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Abstract
Background  A new harmful respiratory disease, called COVID-19 emerged in China in December 2019 due to the infection 
of a novel coronavirus, called SARS-Coronavirus 2 (SARS-CoV-2), which belongs to the betacoronavirus genus, including 
SARS-CoV-1 and MERS-CoV. SARS-CoV-2 shares almost 80% of the genome with SARS-CoV-1 and 50% with MERS-
CoV. Moreover, SARS-CoV-2 proteins share a high degree of homology (approximately 95%) with SARS-CoV-1 proteins. 
Hence, the mechanisms of SARS-Cov-1 and SARS-Cov-2 infection are similar and occur via binding to ACE2 protein, 
which is widely distributed in the human body, with a predominant expression in endocrine tissues including testis, thyroid, 
adrenal and pituitary.
Purpose  On the basis of expression pattern of the ACE2 protein among different tissues, similarity between SARS-Cov-1 
and SARS-Cov-2 and the pathophysiology of COVID-19 disease, we aimed at discussing, after almost one-year pandemic, 
about the relationships between COVID-19 infection and the endocrine system. First, we discussed the potential effect of 
hormones on the susceptibility to COVID-19 infection; second, we examined the evidences regarding the effect of COVID-
19 on the endocrine system. When data were available, a comparative discussion between SARS and COVID-19 effects was 
also performed.
Methods  A comprehensive literature search within Pubmed was performed. This review has been conducted according to 
the PRISMA statements.
Results  Among 450, 100 articles were selected. Tissue and vascular damages have been shown on thyroid, adrenal, testis 
and pituitary glands, with multiple alterations of endocrine function.
Conclusion  Hormones may affect patient susceptibility to COVID-19 infection but evidences regarding therapeutic implica-
tion of these findings are still missing. SARS and COVID-19 may affect endocrine glands and their dense vascularization, 
impairing endocrine system function. A possible damage of endocrine system in COVID-19 patients should be investigated 
in both COVID-19 acute phase and recovery to identify both early and late endocrine complications that may be important 
for patient’s prognosis and well-being after COVID-19 infection.
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Introduction

During December 2019, a new fatal respiratory disease 
emerged in Wuhan, Hubei province, China [1–3]. This dis-
ease can cause atypical pneumonia and acute respiratory 
distress syndrome with a relatively high risk of death for 
patients [1, 4]. The causative agent of this lung disease is 
a novel coronavirus, called SARS-coronavirus 2 (SARS-
CoV-2), which is closely related to SARS-CoV-1 [3]. In 
March 2020, because of the rapid and wide spread of the 
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infection around the world, WHO declared pandemic for this 
new disease and named it as COVID-19.

SARS-Cov-2 virus belongs to the betacoronavirus genus 
including SARS-CoV-1 and MERS-CoV pathogens that 
caused epidemics in 2002 and 2013, respectively [5]. All 
authors agree with the assumption that SARS-CoV-2 alert 
depends on the its great ability to spread, with R0 about 
3.8 (1.4–6.49) [6], rather than on the mortality rate per se, 
which stands at around 2.4% according to WHO report 
in November, 22, 2020 [7] (at variance with MERS with 
R0 < 1 and mortality rate of 34.4% and SARS with R0 of 
approximately 1.8 and mortality rate of 10%) [8]. Human-
to-human transmission occurs by droplet and contact routes, 
although airborne, fecal or intrauterine transmission may 
be also considered. The mechanism of infection is simi-
lar in both SARS-CoV-1 and SARS-CoV-2 and occurs via 
virus binding to protein ACE2 [9] and the intervention of 
the TMPRSS2 protease and, at lesser extent, of cathepsin B 
(CTSB) and L (CTSL) [10], which are widely distributed in 
human body, with a relevant expression in endocrine tissues 
including testicle, thyroid, adrenal and pituitary [11, 12]. 
On the other hand, already at the onset of SARS, MERS 
and COVID-19 epidemics, it was evident that hormonal and 
metabolic conditions may influence the outcome of viral dis-
ease. For instance, diabetes is an important risk factor for 
poor prognosis and mortality [13, 14]. In respect to COVID-
19 infection, current data indicate that elderly, hypertension, 
obesity and diabetes are important risk factors for mortality 
[15, 16]. More importantly, Cushing’s Syndrome (including 
most of the above-mentioned risk) and pre-existent adrenal 
insufficiency (impairing patient recovery capabilities) are 
major determinants of COVID-19 disease outcome [17–19]. 
Hence, the strict relationship between the COVID-19 and 
the endocrine system raised the interest of the endocrinolo-
gists for this emerging pandemic. For these reasons, inter-
national scientific societies of endocrinology and Italian 
Society of Endocrinology have given important contribu-
tions to the literature with the aim of suggesting the optimal 
management of the endocrine high-risk patients during the 
COVID-19 pandemic [17–20]. Moreover, on the basis of tis-
sue expression pattern of the proteins ACE2 and TMPRSS2, 
a twelve-month experience of COVID-19 disease and simi-
larities between SARS-CoV-1 and SARS-CoV-2, this review 
will also try to summarize possible short- and long-term 
alterations of the endocrine system in subjects affected by 
COVID-19.

Methods

This review was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) statements. A comprehensive literature 

search within Pubmed was performed from outbreak of the 
pandemic until 18 November 2020. Search terms included 
“Covid-19”, “SARS-Cov-2”, “SARS-Cov”, “MERS-Cov”, 
“Endocrine system”, “Hypotalamus”, “Pituitary”, “Thy-
roid”, “Adrenal Gland”, “Testis”, “ACE2”, “ACE2 expres-
sion”, “TMPRSS2”, “TMPRSS2 expression”, “COVID-19 
treatments” and “COVID-19 drugs”. This search strategy 
was enhanced by tracking citations of articles included in 
Google Scholar.

Given the limited number of works available, we have 
taken into account all papers describing in SARS and 
COVID-19 patients any pathological or functional altera-
tion in hypothalamus/pituitary axis, thyroid, adrenal gland, 
ovary and testis. We also included studies that detected the 
presence of SARS-COV-1 and SARS-COV-2 in endocrine 
glands by in situ hybridization, electron microscopy and 
RT-PCR. Furthermore, the research focused on: similari-
ties between SARS-CoV-2 and other beta-coronaviridae; 
ACE2 and TMPRSS2 expression in endocrine tissues; ACE2 
expression and COVID-19 treatments; coronavirus infec-
tions and potential damage systems to endocrine glands and 
hormonal regulation of TMPRSS2 expression. In this regard, 
all types of studies were considered, including studies on 
gene databases. Two investigators screened title/abstracts for 
potential eligibility. Disagreements were resolved through 
consensus. Due to fragmentary and heterogeneous results, 
the small number of papers (especially about SARS) and 
the recent onset of COVID-19 pandemic, we conducted a 
synthesis of all the available data (Fig. 1).

Results and discussion

Systematic search results

The global search returned 450 titles, and 372 were avail-
able after the removal of duplicates. We selected 289 papers 
to assess the full-text. Subsequently, we excluded 189 of 
the retrieved articles. A total of 100 papers were included 
(Tables 1 and 2).

Similarities between SARS‑CoV‑2 and other 
beta‑coronaviridae

Genome sequence analysis indicated that SARS-CoV-2 
belongs to the betacoronavirus genus, including SARS-
CoV-1 and MERS-CoV [5]. These coronaviridae are envel-
oped, positive-stranded RNA viruses with a large genome 
approaching 30 kb and including four structural proteins, 
namely spike (S), nucleocapsid (N) envelope (E), and mem-
brane (M) [21]. The S protein is responsible for virus attach-
ment to the receptor and fusion to the cell membrane [22, 
23]. The N protein interacts with the viral RNA to form 
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the ribonucleoprotein [24]. The E protein helps virion 
assembly and includes ion channel actions [25]; the M 
protein participates to the assembly of new virus particles 
[26]. SARS-CoV-2 shares almost 80% of the genome with 
SARS-CoV-1 [27] and 50% with MERS-CoV [28]. Moreo-
ver, SARS-CoV-2 proteins share a high degree of homology 
(approximately 95%) with the SARS-CoV-1 proteins [29]. 
Among the various viral proteins, the S protein is the most 
important to infect host cells as it facilitates viral entry into 
target cells. Entry depends on binding of the surface unit, S1 
of the S protein to a cellular receptor, which facilitates viral 
attachment to the surface of target cells. In addition, entry 
requires S protein priming by cellular proteases, which entail 
S protein cleavage at the S1/S2 and the S2′ site and allow 
fusion of viral and cellular membranes, a process driven 
by the S2 subunit. SARS-S engages angiotensin-converting 
enzyme 2 (ACE2) as the entry receptor [30] and employs 
the cellular serine protease TMPRSS2 for S protein priming 

or, at lesser extent, cathepsin B (CTSB) and L (CTSL) [10, 
31–33]. SARS-S and SARS-2-S share 76% amino acid iden-
tity and SARS-2-S protein exploits ACE2 for entry with the 
subsequent intervention of TMPRSS2 [10, 34]. These data 
suggest that SARS-CoV-2 shares the similar target cells with 
SARS-CoV-1 [10]. On the other hand, MERS-CoV, binds 
to dipeptidyl-peptidase 4 (DPP4) to enter human cells [35].

Effect of hormones on human susceptibility 
to coronavirus infection

Glucocorticoid and vitamin D

Some authors wondered whether hormonal treatment of 
COVID-19 patients may affect ACE2 expression in tissues 
and, as a consequence, viral spread. To date, some evidences 
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Table 1   List of selected articles contain-
ing evidences on endocrine functional 
alterations in SARS and COVID-19 
patients

Endocrine links to SARS and 
COVID-19 pathophysiology

Reference number Author (Year)

Similarities between SARS-
CoV-2 and other beta-
coronaviridae

[5] Chen Y (2020)
[10] Hoffmann M (2020)
[21] Siddell SG (2005)
[22] Cavanagh D (1995)
[23] Kandeel M (2018)
[24] Risco C (1996)
[25] Ruch T (2012)
[26] Neuman BW (2011)
[27] Chan JFW (2020)
[28] Rabaan AA (2020)
[29] Xu J (2020)
[30] Li W (2003)
[31] Matsuyama S (2010)
[32] Shulla A (2011)
[33] Zhang C (2020)
[34] Zhou P (2020)
[35] Fehr AR (2015)

ACE2 and TMPRSS2 expres-
sion in endocrine tissues

[11] Chen Y (2020)
[12] Lazartigues E (2020)
[63] Hamming I (2004)
[64] Chi M (2020)
[100] Reis FM (2011)
[101] Jing Y (2020)
[102] Goad J (2020)
[103] Wang Z (2020)
[104] Fan C (2020)

ACE2 expression and 
COVID-19 treatments

[36] Malek Mahdavi A (2020)

[37] Xiang Z (2020)

[38] Young MJ (2020)

[39] Hanff TC (2020)

[40] Marshall RP (2000)

[41] Marshall RP (2004)

[42] Mastruzzo C (2002)

[43] Okada M (2009)

[44] Wang R (1999)

[45] Keidar S (2007)

[46] Mizuiri S (2015)

[47] Imai Y (2008)

[48] Xu J (2017)

[49] Panarese A (2020)
Coronavirus infections and 

potential damage systems to 
endocrine glands

[65] Ding Y (2003)
[66] Guo Y (2008)
[67] Yao XH (2020)
[77] Conti P (2020)
[99] Giannis D (2020)
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indicate that both vitamin D and glucocorticoids may 
increase the systemic expression of ACE2 receptors [36–38].

However, according to these data, this increase in poten-
tial sites for viral entry is only apparently disadvantageous, 
rather it is essential to preserve the integrity of the paren-
chyma of various tissues, including endocrine glands. In fact, 
the binding of SARS-CoV-2 with human ACE2 reduces its 
expression, thereby causing a rebound generation of Angion-
tensin II (Ang II) via the ACE enzyme [36, 39]. In turn, 
Ang II overproduction may stimulate cell growth, fibrosis, 
epithelial cell apoptosis, generation of reactive oxygen spe-
cies and the release of proinflammatory cytokines, thereby 
enhancing the detrimental effect of infection [40–44]. On the 
other hand, ACE2 cleaves Ang II into angiotensin 1–7 [Ang-
(1–7)] which acts as a vasodilator, reducing blood pressure 
[45] by stimulating nitric oxide synthase (NOS) [46]. By 
antagonizing the Ang II actions, Ang-(1–7) improves fasting 
glycemia and glucose tolerance, stimulates β-cell prolifera-
tion, prevents β-cell apoptosis and protects kidney function 
[12, 46]. For all these mechanisms, ACE/ACE2 ratio is 
believed to have an important impact on various diseases 
including diabetes, hypertension, nephropathy and also on 
the prognosis of COVID-19 patients [12, 47–49].

Sex hormones

Although men and women have a similar susceptibility to 
SARS-CoV-2, men appear to be prone to a more severe 
disease and mortality in an age-independent manner [50]. 
Indeed, several evidences indicate that TMPRSS2 expression 
in human tissues is regulated by androgen receptor activity 
[51]. It is reasonable to suppose that a higher TMPRSS2 
expression level in males may contribute to the more severe 
COVID-19 infection compared to women and prepuber-
tal children. In this respect, one study analyzing genomic 

databases found a higher TMPRSS2 mRNA expression 
in lung samples from men than from women (p = 0.029), 
while ACE2 mRNA expression level was not significantly 
different [52]. This observation was confirmed by Li et al. 
that was not able to find any difference in ACE2 expression 
level between males and females, younger and older subjects 
[53]. However, further studies are needed to confirm whether 
this different expression of TMPRSS2 in males and females 
may influence the virus pathogenicity [54]. In addition, it 
has been hypothesized that CAG repeats of the androgen 
receptor gene, regulating sensitivity to androgens, may be 
also associated to COVID-19 disease severity. According 
to this hypothesis, androgen receptor genetic variants that 
have been associated with androgenetic alopecia, prostate 
cancer, benign prostatic hyperplasia and polycystic ovary 
syndrome may be associated to higher susceptibility to 
COVID-19 infection. In accordance with these findings, 
some authors reported a disproportionate mortality rate in 
African-American COVID-19 patients [55], which carry a 
shorter variant of the CAG repeat in the androgen receptor 
gene [56]. Indeed, men hospitalized for severe COVID-19 
disease displayed a higher rate of androgenetic alopecia 
compared to the general population [57]. Finally, Montololi 
et al. described a protective effect of anti-androgen therapies 
for prostate cancer against SARS-CoV-2 infection [58]. In 
accordance with this hypothesis, several authors proposed 
anti-androgen treatment of exposed subjects to reduce dis-
ease severity. However, careful prospective clinical trials 
are needed to validate this strategy as adjuvant therapy for 
COVID-19.

Moreover, studies performed on both animal and 
human models suggest that androgen suppression results 
in increased ACE2 expression [59–61], while it is unclear 
whether this effect results in increased risk of severe infec-
tion or in a protective effect of ACE2 protein overexpression 

Table 1   (continued) Endocrine links to SARS and 
COVID-19 pathophysiology

Reference number Author (Year)

Hormonal regulation of 
TMPRSS2 expression and 
its role in susceptibility to 
COVID-19 infection

[50] Jin J (2020)
[51] Bertram S (2013)
[52] Asselta R (2020)
[53] Li MY (2020)
[54] Stopsack KH (2020)
[55] Thebault R (2020)
[56] Bennett CL (2002)
[57] Wambier CV (2020)
[58] Montopoli M (2020)
[59] Chen J (2020)
[60] Dasinger JH (2016)
[61] Mishra JS (2016)
[62] Klein SL (2012)
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Table 2   List of selected articles 
containing evidences of SARS, 
COVID-19 infection and endo-
crine tissue damage

Endocrine gland/
system

Reference 
number

Author (Year) Infection Kind of study

Hypothalamus/
Pituitary

[68] Zhang QL (2003) SARS Pathology
[69] Ding Y (2004) SARS Pathology
[70] Gu J (2005) SARS Pathology
[71] Wei L (2010) SARS Pathology
[72] Ye YX (2004) SARS Clinical
[73] Wang W (2003) SARS Clinical
[74] Leow MK (2005) SARS Clinical
[75] Zhou L (2020) COVID-19 Case report
[76] Li T (2020) COVID-19 Clinical

Thyroid [67] Yao XH (2020) COVID-19 Pathology
[70] Gu J (2005) SARS Pathology
[74] Leow MK (2005) SARS Clinical
[76] Li T (2020) COVID-19 Clinical
[78] Wei L (2007) SARS Pathology
[79] Wang W (2003) SARS Clinical
[82] Chen M (2020) COVID-19 Clinical
[83] Chen T (2020) COVID-19 Clinical
[84] Gao W (2020) COVID-19 Clinical
[85] Lui DTW (2020) COVID-19 Clinical
[86] Khoo B (2020) COVID-19 Clinical
[87] Brancatella A (2020) COVID-19 Case report
[88] Ippolito S (2020) COVID-19 Case report
[89] Asfuroglu K E (2020) COVID-19 Case report
[90] Ruggeri RM (2020) COVID-19 Case report
[91] Brancatella A (2020) COVID-19 Case report
[92] Lania A (2020) COVID-19 Clinical
[93] Muller I (2020) COVID-19 Clinical

Adrenal gland [65] Ding Y (2003) SARS Pathology
[68] Zhang QL (2003) SARS Pathology
[70] Gu J (2005) SARS Pathology
[94] Zinserling VA (2020) COVID-19 Pathology
[95] Freire S M (2020) COVID-19 Pathology
[96] Iuga AC (2020) COVID-19 Pathology
[97] Frankel M (2020) COVID-19 Case report
[98] Álvarez-T J (2020) COVID-19 Case report

Ovary [69] Ding Y (2004) SARS Pathology

Testis [69] Ding Y (2004) SARS Pathology

[70] Gu J (2005) SARS Pathology

[105] Xu J (2006) SARS Pathology

[106] Wang DW (2003) SARS Pathology

[107] Zhao JM (2003) SARS Pathology

[108] Yang M (2020) COVID-19 Pathology

[109] Achua JK (2020) COVID-19 Pathology

[110] Li H (2020) COVID-19 Clinical/Pathol-
ogy

[111] Ma L (2020) COVID-19 Clinical
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(as previously discussed). Moreover, androgens and estro-
gens may influence immune response against viral infection 
in an opposite way and adverse reaction rates to both vac-
cines and antiviral drug are consistently higher in females 
than males [62]. Hence, caution is necessary before design-
ing pharmacological strategies on this issue.

Effect of coronavirus on the endocrine system

ACE2 and TMPRSS2 expression in endocrine tissues

Studies on the distribution of the ACE2 protein in human 
tissues allowed the identification of the potential pathways 
of infection and suggested the pathogenetic implications 
of the infection of SARS-CoV-1 and SARS-CoV-2. These 
evidences indicated a maximal ACE2 expression in lung, 
small intestine enterocytes and a lower expression in testis, 
thyroid, adipose tissue, ovary and endothelia. Furthermore, 
ACE2 was detected in adrenals, prostate, pituitary and hypo-
thalamus [11–13]. Lazartigues et al., confirmed the ACE2 
and TMPRSS2 mRNA expression in endocrine tissue, both 
in males and females, reinforcing the hypothesis of an endo-
crine involvement during viral infection [12]. Finally, since 
TMPRSS2 has also been identified in extracellular vesicles 
[64], it is reasonable to suppose that this protease may reach 
other tissues beyond its expression sites, thereby contribut-
ing to spreading of SARS-CoV-2 infection.

Mechanisms of potential damage on endocrine glands 
induced by coronavirus infection

The ACE2 expression pattern is in agreement with the path-
ological studies performed in SARS-CoV-1- or SARS-CoV-
2-infected patients, displaying a variable degree of damage 
in the endocrine tissues including direct cell damage due to 
viral entry and replication, vasculitis, arteriolar and venu-
lar thrombosis, hypoxic cell damage, consequent immune 
response and cytokine storm [65, 66].

In particular, thrombosis was more common in COVID-
19 patients, in small vessels and also in extrapulmonary 
organs, rather than in SARS patients [67]. In general point 
of view, this specific pathogenetic effect of COVID-19 may 
affect highly vascularized organs, such as the endocrine 
glands and in particular those with a very dense vascular 
network including pituitary (Table 3).

Effect of coronavirus on the hypothalamus/pituitary axis

Since 2002, the expression of ACE2 receptors in hypothal-
amus/pituitary [11–13] and the presence of neurological 
symptoms in subjects affected by SARS led to hypothesize 
that betacoronavirus infections may also affect central nerv-
ous system and, as a consequence, hypothalamus and pitui-
tary. The main entrance to the central nervous system (CNS) 
for SARS-CoV-1 and SARS-CoV-2 is still uncertain and 
may be both indirect via bloodstream or direct via the cribri-
form plate. Moreover, several direct and indirect evidences 
suggest that betacoronavirus infection may exert a general 
depression of the hypothalamus/pituitary axis related to the 
burden of the infection and general hypoxia of the infected 
patients.

SARS‑CoV‑1 and hypothalamus/pituitary  In situ hybridi-
zation studies detected the expression of SARS-CoV-1 
RNA polymerase gene in pituitary cells from autoptic tis-
sues of SARS-CoV-1 patients [68, 69]. In 2005, Gu et al. 
found SARS genome sequences in the brains of 8 SARS 
autoptic cases by real-time RT-PCR. Hybridization stud-
ies localized these positive signals in cytoplasm of the 
neurons of cortex and hypothalamus [70]. In addition, 
an autoptic study performed in pituitary of five SARS 
patients with an age ranging 24–51  years indicated a 
reduction in TSH-positive, ACTH-positive and GH-pos-
itive cells and a concomitant focal cell damage. However, 
the reduction of ACTH-, TSH- and GH-positive pituitary 
cells described by Wei et  al., could reflect a glucocorti-

Table 2   (continued) Endocrine gland/
system

Reference 
number

Author (Year) Infection Kind of study

[112] Pan F (2020) COVID-19 Clinical

[113] Song C (2020) COVID-19 Clinical

[114] Paoli D (2020) COVID-19 Case report

[115] Holtmann N (2020) COVID-19 Clinical

[116] Li D (2020) COVID-19 Clinical

[117] Vishvkarma R (2020) COVID-19 Sistematic review

[118] Corona G (2020) COVID-19 Position statement
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Table 3   Explanatory summary of the results

Endocrine gland/system Infection Pathological features Endocrine function

Thyroid SARS Derangement of the follicular architecture [78]
High levels of apoptosis (by Tunel), in both fol-

licular epithelium and in interfollicular region 
[78]

Interfollicular fibrosis [78]
Absence of calcitonin-positive cells [78]

FT3 and FT4 levels significantly lower than con-
trol group [79]

FT3 and FT4 levels decreased, respectively, by 
94% and 46%, during the acute phase of illness 
[79]

FT3 and FT4 levels decreased, respectively, by 
90% and 38% during the convalescence phase of 
illness [79]

COVID-19 No abnormalities in thyroid follicular cells [67]
Interstitial lymphocytic infiltration [67]

During recovery, TSH and FT3 levels were signifi-
cantly lower in patients than in healthy subjects 
[82]

Decrease in TSH and TT3 or FT3 levels positively 
correlated to the infection severity [76, 82–85]

Mild reductions of TSH and FT4 in admission to 
hospital [86]

Normalization of thyroid function tests at follow-
up post hospital discharge [82, 84, 86]

Clinical, biochemical and ultrasound evidences 
of subacute thyroiditis during recovery phase 
[87–92]

Low TSH and FT3 levels associated with normal/
elevated FT4 [93]

Hypothalamus/Pituitary axis SARS Focal cell damage and reduction of TSH-posi-
tive, ACTH-positive and GH-positive cells by 
IHC [71]

Increased number of PRL-, LH-e and FSH-
positive cells by IHC [71]

Detection of SARS-CoV-1 genome sequences 
in hypothalamus/pituitary cells from autoptic 
tissues by in situ Hybridization and RT-PCR 
[68–70]

83% of patients had central hypocortisolism with 
concomitant low or inappropriately normal 
ACTH levels [74]

Increased PRL, LH, FSH serum levels in male 
patients [72, 73]

COVID-19 Presence of SARS-CoV-2 in the cerebrospinal 
fluid of patients [75]

Decrease of GH and IGFBP-3 levels [76]
34% of patients displayed isolated low TSH values 

[82]
Adrenal Gland SARS Thrombosis and vasculitis in the adrenal vessels 

[65, 70]
Hybridization in situ detected SARS-CoV-1 

genome sequences in autoptic tissues [68]
COVID-19 Infiltration of CD3+ and CD8+ lymphocytes in 

different layers of cortex and in surrounding 
tissue [94]

Small groups of proliferating cells with enlarged 
clear nuclei [94]

Predominant vascular damage localized to the 
adrenals rather than the other organs [95, 96]

Acute fibrinoid necrosis of adrenal arteriolae 
both in the parenchyma and capsule [96].

Focal inflammation [95]
Adrenal parenchymal infarcts or thrombosis [95, 

96]

Reports of acute bilateral adrenal hemorrhage and 
consequent acute adrenal failure [97, 98]

Ovary SARS No detection SARS-CoV-1 RNA polymerase by 
immunohistochemistry and in situ hybridiza-
tion [69]

COVID-19 / /
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coid-induced reduction of pituitary secretory granules 
[71]. On the other hand, PRL-positive, LH-positive and 
FSH-positive cells were increased in number and immu-
noreactivity. This last finding was in accordance with 
other studies describing increased levels of PRL, LH, FSH 
and reduced testosterone levels in SARS males [71–73]. 
In accordance with these morphological findings, studies 
aimed at evaluating endocrine function in SARS patients 
also found important abnormalities. A prospective study, 
performed in 61 SARS survivors, evaluated hormonal 
changes during 3 months after recovery. Patients with pre-
existing endocrine disorders were excluded from the study 
and endocrine abnormalities were detected and treated 
up to one year after recovery from SARS. In this study, 
twenty-four (39.3%) patients displayed a variable degree 
of hypocortisolism even after normalization for age, sex 
and menopausal status. Twelve cases of the hypocortisolic 
cohort (83.3%) had unequivocal central hypocortisolism 
as evidenced by concomitant low or inappropriately nor-
mal ACTH levels [74].

SARS‑CoV‑2 and hypothalamus/pituitary  The first observa-
tion regarding SARS-CoV-2 was reported by Zhou et  al., 

who found the presence of SARS-CoV-2 in the cerebrospi-
nal fluid of COVID-19 patients, suggesting a SARS-CoV-2 
spreading in the CNS [75]. Hence, it is reasonable to sup-
pose that during the acute phases of the systemic inflam-
matory SARS-CoV-2 disease, the blood–brain barrier may 
become more permeable, thereby allowing the entry of the 
virus into the CNS, and its spread into the hypothalamus/
pituitary. A functional study performed in 40 COVID-19 
patients with non-severe symptoms matched to 54 healthy 
controls showed a significant decrease in GH and IGFBP-3 
during hospitalization [76]. To better define the potential 
effects of COVID-19 on endocrine organs, it should be kept 
into account the burden of extrapulmonary micro-thrombo-
sis commonly observed in COVID-19 patients, phaenome-
non that was less frequent in SARS [67, 77]. Hence, this 
specific pathogenetic effect of COVID-19 may affect highly 
vascularized organs, such as the endocrine glands, and in 
particular those with a very dense vascular network includ-
ing pituitary. Further investigations, however, are necessary 
to confirm a hypothalamus/pituitary involvement during 
COVID-19 infection.

Table 3   (continued)

Endocrine gland/system Infection Pathological features Endocrine function

Testis SARS Extensive destruction of testicular germ cells 
[105, 106]

Rare spermatozoa in the epithelium and lumen 
of seminiferous tubules [105, 106]

Peritubular fibrosis [105, 106]
Massive leukocyte infiltration and IgG presence 

[105, 106]
Conflicting evidence about the presence of 

SARS-CoV-1 RNA in testicular cells by 
in situhybridization [69, 107]

Reduced testosterone levels in male patients [72, 
73]

Increased levels of LH and FSH in SARS males 
[72, 73]

COVID-19 Sertoli cells: variable degree of swelling, vacu-
olation and cytoplasmic rarefaction, detach-
ment from tubular basement membranes and 
sloughing into lumens of the intratubular cell 
mass [108]

Reduced number of Leydig cells [108]
Infiltrates of lymphocytes, macrophages and 

histiocytes in the interstitium [108–110]
Thinning of seminiferous tubules with a signifi-

cant high number of apoptotic cells and IgG 
inside [110]

Oligozoospermia and significant increase of 
semen leucocyte number in 39.1% and 60.9% 
of COVID-19 patients, respectively [110]

Conflicting evidences about the presence of 
SARS-CoV-2 RNA in testicular cells by RT-
PCR [108, 110]

Conflicting evidence about the presence of 
SARS-CoV-2 RNA in semen by RT-PCR 
[112–116]

Significant increase in serum LH, while T/LH and 
decrease of FSH/LH ratios [111]

Not significant changes in serum testosterone lev-
els between patients and control groups [111]
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Effect of coronavirus on thyroid

Several evidences suggest that both SARS-CoV-1 and 
SARS-CoV-2 may have an impact on thyroid tissue and 
function, although with both overlapping and different 
effects. As already mentioned for the effect of coronavirus 
on hypothalamus/pituitary axis, a general nonspecific “low 
T3 syndrome effect” may also play an important role.

SARS‑CoV‑1 and thyroid  A study performed in 2006 evalu-
ated the pathological features of thyroid tissue in five SARS-
Cov-positive subjects. Autopsies displayed a derangement of 
the follicular architecture with a various degree of damaged 
follicular cells and an increased interfollicular fibrosis [78]. 
Moreover, calcitonin-positive cells were completely absent 
in SARS patients, at variance with controls [78]. Tunel assay 
showed high level of apoptosis in all SARS patients, but not 
in controls, in both follicular epithelium and in interfollicu-
lar region [78]. Further studies on thyroid function reported 
that TSH, FT3 and FT4 levels in SARS patients were sig-
nificantly lower than control group. In those patients, FT3 
level was inversely related to the severity of the disease. 
In particular, in SARS patients, serum FT3 and FT4 levels 
decreased by 94% and 46%, respectively, during the acute 
phase and in 90% and 38% during the recovery phase [79].

The large extent of morphological injury and the quan-
tity of apoptotic follicular cells provide an explanation 
for the decreased serum T3 and T4 levels in patients with 
SARS [79]. In contrast, the reduced TSH level reported in 
patients with SARS cannot be explained by the destruction 
of follicular epithelium, as low T3 and T4 levels would 
result in higher TSH levels.

According to Leow et al. [74], SARS would cause a 
central hypothyroidism by inducing hypophysitis as sug-
gested by the central hypocortisolism observed in several 

SARS patients. In addition, a SARS effect on hypotha-
lamic TRH producing cells cannot be also excluded. Such 
possible effect on the hypothalamus is consistent with the 
presence of oedema and neuronal degeneration together 
with the identification of viral genome sequences in the 
hypothalamus and cortex of the brain of patients with 
SARS [70]. Another hypothesis to explain such a thyroid 
hormonal setting is the low T3 syndrome due to both the 
severe lung infection, with the consequent hypoxemia, and 
the concomitant high-dose administration of glucocorti-
coids [80, 81].

SARS‑CoV‑2 and thyroid  A recent autoptic study examined 
pathology features of thyroid gland in three patients who 
died by SARS-CoV-2. The authors observed no abnormali-
ties in the thyroid follicular cells, while they found inter-
stitial lymphocytic infiltration. Immunohistochemistry 
and PCR analysis were not able to detect SARS-CoV-2 in 
thyroid tissue [67]. These findings are different to those 
reported in SARS-CoV-1 individuals, although the general 
patient clinical conditions in both studies were similar. With 
respect to thyroid function changes related to SARS-CoV-2 
infection, recent papers substantially describe three different 
patterns of biochemical changes, only partially overlapping 
with those observed in SARS-CoV-1 patients. In particu-
lar, a retrospective study by Chen et  al. analysed a group 
of 50 SARS-CoV-2 patients matched with non-COVID-19 
pneumonia patients with a similar degree of disease sever-
ity. They found that the degree of the decrease in TSH and 
TT3 levels was positively related to the severity of COVID-
19 infection. All enrolled patients had no previous known 
thyroid disease and no medical record influencing thyroid 
function. After recovery, no significant differences in TSH, 
TT3, TT4, FT3 and FT4 levels were found between the 
COVID-19 and control groups [82].

Table 4   Schematic summary of 
the results

: Evidence suggested by one or more studies on a total number of samples < 10
: Evidence suggested by one or more studies on a total number of samples ≥ 10
: Controversial evidence

ACE2 Expression

SARS COVID-19 SARS COVID-19 SARS COVID-19 SARS COVID-19 SARS COVID-19

HIPOTALAMUS / 
PITUITARY

THYROID

ADRENAL

OVARY

TESTIS

SEMEN

Finding of Virus 
genome sequences 

through  RT-PCR

Patological finding of 
histological 
altera�ons

Finding of hormonal 
altera�ons

Expression of Virus 
RNA polymerase 
through in situ 
hybridiza�on

Finding of viral 
par�cles with 

electron microscopy
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Another group performed a study in 274 patients with 
SARS-CoV-2 and found that TSH and FT3 concentrations 
were significantly lower in patients who died (n.113) than 
those who recovered (n.161), while FT4 levels were not 
statistically different. In all these patients, mortality corre-
lated with the severity of thyroid hormone changes, while 
pre-existent thyroid diseases were not recorded [83]. This 
correlation was confirmed by further studies [84, 85], in par-
ticular Gao et al. grouped 100 patients into non-severely ill 
patients, survivors and non-survivors displaying mean FT3 
values of 4.40, 3.73 and 2.76 pmol/L, respectively. Hence, 
FT3 levels were significantly lower in patients with severe 
COVID-19 disease and FT3 levels lower than 3.10 pmol/L 
predicted morality independently from all other causes [84]. 
Moreover, a study was performed in 40 COVID-19 patients 
with non-severe symptoms, matched to 54 healthy subjects 
by age and gender; serum samples were collected at 1st, 4th, 
7th and 10th day of hospitalization and, compared to con-
trols. Patients showed a reduction in TSH and FT3 and an 
increase in PTH levels with a concomitant reduction of vita-
min D, calcium and albumin [76]. The reduction in TSH and 
FT3 levels in COVID-19 patients, similar to that observed 
in SARS patients, may be attributed to non-thyroidal illness 
syndrome or euthyroid sick syndrome [80, 81], induced by 
both hypoxemia and glucocorticoid treatment, as observed 
by Khoo et al. on a large cohort of patients with mild reduc-
tions of TSH and FT4 in admission to hospital and normali-
zation of thyroid function tests at follow-up post discharge 
[86]. However, Chen et al., hypothesized the possibility of 
a selective transient pituitary deregulation, due to either 
the direct cytotoxic effect of the virus at the pituitary level 
or an indirect effect via the activation of proinflammatory 
cytokines. This hypothesis was supported by the observation 
that 34% (17/50) of the patients displayed isolated low TSH 
values during course of COVID-19 infection [82]. On the 
other hand, this idea does not fit with concomitant normal 
FT4 levels.

Other studies showed a direct damage of thyroid tissue in 
response to COVID-19 infection describing some patients 
with neck pain radiated to the jaw and concomitant asthe-
nia. Laboratory tests performed in this cohort displayed high 
levels of both FT4 and FT3, undetectable serum levels of 
TSH. Neck ultrasound was able to detect multiple diffuse 
hypoechoic areas with decreased vascularity. Taken together, 
all these features were suggestive of a typical subacute thy-
roiditis [87–91]. All necessary tests were performed in each 
patient to confirm the hypothesis of subacute thyroiditis 
and exclude other causes thyrotoxicosis. Interestingly, the 
symptoms of thyroiditis appeared after the resolution of the 
respiratory symptoms and negativity of swab test, with the 
exception of two cases developing subacute thyroiditis con-
comitantly to COVID-19 infection. The available data indi-
cated that all the patients had a mild COVID-19 infection 

and none of them displayed a positive second swab test dur-
ing the occurrence of thyroiditis. Moreover, all the patients 
were young women without any evidence of previous thy-
roid disease.

In addition, Lania et al., retrospectively evaluated thy-
roid hormones and serum interleukin-6 (IL-6) levels in 
287 COVID-19 patients, hospitalized in non-intensive care 
units. They found that 58 patients (20.2%) displayed thy-
rotoxicosis (overt in 31 cases), 15 (5.2%) hypothyroidism 
(overt in 2 cases), 214 (74.6%) euthyroidism. Multivariate 
logistic regression analysis revealed that thyrotoxicosis was 
positively related to higher IL-6 levels (odds ratio 3.25, 95% 
confidence interval 1.97–5.36; p < 0.001) [92].

Different mechanisms may explain all these observa-
tions: (1) high ACE2 and TMPRSS2 expression in thyroid 
[11, 12] may facilitate the COVID-19 attack and cytolysis, 
thereby triggering an autonomous inflammatory process in 
predisposed subjects, which progresses after the resolution 
of the COVID-19 infection; (2) systemic immune activation 
in response to SARS-CoV-2 infection may cause thyroid 
damage with thyrotoxicosis.

Finally, an additional mechanism may be postulated by 
the observation of Muller et al. They compared 85 COVID-
19 patients admitted to high intensity of care units (HICUs) 
in 2020, to 78 admitted to the same HICUs in 2019 with 
a similar clinical setting but negative for SARS-CoV-2: 
patients with a known history of thyroid disease were 
excluded. In these patients, thyroid function was assessed 
within 2 days of hospital admittance. Interestingly, 15% of 
COVID-19 patients displayed thyrotoxicosis compared to 
1%, in the control group. The Sex of patients with thyro-
toxicosis and COVID-19 infection was predominantly male 
and low TSH and FT3 level were associated with normal/
elevated FT4 level [93]. Hence, authors speculated that these 
patients were affected by a combination of thyrotoxicosis 
and non-thyroidal illness syndrome.

Effect of coronavirus on adrenal gland

Some evidences, including the expression of ACE2 receptor 
in adrenal glands, suggest a possible relationship between 
SARS or COVID-19 infection and primary adrenal insuf-
ficiency. Moreover, several direct and indirect evidences 
suggest that betacoronavirus infection may induce a central 
adrenal insufficiency related to the burden of the infection, 
general hypoxia of the infected patients and glucocorticoid 
therapy.

SARS‑CoV‑1 and  adrenals  ACE2 receptor expression and 
the presence of SARS-CoV-1 RNA were detected in adrenal 
gland [11–18]. Autoptic analysis in SARS-positive subjects 
revealed degeneration and necrosis of the adrenal cortical 
cells due to either cytopathic effect of the virus or to vascu-
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litis/thrombosis of the adrenal vessels [65, 70]. However, no 
clinical studies are available to date demonstrating primary 
adrenal insufficiency related to SARS-CoV-1 infection.

SARS‑CoV‑2 and  adrenals  Zinserling et  al., conducted 
a detailed autoptic study in 10 patients deceased from 
COVID-19, describing two types of adrenal lesions. The 
first one was an immune cell infiltration of different layers 
of the cortex and surrounding tissue. Immunohistochemis-
try was able to characterize infiltrating cells as CD3+ and 
CD8+. The second one was characterized by the presence 
of small groups of proliferating cells with enlarged clear 
nuclei [94]. Such changes were similar to those observed 
in the lungs and were considered to be a direct effect of 
SARS-CoV-2. Hence, patients with COVID-19 infection 
may be susceptible to corticosteroid insufficiency (CIRCI) 
due to both direct viral adrenal cell damage and adrenal 
inflammatory/autoimmune processes. The variability of 
microscopic alterations induced by SARS-CoV-2 on human 
adrenals was confirmed by a recent study from Freire San-
tana et al. They performed autoptic analysis in 28 COVID 
patients and observed microscopic lesions in the adrenal 
glands of 12 out 28 patients (46%): seven showed ischemic 
necrosis; four cortical lipid degeneration; two haemorrhage; 
one unspecific focal adrenalitis; one vascular thrombo-
sis; three focal inflammation along with the other findings 
[95]. However, further studies will be required to prove the 
presence of SARS-CoV-2 in adrenal tissue and define the 
mechanisms of adrenal degeneration and loss of function. 
Iuga et al. conducted another study in five patients deceased 
from COVID-19 and found a predominant vascular damage 
localized to the adrenals rather than the other organs. Micro-
scopic examination evidenced acute fibrinoid necrosis of 
adrenal arteriolae both in the parenchyma and capsule, with 
some aspects of subendothelial vacuolization and apoptotic 
debris, without any significant inflammation, adrenal paren-
chymal infarcts or thrombosis. Many of the vessels observed 
displayed either necrosis or apoptosis. It is unclear whether 
the adrenal vasculopathy is due to hypoxia, abnormal vascu-
lar reaction, direct viral cytopathic effect, immune-mediated 
injury or a combination of events [96].

Finally, two case reports of COVID-19 patients with 
bilateral acute adrenal hemorrhage were described in the lit-
erature. In particular, one case is a 66-year-old woman, hos-
pitalized with fever, dyspnea, abdominal pain, vomiting and 
nausea with simultaneous diagnosis of COVID-19. Chest 
X-ray confirmed atypical pneumonia due to COVID-19, 
while abdomen TC displayed the enlarged adrenal glands, 
haziness of peri-adrenal fat and thrombosis of left renal 
vein. Serum cortisol level was very low and unresponsive 
to 250 µg intravenous Cosynotropin. Treatment for acute 
adrenal failure was started, with subsequent stabilization 
of clinical conditions and symptom resolution. According 

to patient’s history of recurrent abortions, the presence of 
antiphospholipid antibody syndrome (APLS) was also sus-
pected and confirmed by specific antibody assays. Hence, 
authors hypothesized that the combination of both COVID-
19 infection and APLS was responsible for adrenal failure 
[97]. Another case is a 70-year-old man, with a history of 
psoriasis, hospitalized with persistent lower back pain resist-
ant to medical treatment. Fifteen days before pain onset, he 
had fever, chills, and asthenia and before hospital admis-
sion, fatigue, anorexia and nausea. During hospitalization, 
chest CT scan evidenced bilateral bronchopneumonia, com-
patible to COVID-19 infection. Abdomen CT scan showed 
increased size and blurring of both adrenals suggestive for 
acute bilateral adrenal hemorrhage (BAH). The patient was 
positive for COVID-19 IgG and IgM. Both basal cortisol and 
stimulated confirmed the diagnosis of adrenal insufficiency 
[98] and intravenous corticosteroid treatment was started 
followed by oral therapy with subsequent symptom resolu-
tion. In these two cases, the presence of underlying autoim-
mune disease may predispose COVID-19 patients to develop 
coagulation disorders and disseminated intravascular coagu-
lation (DIC) and thrombosis with subsequent hemorrhage 
in the most vascularized organs [99]. Hence, in COVID-19 
patients with fever, nausea, malaise, physicians should check 
for BAH possibility by functional and imaging studies.

Effect of coronavirus on ovary

Several evidences are present about susceptibility of the 
ovary to the effect of SARS-CoV-1 and SARS-CoV-2 
infection. Many studies are available focusing mainly on 
the expression of ACE2 receptor in the ovary, as an indi-
rect evidence of a potential damage by SARS-CoV-1 and 
SARS-CoV-2. In particular, ACE2 mRNA transcripts were 
detected in ovaries from both fertile and postmenopausal 
women [100] and these findings are confirmed by studies 
on gene databases that describe a significant ACE2 recep-
tor expression in the ovaries [11, 101]. Goad et al., found a 
very low expression of ACE2 receptor in approximately 5% 
of stroma and perivascular cells in the ovarian cortex. They 
did not observe any concomitant expression of TMPRSS2 
in any ovary cell type and a certain degree of CTSB and 
CTSL expression. However, they did not observe any co-
expression of ACE2/CTSB or ACE2/CTSL. Since ACE2 
receptor requires the co-expression of protease TMPRSS2 
or CTSB / L to facilitate virus entry into the host cell by 
priming the S protein on its surface, these data suggest that 
sensitivity of the ovary to SARS-CoV-1 and SARS-CoV-2 
infection and damage may be low [102].

SARS‑CoV‑1 and  ovary  Evidences regarding the involve-
ment of ovary in SARS-CoV-1 infection are scanty. Immu-
nohistochemistry and in situ hybridization studies by Ding 
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et al. were not able to detect SARS-CoV-1 RNA polymerase 
in the ovary of four patients who died by SARS [69].

SARS‑CoV‑2 and  ovary  Evidences regarding the involve-
ment of ovary in SARS-CoV-2 infection are missing. Hence, 
post-mortem pathological studies on consistent series are 
necessary to clarify any possibility of COVID-19 infection 
in the ovary and its potential effect on female fertility.

Effect of coronavirus on testis

ACE2 receptor expression is very high in Spermatogonia, 
Sertoli and Leydig cells [11, 12, 103, 104] and it is reason-
able to suppose that testis may be heavily infected by both 
SARS-Cov-1 and SARS-CoV-2.

SARS‑CoV‑1 and testis  A series of autoptic studies indicated 
that orchitis is a SARS complication, with a pathological 
aspect of extensive destruction of testicular germ cells, 
rare spermatozoa in the seminiferous epithelium and in the 
lumen and thickening of the membrane, associated with per-
itubular fibrosis. These features are attributed to leukocyte 
infiltration, vascular congestion and the presence of IgG at 
both tubular and interstitial levels [70, 105, 106]. However, 
there are some conflicting evidences about the presence of 
SARS-CoV-1 RNA in testicular cells [69, 107].

SARS‑CoV‑2 and  testis  Yang et  al., performed autoptic 
examination of testes from 11 COVID-19 patients by light, 
electron microscopy, immunohistochemistry and RT-PCR. 
The mean age was 65 years (range 42–87 years). The mean 
disease duration (from onset to death) was 42 days (range 
23–75  days). From microscopy, Sertoli cells displayed a 
variable degree of swelling, vacuolation and cytoplasmic 
rarefaction, detachment from tubular basement membranes 
and sloughing into lumens of the intratubular cell mass. The 
mean number of Leydig cells in COVID-19 testes was signif-
icantly lower than in the control group (2.2 vs 7.8, p < 0.001) 
and infiltrates of T lymphocytes and histiocytes were pre-
sent in the interstitium. Transmission electron microscopy 
performed in 3 out 12 cases was not able to identify SARS-
CoV-2 viral particles, while RT-PCR was able to detect the 
virus in one case [108]. This lymphocytic and macrophage 
infiltration was confirmed by more recent studies in six 
autoptic samples by Achua et al., along finding of normal 
spermatogenesis in 50% of the samples and various abnor-
malities of spermatogenesis in the remaining 50% [109]. 
Moreover, Li et al. evaluated six testicular and epididymal 
autoptic specimens and found interstitial edema, congestion, 
red blood cell exudation in testes/epididymides and thinning 
of seminiferous tubules, with an increased concentration of 
CD3+ and CD68+ in the interstitium. The significant high 
number of apoptotic cells within seminiferous tubules and 

the presence of IgG suggested impaired spermatogenesis in 
COVID-19 patients. Hence, they also evaluated semen from 
23 COVID-19 patients and found that 39.1% (n = 9) had oli-
gozoospermia and 60.9% (n = 14) had a significant increase 
in leucocyte number. Increased seminal level of IL-6, TNF-a 
and MCP-1 compared to controls was also observed. All 
semen samples were negative for SARS-CoV-2 RNA and 
the patients had no history of infertility or steroid treatment 
[110]. These findings are comparable with those obtained 
with SARS-CoV-1 patients. Interestingly, a study performed 
in 81 COVID-19 adult male patients and 100 age-matched 
healthy controls evidenced a significant increase in serum 
luteinizing hormone (LH), while T/LH and FSH/LH ratios 
were dramatically decreased. Serum testosterone levels 
did not significantly change between COVID-19 patients 
and control groups. Elevated serum LH and decreased T/
LH ratio are clinical hallmark of primary hypogonadism, 
suggesting testicular damage and Leydig cells involvement 
[111]. However, the long-term testicular effects of COVID-
19 are not known to date. Based on these evidences, sug-
gesting extensive testicular involvement by SARS-CoV-2, 
the possibility of virus relapse with seminal fluid, with 
potential effects on transmission, fertility and cryopreser-
vation is under debate. Pan et  al., were not able to detect 
SARS-CoV-2 in the semen collected from 34 COVID-19 
patients with mild–moderate symptoms in a period between 
8 and 75 days (median 31 days) after COVID-19 diagnosis, 
despite 19% of them complained about scrotal discomfort at 
the time of COVID-19 diagnosis [112]. In accordance with 
these data, Song et al., were not able to detect SARS-CoV-2 
RNA in the semen from 12 patients with asymptomatic/mild 
COVID-19 disease in Wuhan in a period between 14 and 
42 days after COVID-19 diagnosis. Moreover, the authors 
were not able to detect COVID-19 RNA in testicular tissue 
from deceased subjects [113]. A case report showed that a 
31-year-old man recovering a mild form of COVID-19 had 
no detectable virus in his ejaculate within fifteen days from 
the onset of the disease [114].

Another study compared semen samples from 18 COVID-
19 male patients 8–54 days after the absence of symptoms, 
14 control subjects, and 2 patients with an active COVID-
19 infection. No viral RNA was detected by RT-PCR in the 
semen. Interestingly, subjects with a moderate infection 
showed an impairment of sperm quality (sperm concentra-
tion, progressive motility, total number of complete motility) 
compared with men recovered from a mild infection and the 
control group [115].

To date, only one study by Li et al. was able to detect the 
virus in 6/38 semen samples collected from both acute and 
recovering COVID-19 patients [116] (Table 4). While this 
finding appears in contrast with the previous investigations, 
it needs to be cautiously interpreted. First, this study was 
performed in a dedicated COVID-19 hospital, where the 
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most severe cases of COVID-19 were admitted. Hence, a 
more severe disease is concomitant with a higher blood viral 
titer and a higher chance to spread to other organs and body 
fluids including the semen. In particular, the blood–testis 
barrier (BTB) is permeable to viruses, particularly in the 
case of systemic or local inflammation and viraemia [117]. 
Moreover, in a COVID-19 dedicated hospital, there is higher 
probability of viral spread in the environment, false-positive 
results could be obtained because of contamination with res-
piratory droplets. However, available data are too scanty to 
define this issue and studies performed in larger cohorts of 
currently infected subjects are needed. This topic is crucial 
for the safety of sperm cryopreservation in liquid nitrogen 
and for assisted reproduction techniques [118].

Finally, it would be interesting to evaluate the presence of 
viral particles in the first days of COVID-19 infection, when 
patients are asymptomatic.

Limits

The major limitation of this review is the limited number of 
studies performed on patients with SARS and COVID-19 
that are focused on the endocrine system, because the very 
recent outbreak of the pandemic. Furthermore, studies are 
mostly performed in small groups of either patients or autop-
tic samples. Finally, available studies are heterogeneous in 
terms of study design, participants and outcomes which 
makes difficult comparison of data.

Conclusion

There are many common elements between SARS-CoV-2 
and other betacoronaviruses that have previously caused 
outbreaks around the world, most notably SARS-CoV-1. 
Both viruses recognize the ACE2 protein as a target of cel-
lular infection and this protein is widely expressed in endo-
crine organs. Several reports are available indicating that 
SARS-CoV-1 and SARS-CoV-2 may affect the endocrine 
glands and their dense vascularity. It is, therefore, reason-
able to suppose that with the spread worldwide of COVID-
19, that damage to the endocrine system may emerge more 
frequently in the future. This review suggests that possible 
hormonal alterations in patients with COVID-19 should be 
evaluated both in the acute phase of infection and in recov-
ery to rapidly identify acute- or late-onset endocrine com-
plications critical to patient’s prognosis and well-being post 
COVID. Therefore, further prospective studies in patients 
with COVID-19 are needed to improve the management of 
this pandemic disease. Data about the effect of COVID-19 
infection on thyroid, pituitary and adrenals are often based 
upon the observation of small series, but are suggestive of 

a real effect, while the gonad’s involvement remains largely 
unexplored. Moreover, some data on endocrine effect of 
COVID-19 are not mechanistic and mostly conjectural and 
factual up to date. An emerging issue is the hormonal regula-
tion of protein on cell surface that facilitate viral entry and 
spread. Although the evidences of such regulation are pro-
gressively establishing, the possible therapeutic implication 
of a hormonal manipulation to influence disease severity is 
scanty and limited mainly to glucocorticoids. Finally, vali-
dated conclusions must be drawn based on larger studies and 
endocrinologists, however, need to be aware of these pos-
sibilities in clinical practice, especially while dealing with 
COVID-19 survivors.
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