV3 GSAv3 654,017 652,879 620,686 28,055 4138 75,481 2822 0 1138
Affymetrix Axiom_LAT Axiom_LAT 817,614 817,494 791,856 25,403 235 22,977 95 0 120
Affymetrix Axiom_UKB Axiom_UKB 845485 845,131 823,234 21,084 813 137,657 4101 0 354
Tllumina CytoSNP850K Cyto850 850,078 850,078 818,101 30,859 1118 37,793 1025 0 0
Tllumina OmniZhongHua OmniZH 899,502 899,381 873,429 23,935 2017 23,167 59 0 121
Affymetrix PMRA PMRA 920,744 920,520 883,265 37,246 9 77,781 6536 0 224
Affymetrix PMDA PMDA 921,664 920,950 857,925 62,577 448 51,811 3337 0 714
Affymetrix  Affy6.0 Affy6.0 933,122 932,711 893,949 37,902 860 8966 33 0 411
Tllumina MultiEthnic-AMR/AFR  Multi_AFR 1,426,177 1,425,533 1,380,255 42,918 2360 357,838 4922 0 644
Tllumina MultiEthnic-EUR/ASN  Multi EUR 1,474,463 1,473,819 1,432,449 39,772 1598 358,382 5062 0 644
Tllumina MultiEthnic-Global Global 1,768,335 1,767,356 1,707,340 56,079 3937 399,721 10,325 0 979
Affymetrix Axiom_GW_PanAFR  Axiom_AFR 2,268,172 2,267,890 2,199,268 65,975 2647 21,954 100 0 282
Tllumina Omni2.5 Omni2.5 2,435,293 2435200 2,376,441 57,178 1581 70,425 201 0 93
Illumina Omni5 Omni5 4,082,393 4,082,109 3,965,887 113,724 2498 128,327 5298 17 267

“Manufacturers’ array names were shortened to improve readability, mostly by compressing population names, or removing version names if
irrelevant or superfluous. Four arrays have an acronym as name: the Global Screening Array (GSA, both version), the Precision Medicine Research

Array (PMRA), and the Precision Medicine Diversity Array (PMDA).

7,295,404 SNVs for European ancestry (EUR), 6,654,452
SNVs for Asian ancestry (ASN), and 10,924,094 SNVs for
African ancestry (AFR). Of these, 85% in EUR, 88% in
ASN, and 66% in AFR could be tagged by another variant
in the 1KGPp3v5 set with a LD of *>0.8 within each
dataset.

Imputations

Using the manifest files to compare arrays can introduce
biases as not all variants included in these files will actually
be included in the genotyped output. This is caused by
variants being excluded during the generation of genotypes
due to low cluster quality (Supplementary Fig. 1).

To check for potential manifest bias, we additionally
investigated the genotyping rate and imputation quality
across genetic backgrounds, for which Illumina and Affy-
metrix kindly provided raw genotype data of HapMap
samples (N =210) for a subset of the investigated arrays
(Core, OmniExpress, GSAvl, PMRA, Global and
Omni2.5). As the HapMap samples are also included in
the 1KGPp3v5 reference panel, an imputation bias may be
introduced due to overfitting of imputed genotypes to the
haplotypes of the same samples. To exclude such an
imputation bias, we additionally genotyped 374 European-
ancestry women from the Rotterdam Study (RS) [13] on
four different genotyping arrays (550K, GSAv1, PMRA and
Omni5). Before imputations, standard quality control (i.e.,

SPRINGER NATURE
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Fig. 1 Flowchart of data used in this comparison. Rotterdam Study
HRCI1.1 imputed were used for comparison with sequencing data and
imputation quality. HapMap and 1KGPp3v5-imputed genotypes were

SNV and sample call rate <97.5%, Hardy—Weinberg
Equilibrium <1 x 1077, or excess heterozygosity) was per-
formed on each dataset [14]. Imputations were performed
using the Michigan Imputation Server [15]. For the impu-
tations of HapMap samples, the 1KGPp3v5 reference panel
[11] was chosen, rather than the larger and newer HRC r1.1
reference panel [16] as the latter contains an over-
representation of European haplotypes, which might influ-
ence results for other genetic backgrounds. The three
genetic backgrounds of the HapMap samples were imputed
separately (EUR (N =90), AFR (N =90), ASN (N =90))
as well as in a combined dataset (N = 210). For the impu-
tations of the set of the RS, HRC rl.1 was chosen instead,
as all genotyped samples are women from North-European
ancestry. All chromosomes (except Y) were imputed, and
the imputation quality (R?) was extracted. Any variant with
a R* lower than 0.3 was considered to be of low quality,
while any variant with a R* higher than 0.8 was considered
to be of high quality. Variants with a R* between 0.3 and 0.8
were designated as medium quality. Furthermore, four MAF
bins were created (<0.5%, 0.5-1%; 1-5%; >5%) to differ-
entiate between ultra-rare, rare, low frequency and common
variants, respectively. To evaluate the accuracy of these
bins, the number of variants for each bin and average
concordance with WES data of the same samples was cal-
culated per chromosome using vcftools diff-indv-
discordance [17]. Due to the overabundance of reference
alleles skewing the concordance metric, only genotypes
with variant alleles were considered for the ultra-rare and
rare categories, by setting homozygous reference genotypes
(0/0) to missing (./.). After this validation for variants
mostly in coding sequences, the percentage of concordant
low-, medium-, and high-quality variants within each MAF
bin was compared across arrays.

SPRINGER NATURE

used for imputation quality, clinically relevant genes, and GWAS
catalog analyses. Theoretical analyses such as mtDNA and SNV
density used the array manifest files as basis.

For all further analyses evaluating the imputation quality
of arrays, the combined HapMap (EUR+ASN+AFR, N =
210) set was used. For the different gene categories
investigated further, only variants with high imputation
quality (R>>0.8) were considered to be callable by impu-
tation rather than the standard cutoff of R higher than
0.3 used in GWAS (Fig. 1). The reason for this more
stringent imputation quality cutoff is the potential usability
of these arrays in clinical practice where high accuracy of
genotype calls is required and will be used throughout
this study.

GWAS and PRS

To investigate the usability of arrays for GWAS as well as
the inclusion of PRS in clinical practice, we assessed the
presence of known GWAS markers available on the array
or after imputations with a good imputation quality.
Freeze 2020-10-07 of the GWAS catalog was downloaded
(212,730 records) and filtered based on the following
criteria: effect size (OR) and risk allele frequency reported
in the database, p value <5 x 1078, duplicate records (i.e.,
same phenotype-loci association in more than one study),
case—control studies, disease phenotypes (e.g., hair color,
eye color loci were removed), and impact factor
(2019) of the journal >5 [2]. This filtering resulted in 6054
markers to be investigated. In addition, the known var-
iants for APOE*4 associated with Alzheimer’s disease
(rs7412; NC_000019.9:2.45412079C>T and rs429358;
NC_000019.9:2.45411941T>C) were added. APOE*4 in
GWAS is tagged by a TOMM40 SNV [18]; however, as
the actual causal APOE*4 variants are of such importance
to the field, we decided to add them to this investigation.
In total, we therefore considered 6056 GWAS markers.
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Mitochondrial DNA (mtDNA)

The online MITOMAP resource was used to divide the
mtDNA variants into 75 functional loci (i.e., genes as well
as other features such as important binding sites) [19]. For
each locus, the number of genotyped variants on the array
was extracted from the manifest files. As the mtDNA loci
overlap, also the total number of mtDNA variants was
investigated.

Current clinical applications
ACMG actionable genes

The total number of genotyped variants in the 59 so-called
“actionable genes,” as proposed by the ACMG [9], were
extracted from the array manifest files. The ACMG
recommends the use of ClinVar variant status for the pur-
pose of checking pathogenicity; however, this status is not
always correct nor is it set in stone [20]. In our study, we
have thus translated this definition to any variant in the
ACMG genes with a Combined Annotation-Dependent
Depletion (CADD) score higher than 20 (i.e., top 1% of
most damaging variants), which were considered to be
potentially damaging [21].

Pharmacogenetic genes

A list of 388 genes involved in pharmacokinetics and
pharmacodynamics was acquired by combining the list of
pharmacogenomics biomarkers in drug labeling published
by the U.S. Food and Drug Administration (http://www.fda.
gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogene
tics/ucm083378.htm) and the list of pharmacogenetics
markers published by the Pharmacogenomics Knowledge
Base (PharmGKB) [22]. The presence of variants in these
genes on the arrays was determined using the manifest files.

Several genes from the cytochrome P450 (CYP) complex
were further investigated for the presence of the so-called
star(*)-alleles [23] on the arrays and/or imputed data, based
on their documented tag SNVs. The entire haplotype, the
*-allele was based on, should be present. As the number of
*-alleles per CYP genes differ, the percentage of called
*-alleles per gene was assessed. Additional *-alleles for
other pharmacogenetic genes are known from databases
such as the PharmGKB [22]; however, these are outside the
scope of this study.

HLA genes
Tag SNVs in six HLA genes encoding HLA class I and

HLA class II serotypes were used to determine to what
extent HLA types for EUR, ASN, and AFR ancestries could

be identified by genotyping arrays [24]. HLA serotypes are
often identified by *-allele codes. We considered an HLA
*-allele to be identifiable by an array if all tag SN'Vs for that
allele were present on the array. As the number of *-alleles
per HLA gene differs, the percentage of called *-alleles per
gene was assessed. In addition, the tag SNVs for HLA
*-alleles differ between genetic ancestries. Therefore, per-
centages of *-alleles per gene were assessed separately for
each genetic ancestry.

SNV density

To determine the specificity of the arrays for calling
structural variant (SV) or CNV analysis, the density of
SNVs on the array, both in exonic regions and overall,
was used as a proxy. A higher density of variants would
result in a better resolution to define where an SV or CNV
starts and ends. To calculate the overall density of SNVs
within coding regions of genes, a custom perl script was
used. The total length of coding sequence per gene was
divided by the number of SNVs + 1 resulting in a mean
distance between variants within a gene (n= 20,445
genes, GENCODE (v35), APPRIS principal transcripts).
In addition, average SNV density and standard deviation
(SD) per 1-Kb and 1-Mb windows were calculated over
the entire genome.

Results
Array characteristics and genome-wide coverage

In total, we examined 28 arrays (10 from Affymetrix and 18
from Illumina), including the latest generation of genotyp-
ing arrays, the GSA (vl and v3), the PMRA, and the PMDA
(Table 1). The overall number of markers on the arrays
ranges from ~240K (Exome) to ~4M variants (OmniS5).
Most of the currently available arrays have none or only a
few dedicated CNV markers (i.e., intensity only probes) on
the array. In comparison, the 660w-Quad array had ~65K
CNV markers included in its design. The number of var-
iants mapping to the Y-chromosome and mtDNA, unlike
the X-chromosome, does not necessarily increase with the
overall number of variants on the array (Table 1). Newer
arrays (e.g., GSA, PMRA, PMDA, Global) have more
exonic and splice-site variants included in the design
compared to older ones. The two exceptions to this are the
older Exome (exonic variants = 225,826, 93% of total
content) and the disease-specific Psych (variants = 266,517,
47% of total content) arrays.

Though not discussed in detail in this article, the back-
wards compatibility of arrays can be an important deciding
factor for studies who have already genotyped a large
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HapMap (EUR+ASN+AFR; N=210)

A. Ultra-rare (MAF<0.5%)
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B high (R2>0.8)
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Fig. 2 Imputation quality (1IKGPp3v5) of HapMap samples for six
different arrays, stratified by minor allele frequency. A describes
the imputation quality for the ultra-rare variants (MAF<0.5%),
B describes the imputation quality for the rare variant bin (MAF
0.5-1%. C describes the imputation quality for the low-frequency

percentage of their study population in the past. We have
therefore included an array overlap table in Supplementary
Table 1.

The genome-wide coverage of the investigated arrays
ranges from 2 to 84% in EUR and increases with the
number of variants on the array (Supplementary Fig. 2A).
The genome-wide coverage is higher in ASN (3—100%;
Supplementary Fig. 2B) and lower in AFR (2-40%; Sup-
plementary Fig. 2C) ancestries. The Axiom_AFR achieves
a higher genome-wide coverage in EUR (47%) and ASN
(53%) ancestries compared to either the Axiom_EUR (19%)
or Axiom_ASI (23%) arrays for their respective ancestries.
This can be explained by the expected improvement of
genome-wide coverage with a larger number of variants on
the array, independent of the targeted study population.
Noticeably, the trend for higher coverage with more var-
iants on the array is disrupted for the latest arrays (i.e.,
GSAv1, GSAv3, PMRA, and PMDA) as these seem to have
been designed with imputation quality in mind rather than
genome-wide coverage.
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variants (MAF 1-5%) and D describes the imputation quality for
common variants (MAF >5%). All bins are coloured by high (green),
medium (yellow) or low (red) imputation quality R, >0.8, 0.3-0.8 and
<0.3 respectively.

Imputations

For the HapMap samples, six arrays were evaluated. A
general trend of little difference in imputation quality for the
various arrays was observed for all genetic backgrounds
(Supplementary Figs. 3-5). However, in EUR ancestry
samples, the Global array was better at calling ultra-rare
variants (MAF <0.5%) than any other array (4.3% com-
pared to <0.1%). Interestingly, imputation of ASN samples
resulted in lower quality than imputation of AFR samples,
especially for rare and low-frequency variants. When
imputing the AFR, ASN, and EUR samples in one set, the
imputation quality markedly increased (Fig. 2), especially
for ultra-rare (MAF <0.5%) and rare (MAF 0.5-1%) var-
iants, probably due to the increased number of input hap-
lotypes. When comparing the GSAvl and PMRA, the
PMRA had slightly higher imputation quality for common
and low-frequency variants. This difference was more
pronounced for rare (MAF 0.5-1%) variants (87.2% of high
quality compared to 73.3% for GSAv1).
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59 ACMG genes

A. Total
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Fig. 3 Number of variants located in the ACMG actionable genes
with a CADD > 20, indicating possibly damaging variants. Arrays
are ordered by size with the smallest array at the bottom. Arrays in
blue are from Illumina, while arrays in red are from Affymetrix.

Based on a starting set of 511,992 (550K), 3066,764
(Omni5), 516,598 (GSAvl), and 472,151 (PMRA) SNVs
before HRC rl.1 imputation, all datasets from RS imputa-
tion contained roughly 40 million variants after imputation.
Of these, around 31 million (79%) were in the ultra-rare
category (MAF<0.5%), 1.2 million (3%) rare (MAF
0.5-1%), 2.4 million (6%) low frequency (MAF 1-5%), and
around 5.5 million (14%) were common variants (MAF >
5%). Comparing these imputation sets to the WES dataset
of RS samples resulted in varying amounts of concordance,
but a similar number of overlapping variants (around 225k
per dataset), with the exception of the Omni5 at 232k
overlapping variants (Supplementary Fig. 6). More com-
mon SNVs are generally imputed better across all arrays
than rare SNVs as can be seen by the number of SNVs in
each of the bins. Interestingly, concordance is high for all
sets in the high imputation quality (R>>0.8) bins, while
concordance drops sharply in lower (R?<0.8) bins. When
evaluating the percentage of high-, medium-, and low-
quality imputed variants of the above-mentioned datasets,
all four tested arrays performed very similarly (Supple-
mentary Fig. 7). Only for rare and low-frequency variants
the Omni5 array had better imputation quality compared to
arrays with a lower number of variants.

GWAS and PRS

The percentage of variants from the GWAS catalog (6,056
variants; see ‘“Methods”) called by the arrays either by
direct genotyping or after imputations with good imputation
quality (R*>0.8), ranges from 10.6 (Cytol2) to 52.0%
(OmniS); Supplementary Fig. 8). After imputations, all

B. Subdivided per gene
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Bar chart (A) represents the total number of ACMG-overlapping
variants present on the array. The box plots (B) represent the median
and interquartile range.

tested arrays had a high coverage of known GWAS markers
with high imputation quality (>90% covered) with minimal
differences per array.

Mitochondrial DNA (mtDNA)

The number of variants for the mtDNA does not increase
with the overall number of variants on the array (Table 1
and Supplementary Fig. 9A). In fact, several arrays (i.e.,
Cytol2, OmniExpress, and Cyto850) do not contain
mtDNA variants at all, while the Immuno array only has
one variant for the NADH-ubiquinone oxidoreductase chain
1 (mt-ND1). In general, Illumina arrays appear to have more
mtDNA variants per mitochondrial feature than Affymetrix
arrays (Supplementary Fig. 9B).

Current clinical applications
ACMG actionable genes

An overall trend was observed with an increasing number of
variants on the array resulting in more variants located
inside the ACMG actionable genes (Supplementary
Fig. 9C). When comparing the older arrays (Affy6.0 and
660w-Quad) to more recent and currently available arrays,
the new arrays of similar size generally have more variants
dedicated to the ACMG actionable genes.

When taking the CADD score into account, the trend
with the size of the array is no longer observed (Fig. 3A
and Supplementary Table 2). Instead, newer arrays have
more “proxy-deleterious” variants (variants with a high
CADD score) in the ACMG actionable genes in their
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A. Box plot of 12 CYP450 genes
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Fig. 4 Percentage of CYP450 *-alleles called. Arrays are ordered on
size with the smallest array on the bottom. At the top are imputed
datasets. Arrays in blue are from Illumina, while arrays in red are from

design. The highest number of these variants is found in
the PMDA (11,851), PMRA (5,500), and Axiom_UKB
(7,001) for Affymetrix, and GSAv3 (10,353) and GSAvl
(3,954) for Illumina. Observing the distribution of proxy-
deleterious variants for these arrays over all ACMG
genes provides a similar picture: PMDA (median 128),
PMRA (median 47), Axiom_UKB (median 53), and
GSAv3 (median 98), GSAvl (median 39) (Fig. 3B and
Supplementary Table 2).

Pharmacogenetic genes
A trend can be observed where newer arrays have more
variants dedicated to pharmacogenetics (Supplementary

Fig. 9D). However, known pharmacogenetics marker
*-alleles (star alleles) are very specific and need a certain
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C. CYP2D6
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Affymetrix. The box plots (A) represent the median and interquartile
range. Bar charts (B) and (C) represent two examples of *-allele cov-
erage of CYP450 genes.

SNV or set of SNVs to be identified. As such, most of the
variants in the pharmacogenetic genes can be discarded
during pharmacogenetic analysis. In total 186 *-alleles
were evaluated for 12 CYP450 genes. Especially newer
arrays such as GSAvl, GSAv3, PMRA, or PMDA scored
well in covering *-alleles of CYP450 genes (Fig. 4A).
After imputations, the coverage of the *-alleles generally
decreases. This is caused by the low allele frequency
(MAF <0.5%) of many of these variants, which get
excluded during imputation. In addition, there is a broad
variation in the ability to call the *-alleles of different
CYP450 genes (Supplementary Fig. 10 and Supplementary
Table 3). For example, Axiom_UKB calls ~60% of known
CYP3A5 *-alleles (Fig. 4B), while only calling ~20% of
known CYP2D6 *-alleles (Fig. 4C). The same trend holds
for these two genes on most other arrays.
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A. Average + SD of 6 HLA genes
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Fig. 5 Percentage of HLA *-alleles called. Percentages shown
separately for the three ethnicities as different tag SNPs are correlated
with HLA classes per ethnicity. Arrays are ordered on size with the
smallest array shown on the left. Imputed datasets are placed on the

HLA genes

Despite the large number of variants both Illumina and
Affymetrix assign to the HLA region in general, on average
only up to ~45% of the known HLA *-alleles can be gen-
otyped even with the newest arrays (Fig. 5A). Also, the
Immuno and Psych arrays had similarly high coverage of
HLA types. This can be explained by the targeted design of

right. Bar chart (A) describes the average and SD coverage of *-alleles
over the 6 HLA genes, while charts (B) and (C) show the difference in
coverage for a class I and class II HLA gene.

these arrays for specific diseases and known associations for
these diseases. There is a strikingly high coverage of HLA
after imputations, with up to 100% of the population being
covered, probably due to the very-high LD in this region.
There is a notable difference between Class I and Class II
HLA types, with Class I types being covered much better
compared to Class II types (Supplementary Fig. 11 and
Supplementary Table 4). For example, HLA-A (Fig. 5B) has
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~50% of its known *-alleles called on most arrays, while
HIA-DQA (Fig. 5C) is not called at all. After imputations,
the percentage of called *-alleles in Class I HLA types is
almost 100% while it is only ~50% of Class II HLA types.

SNV density

The average distance between SNVs per coding regions of
gene per array was plotted to compare the various arrays
on SNV density. A lower distance between SNVs meant a
higher density for that specific region (Supplementary
Fig. 12). There seemed to be no direct trend for array size
and SNV distance, since even larger arrays such as the
Axiom_AFR had similar average distances as smaller
arrays such as the OmniExpress. The largest array, the
Omni5, had a lower density in coding regions than a
specialized array like the Psych array, though the Psych
array covers fewer genes in total. However, the newest
arrays (GSA and PMRA) did show higher coding SNV
density when compared to older arrays. Focus on exonic
variation was also clearly visible in the number of genes
containing at least one SNV, where the specialized Psych
array, as well as the Global, Multi_EUR, and Multi_AFR
had a high number of SN'Vs located within coding regions
relative to their size. Interestingly, Affymetrix arrays
design seemed to have less resolution to detect exonic
variants, with only the two most recent arrays (Axio-
m_UKB and PMRA) having a high number of exonic
SNVs in addition to a low mean distance. Studying the
overall genomic density through 1-Kb and 1-Mb windows
shows a slightly different picture with larger arrays having
a higher overall density regardless of design type as can
be seen in (Supplementary Table 5).

Discussions
Array characteristics and coverage

The currently available arrays differ quite a lot in the
number of markers on the arrays and subsequently
genome-wide coverage. Interestingly, the Axiom array
created for ASN ancestry achieved a similar genome-wide
coverage in EUR ancestry as the array specifically created
for EUR ancestry. As discussed below, this increase in
genome-wide coverage with a larger number of variants
does not necessarily translate into a higher imputation
quality for most recent arrays. Therefore, we propose to
abandon genome-wide coverage as a selection criterion
for array choice. In addition, there is a trend toward
excluding CNV markers, with most current arrays con-
taining no CNV markers. Instead, the intensities of SNV
markers are now used to determine insertions and
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deletions in the samples (discussed in more detail in
Coding SNV density). Also, it should be noted that there
can be large differences in SNV content even between
consecutive arrays of the same manufacturer with little
backward compatibility. As such combining cohorts for
case—control studies, or follow-up data generated on a
different platform can be a challenge in practice.

Imputations

While the amount of input variants for imputations for
each of the arrays differs after imputation, the actual
imputation quality of all MAF categories is roughly the
same regardless of the input source. This suggests that the
number of variants on the array, and thus the genome-
wide coverage, do not influence imputation quality.
However, this will not always be the case, as an uneven
spread of variants on an array over the genome would
cause some linkage blocks to not be covered properly. As
a result, linkage for these chunks would not be calculated
and variants would not be determined on these chunks as
implemented in the Michigan Imputation Server [15]. As
such, an even spread of variants over the genome is very
important for the imputation results. However, as most
current arrays are made with GWAS in mind, we do not
expect this to be a problem for current and future arrays.
The only exceptions to this rule, currently, would be the
Exome, Immuno, Cytol2, DrugDev, Psych, Onco, and
Cyto850 arrays, which were made focusing on exons
(Exome), specific diseases (Immuno, Psych, and Onco),
pharmacogenetics (DrugDev), or CNV calling (Cytol2
and Cyto850) instead. We do see that the imputation
quality of the Omni5 array (~4M variants) is slightly
better compared to the other tested arrays. However, due
to the high price of this array, resulting in fewer samples
to be genotyped for the same budget, we feel that this
slight gain in accuracy is not worth the cost. We conclude
that, as long as an array was made with GWAS in mind,
the choice of array should not depend on the number of
variants on the array.

When comparing the results of the imputation of several
arrays against a different technique such as WES, we
noticed that only a small percentage of the imputed variants
is located within the human exome. However, common
(MAF >0.05) and low-frequency (MAF 0.05-0.01) SNVs
are imputed very well, as can be deferred from the large
number of SNVs in high imputation quality (R*>0.8) bins,
when compared to the lower quality bins (R* 0.3-0.8 and
R?<0.3). Based on the concordance with WES genotypes,
we can conclude that using a strict filter of R*>>0.8 yields
genotypes, which are true in most cases (average con-
cordance: 98.9% for common, 99.6% for low frequency,
97.9% for rare, and 96.6% for ultra-rare variants). This is
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important if imputed data are to be used in a predictive and/
or clinical setting.

GWAS and PRS

As expected, known GWAS loci as summarized in the
GWAS catalog are better covered by newer arrays. This
catalog is often used in the design of these arrays, which
completely explains this phenomenon. After imputations,
however, all arrays have high coverage of known GWAS
loci. Therefore, whether interested in GWAS or in
designing PRS for research purposes, there is no best array
to choose. Going for a cheap, up-to-date GWAS oriented
array will provide you with the most coverage available.
However, if one is interested in implementing PRS into a
clinical setting imputations may not be accepted. In this
setting, a recent GWAS array with added customized
variants is most advantageous. Both the PMDA and GSA
arrays are customizable and would be suited for this

purpose.

Mitochondrial DNA (mtDNA)

The number of mtDNA variants included in arrays is not
related to the overall number of variants on the arrays.
mtDNA genetic variants were originally included for QC
purposes as they can be used to determine genetic ancestry
[25]. However, these variants have since been used for
genotype—phenotype associations as well. Both the hap-
logroups themselves [26-28] and individual variants
[27, 29, 30] have been found associated with several
phenotypes. However, unlike nuclear DNA, mtDNA is
primarily maternally inherited and present in multiple
copies per cell [31]. Due to this, variants in mtDNA within
an individual follow the laws of population genetics, rather
than Mendelian genetics [32]. In addition, old beliefs that
humans are homoplasmic (i.e., all mtDNA molecules are
identical) at birth have changed and a more heteroplasmic
model (i.e., multiple different mtDNA molecules) is now
accepted in the scientific community, with ~25% of indi-
viduals being heteroplasmic at birth [32, 33]. Nevertheless,
it is currently unknown if genotyping arrays are sensitive
enough to pick up low-grade heteroplasmy as present in
the general population. On top of these complexities,
mtDNA has a very-high mutation rate resulting in higher
levels of mtDNA diversity as individuals age [34].
Therefore, the question may not be how many mtDNA
variants are present on the arrays, but how to analyze them
properly. As a result, we believe that, currently, the
number of mtDNA variants on the array should not be
used as a criterion for array choice. This may change in
the future as new methods are developed to analyze the
mtDNA variants.

Current clinical applications
ACMG actionable genes

The ACMG published a list of 59 genes in which variants
could lead to severe outcomes, but which are medically
actionable [9]. Though this list was originally meant for
reporting possible additional variants in these genes in
patients undergoing clinical sequencing for other purposes,
the list has also had an influence on array design, with new
arrays including more variants in these genes in their designs.
It should be noted that for many genes in the recommenda-
tions of the ACMG, it is stated that even expected pathogenic
variants (i.e., even variants where the clinical status has not
been proven yet) should be reported to the patient [9]. The
main database that is to be used for this purpose according to
the ACMG is the ClinVar variant status. However, in a
previous study, we have determined that this variant status is
not a stable source, with variants changing pathogenicity
status often [20]. To prevent the observer bias in the ClinVar
database, we have thus translated this definition to any variant
in the ACMG genes with a CADD > 20, indicating that the
variants are in the top 1% of most damaging variants overall
[21]. A surprisingly large number of variants with such high
CADD scores is included in the array designs of the Axio-
m_UKB, PMRA, and GSAvl arrays. This is even more
prominently the case in the PMDA and GSAv3 arrays, which
can be considered to be updated versions of the PMRA and
GSAvV1 arrays, respectively. This is good news for the pos-
sibility of using arrays for variant screening purposes. For
research purposes, however, this may not be desirable as
reporting back such variants to healthy participants can be
problematic, especially as 1 in 38 healthy individuals carries
at least one likely pathogenic variant [35]. Some older arrays,
like the OmniExpress, have little to no variants with a high
CADD score in the ACMG genes included in their design,
which can make these arrays decent substitutes.

Pharmacogenetic genes

It is difficult to create a complete pharmacogenetic profile of
a sample regardless of which of the evaluated arrays is used.
There is, however, a clear trend in newer arrays of including
more pharmacogenetic content. A trend has only increased
in intensity as observed when comparing the GSAvl and
PMRA with their respective successor arrays, the GSAv3
and the PMDA. Still, even the newest arrays do not cover
all *-alleles and show a wide variability in their ability to
call a specific pharmacogenetic gene. This can mostly be
explained by the complex nature of certain pharmacogenetic
genes (e.g., CYP2D6) for which designing probes is ham-
pered by the complexity of the region as well as pseudogene
interference [36]. In addition, some CYP genes are known
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to have large CNVs (i.e., gene duplications and gene
deletions). Calling these requires CNV analysis, which is
outside of the scope of this study. Furthermore, the presence
of the CNVs makes calling other variants more difficult as
these may also be present in one, two, three, or more copies.
Affymetrix has therefore implemented a copy number
aware calling algorithm for their newest (i.e., PMRA and
PMDA) arrays, as well as an automated SNV to *-allele
translation algorithm. It should be noted that currently the
calling of *-alleles using arrays is purely on a theoretical
basis and that the correctness of made pharmacogenetic
calls has not been investigated here. However, if one is
interested in pharmacogenetic calling for research and/or
clinical testing, currently the best array on the market is the
PMDA array from Affymetrix, with the GSAv3 array from
Illumina being a close second.

HLA genes

On average, only about 45% of the HLA *-alleles can be
genotyped with arrays. There is a striking difference between
HLA class I and HLA class II types, with HLA Class I being
covered better than Class II. This can be explained by large
structural variations in the HLA region, particularly in the
HLA Class II region [37]. Even so, the HLA region is
associated with many different traits in GWAS studies as
reviewed in ref. [38] and is relevant also in organ transplan-
tation [39]. Currently, the best HLA typing method is a
sequence-based technique [40]. As Class I HLA types are
most important for transplantations [39] and these HLA types
are covered well, up to 100% after imputations, recent arrays,
in particular the PMDA, might be an interesting and cheap
alternative. It should be noted that multiple specialized HLA
imputation tools exist and one of these is implemented in an
Affymetrix HLA calling tool, which improves the calling of
HLA types even more than using the tagging SNVs shown
here [41]. Whether this is a clinically viable option or not
needs to be validated.

SNV density

Overall, most arrays have similar average distances between
SNVs within the coding regions of genes. However, newer
arrays such as the GSA or the PMRA show a higher focus
on exonic variants, possibly due to the clinical relevance of
these variants in fields such as pharmacogenetics. The lack
of a high exonic content in older arrays can be at least
partially explained by their focus on GWAS, which requires
an even spread of variants across the genome instead of
focus on the coding regions. This effect is also visible in the
density results for 1-Kb and 1-Mb windows, where a higher
number of genotyped variants directly correlates to the
overall density of variants on the genome.
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Overall conclusion

While the comparison of arrays we performed here does not
cover the complete scope of all applications of genomic
microarray technology, this study considers the most com-
monly used applications in-depth. Overall, we conclude that
differences between arrays are mostly small between arrays
of a similar age and that the choice of array is very
dependent on the research question. As discussed in the
individual sections above, the PMDA array from Affyme-
trix is particularly rich in ACMG actionable gene variants,
pharmacogenetic content, and the ability to call HLA types.
The Illumina counterpart that the GSAv3 also scores high in
all three categories.

We have also seen that currently the new updated arrays
being developed by Illumina and Affymetrix have an even
stronger focus on these potentially clinical applications of
arrays, which bodes well for future use of array technology
in a clinical setting as first screening algorithm. It also
means that we can safely assume that new arrays arriving
after printing of this study will have further developed in
these fields compared to their predecessors.

For a practical example on array choice in a new study,
we would like to focus on the PanCareLife study [42, 43].
In the PanCareLife study, we were interested in both
pharmacogenetics as well as GWAS, in order to study the
late-life effects of treatment in childhood cancer survivors.
As the PMRA array was not available at the time, we chose
the GSAv1 array for this study because of its good coverage
of pharmacogenetic variation and good GWAS backbone. If
this same study were designed now, the GSAv3 or PMDA
array would have been chosen instead. Similar decisions
can be made for other studies using the comparison as
provided in this study.

Disclaimer

Even though genotyping data for the HapMap samples were
provided by Affymetrix and Illumina, neither company had
any say in the design or execution of the study. The results
of our study were shared with Affymetrix and Illumina only
after completion of the study and manuscript.

Data availability

Original array manifest files used for the theoretical com-
parisons are available on the manufacturers’ websites.
Annotated (and lifted-over) variant files used for the theo-
retical comparisons for each array are available in.bed for-
mat and can be downloaded from: https://github.com/
jverlouw/ArrayComparisonData. Raw genotype data of
the HapMap samples for the Core, OmniExpress, GSAv],
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Global, Omni2.5, and PMRA arrays should be requested
through Illumina and Thermofisher for their respective
arrays. Due to legal and ethical restrictions, individual-level
genotype data of Rotterdam Study (RS) participants cannot
be made publically available in a managed-access database.
Data are available on reasonable request to the Rotterdam
Study management team (chair M. Arfan Ikram, m.a.
ikram @erasmusmc.nl) and Rotterdam Study data manager
(F. van Rooij, f.vanrooij@erasmusmc.nl). Local rules and
regulations apply. This process includes submitting a
research proposal to the RS management team and upon
approval analysis needs to be performed on a local server
with protected access, complying with GDPR regulations.
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use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
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