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Abstract
Individuals’ flow’s fluidifcation in the same way as
the thinning of the population’s concentration remains
among major concerns within the context of the pan-
demic crisis situations. The recent COVID-19 pandemic
crisis is a typical example of the aforementioned where
on despite of the containment phases that radically iso-
late the population but are not applicable persistently,
people have to adapt their behavior to new daily-life sit-
uations tempering Individuals’ stream, avoiding tides,
and watering down population’s concentration. Crowd
evacuation is one of the well-known research domains
that can play a pertinent role to face the challenge
of the COVID-19 pandemic. In fact, considering the
population’s concentration thinning within the slant
of the “crowd evacuation” paradigm allows managing
the flow of the population, and consequently, decreas-
ing the probable number of infected cases. In other
words, crowd evacuation modeling and simulation with
the aim of better-exploiting individuals’ flow allow the
study and analysis of different possible outcomes for
designing population’s concentration thinning strate-
gies. In this article, a new decision-making approach
is proposed in order to cope with the aforesaid chal-
lenges, which relies on an independent Deep Q Net-
work with an improved SIR model (IDQN-I-SIR). The
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machine-learning component (i.e., IDQN) is in charge
of the agent’s movements control and I-SIR (improved
“susceptible-infected-recovered” individuals) model is
responsible to control the virus spread. We demonstrate
the effectiveness of IDQN-I-SIR through a case-study
of individuals’ flow’s management with infected cases’
avoidance in an emergency department (often over-
crowded in context of a pandemic crisis).
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1 INTRODUCTION

A pandemic is a crisis in which humanity risks the spread of a deadly virus. In some cases, we
are vulnerable to infection through contact with infected or suspicious people. Humanity has a
long history of pandemics and epidemics, which have invaded populations often causing many
deaths. The severity of the virus may decrease as populations develop some degree of immunity.
New species of human viruses are still being identified and, like many pandemics over the years,
the coronavirus pandemic (COVID-19) has been a major shock to the world as a new respiratory
virus in late 2019 and early 2020, with more than 100 million infections reported to date in less
than a year.

The well-known novel virus attracts major public attention. Many researchers of different
specialties have been motivated to understand and analyze the situation according to several
parameters and objectives. Some research works,1,2 have analyzed the spread of the virus in some
countries based on some parameters such as population density, temperature, humidity, and so
forth. Others have3 analyzed the mortality rate. Another article4 studied the relationship between
the duration of containment, the number of infected persons and deaths due to Covid-19, and the
economic growth of countries. Other articles5,6 focus on predicting the number of deaths cases.
Many strategies have been adopted to limit the spread of the virus by several countries, such as
containment, city lockdown, traffic stops, and social distancing. However, the global spread of
the new coronavirus has led to a substantial disruption of global economic activity,7 that forced
governments to suspend their closure measures.

Waiting for the vaccine to fight this pandemic, and given the global economic situation, the
majority of governments have decided to suspend containment and adopted health protocols like,
avoiding gathering to minimize the contamination in article, street, shops, and public area to live
and adapt this virus. The most serious is the appearance of new infections, in some countries
only a few days after relaxing social restrictions. In this context, governments are trying to keep
people active regularly by protecting from the virus to find a balance between their own needs to
resume basic activities when the world feels increasingly dangerous. Indeed, the main argument
is how to behave and make decision to limit discreet mutable and rapid spread of the virus. To deal
with, access to public spaces has been restricted, as various mitigation measures have been taken
around the world to reduce physical interactions between people.8 Participate widely in spiritual
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and cultural activities, tourism and indoor entertainment in a crowded environment, in the time
of an emergency, disorderly evacuation will not only reduce the effectiveness of the evacuation but
also will lead to collisions and muddying and cause secondary damage.9 Within current situation
of COVID’19, the gathering of people will result in a high number of contacts, and subsequent
infection, and consequently, the number of people requiring hospitalization and number of death
will raise. Therefore, using evacuation strategies are suitable to make public spaces more fluid by
respecting social distancing and sanitary protocols like disinfectant gel, wearing masks, avoiding
hugging, and keeping a minimum distance of one meter.

Increasing number of researches on “crowd situations” as complex systems with collections
of individuals study and model its physical, biological, social, and cultural characteristics.10 Gen-
erally, the degree of the crowds depends on the crisis caused by a man-made or natural disaster,
such as a fire, earthquake, terrorist incident, and pandemic, and so on. Within this, the per-
ception of environmental risk often stresses the crowd and evokes chaotic disorder11 as well as
many lives may be lost if there are no effective strategies to avoid the crowd, to evacuate and save
lives consequently. Developing an “avoiding crowd system” consider as a challenge because it
involves complex interrelated parameters, diverse individuals and environments, as well as lack of
direct evidence. Evacuation modeling, simulation and technics such as social force model, cellu-
lar automaton, metaheuristic, optimization, machine learning for studying crises have been used
to analyze various possible outcomes as different scenarios unfold, typically when the complexity
of the scenario is high.12

Therefore, this article represents a new strategy based on reinforcement learning (RL) to study
the dynamics of the environment and follow its evolution, aiming to avoid crowds and preserve
safety. This article focuses on different aspects of agent-based modeling and simulation systems
and proposes a decision-support system that avoids crowds and mitigates during the pandemic.
Among various techniques, Reinforcement Learning approaches have proven to be exceptionally
effective for a variety of complex tasks and there has recently been a growing interest in applying
RL to sequential decision-making tasks in the real world. Hence, RL as a suitable technic allows
continuous learning and well adaptable to the real problems.

With this context, we propose an approach for decision-making during a crisis that offers a
safe solution and decision for avoiding crowds. We are interested in the postlock-down pandemic
phase, in particular COVID-19 crisis. To achieve this goal, we design and implement a multia-
gent system capable of reaching the location of targets with a minimum of movement, avoiding
crowds, collisions between agents, obstacles placed in the environment, and certainly contami-
nated agents. This method is based on a fully decentralized multiagent system where the agents
are independent. The essential characteristic of this system is that its participants are required to
act and perform autonomous tasks whose impact is perceived in a shared environment with the
other participants. Decision making process depends on deep reinforcement learning results to
get the optimal path for the destination, as well as the states of the neighbors in question obtained
by using an improved SIR Model to identify susceptible, infected, and recovered agents. Further-
more, a parameter of the crowd in each case could be calculated and considered in the decision
process to better avoid gathered paths or destinations.

As an example of a real-life situation, we demonstrate the effectiveness of this approach within
a case of individuals’ flow’s management with infected cases’ avoidance in an emergency depart-
ment. After the appearance of coronavirus, the emergencies became crowded, and even people
are panic to go there to get treatment for another illness concerning catch the virus. The environ-
ment is model in the form of a grid transforming emergency department information into barriers,
entry or exit emergency, and agents (healthy, infected, and recovered). In the time an agent goes
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to the emergency department for emergency treatment, he must avoid to be infected by the virus
and leave in heal specially by avoiding the crowd. It is observed that the modeled environment
can provide an overview of the critical areas in a crowd avoidance situation. In addition, deep
reinforcement algorithm can provide useful and concert information.

This article is organized in five sections as follow: Section 2 gives an overview of the related
works and Section 3 describes the overall architecture of the proposed approach. In Section 3.3,
the requirements for the environment and techniques to simulate the approach are given in detail.
Section 4 represent the results of the simulation and discussions. Finally, Section 5 concludes the
article and gives future perspectives.

2 RELATED WORKS

Concerning avoiding crowds and safety, many works are dealing with crowd evacuation.
Many techniques and methodologies are used. This article focuses on works using RL in
a crowd situation. This section is an overview of the diverse approaches of multiagent sys-
tems with reinforcement learning (MARL). First, we focus on general application in various
fields for crowd simulation. Then, we focus on works using RL for epidemic spread con-
trol situations. Finally, we give a comparative study. In Reference 13, the author proposed
a method to integrate a central agent’s joint action into a multiagent environment. The key
idea was to use tate-aware online principal component analysis to embed the action into a
space of reduced dimension using an encoding-decoding algorithm. This technique enabled
the agent to perform better in terms of both performance and scale than an agent without
embedding. It has made the learning in a lower dimension of joint action policies, which
can be decoded back to the original space. Using a simulation system for the wind farms,
they showed that a combination of Deep Q-Learning and embedding action can achieve faster
convergence.

Fetzer et al.7 suggested a method of route planning, for the evacuation of crowds, based on
the learning of multiagent reinforcement, where the crowd has grouped and the leader picked.
To store empirical knowledge about the learning process, a bulletin board had introduced to the
multiagent reinforcement-learning algorithm, and the navigation agent transferred information
between the leader and this bulletin board.

Through incorporating visual parameters, Wang et al.14 enhanced the original concept of
the social force model (SFM). In fact, for reinforcement learning (Q learning algorithm) the
intersection of the pedestrian trajectory extracted from the real video has first used as the State
space. This method employed a two-layer control mechanism, the upper layer leader used the
algorithm-based decision process to select the path, and the bottom group individuals used the
improved model of social force to evacuate.

Pageaud et al.15 have proposed a multiagent, multilevel solution called clustered Deep
Q-Network (CDQN) to resolve both problems, experience replay in nonstationary environments
and credit environments and credit assignment issues, with a hierarchical approach where
high-level agents handle low-level learning agent clusters and organize them efficiently to
enhance urban policies. The high-level agent population, which uses a custom trust, score assign-
ment to manage low-level agent clusters. Low-level agents learn the concept of action-value using
individual local rewards and productive replay of experiences. The multilevel, multiagent envi-
ronment enables collaboration even without contact and without interaction or input from other
agents at the low level.
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Zhang et al. addressed the multiagent reinforcement-learning problem with networked agents
in Reference 16. In particular, they considered the decentralized environment where each agent
makes an environment where each agent makes individual decisions and receives local incentives
while sharing information over the network with neighbors to achieve maximum average return
across the network. Wu et al.17 also proposed two decentralized actor-critic algorithms. Besides,
the agents have been allowed to have different reward functions from different tasks, but each
agent can only experience their reward. They were interested in the collaborative environment
where the agents have a shared objective of optimizing the global average gain for all agents in
the field together. Many techniques have been studied to develop a framework for controlling
epidemic spread control. We present an overall summary of the major contributions already made
in this section.

The method in Reference 18 presented the application of RL to develop context-dependent
outbreak response policies to minimize foot-and-mouth disease outbreaks. The authors of Ref-
erence 18 demonstrated that regulation based on the subsequent context-dependent policies,
which adapt interventions to the specific outbreak, results in smaller outbreaks than static poli-
cies. To convert the complex machine-readable policies into simple heuristics that can be tested
by human decision-makers, they explain two strategies that use RL and MC control to establish
state-dependent response policies in the sense of a livestock outbreak, based on the dynamics of
the 2001 foot-and-mouth outbreak (FMD); They only considered the initial stages of an outbreak
in the first case study, where the state space is relatively limited, and developed state-based RL
policies using Deep Q-Learning. The goal was to end the outbreak as soon as possible, with mini-
mal costs, defined in the action-value feature by the immediate reward. For the second case study,
to control interventions (ring culling or ring vaccination), they applied reinforcement learning to
summarize state space. The main aim was to reduce an FMD outbreak period and to help ensure
a human-readable policy.

Khadilkar et al.19 suggested Deep Q Network, for determining the optimal lock-down strategy
for each node in a network, given the characteristics of the disease (infectiousness, gesta-
tion time, symptom length, the likelihood of death) and network properties (density, tendency
to move). The macroscopic model used in this analysis is the network model. Here the net-
work displays India and each node presents a city. The open node allows people to access
to/from other open nodes in the network. The simulation of the virus propagation with SEIRD
(susceptible-exposed-infected-recovered-deceased) model. They did not model real individuals
and their movements).

Yanez et al.20 paid special attention to designing environments to represent the epidemic
problem. They described the various components needed to build epidemic control environments.
They addressed mathematical models such as SIR and SEIR, which seek to minimize the impact
of a disease spread by preventing the spread of disease, various potential state representations,
and specifying the incentive feature to reduce the number of people infected during the epidemic.

In Reference 21, Liu developed a microscopic approach using Q learning algorithm to model
epidemics, which can explicitly take into account the effects of individual decisions on disease
spread. They proposed an epidemic model of multiagent sharing the Q function, in which each
agent may be: either contaminated or susceptible. The likelihood of a state change for a multiagent
scheme is also implemented according to certain assumptions. The model also had two levels of
activity: normal level of activity and reduced level of activity. Liu21 found “no action” cases where
all agents tend to follow the normal level of activity and concentrated on the reduced level of
activity in three cases: “immediate isolation” case where the activity rates of infected agents fell
instantly to the lower level, “delayed isolation” case the level of activity of contaminated agents
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drops to a reduced level after several days, and where the level of activity of all agents drops
instantly to a reduced level.

Kwak et al.22 used deep reinforcement learning to allow agents to try to find public
health strategies for controlling the spread of COVID-19. The research focused only on pop-
ulation health benefits without considering the negative impacts of economic and social
effects.

In Reference 23, authors used RL to optimize mitigation policies that minimize the economic
impact without exceeding hospital capacity. They proposed a novel agent-based pandemic sim-
ulator capable of modeling fine-grained interactions between people at specific locations in a
community.

Padmanabhan et al.24 proposed a decision support system capable of incorporating different
interventions to minimize the impact of widespread respiratory infectious pandemics, including
the recent COVID-19. They took into account pandemic characteristics, health system parameters
and socio-economic aspects.

2.1 Comparative study

An overall analysis of the previously developed works demonstrates the effectiveness of Rein-
forcement Learning in modeling crowd and epidemic spread control. We compare existing works
using some parameters (Table 1). In epidemic modeling, the previous works focus mostly on
macroscopic models or microscopic models for multiagent methods. In addition, for crowd simu-
lation in other fields, the most widely used methods are the centralized approach, which requires
grouped crowd as in Reference 7 and a decentralized method with networked agents.25 However,
the multiagent system should respond to the social distancing behavior in an infected area. For
epidemics simulation, the commonly used epidemiology model is SIR and its variations as in Ref-
erence 25 who used SEIRD model. Additionally, some other works simulated the propagation
with assumptions, like Reference 21. However, the use of these models is in order to get closer to
reality in the simulation of the spread of the virus.

Almost all the works dedicated to simulating an outbreak system focus on the lock-down or
isolation phase. Nonetheless, the postlock-down phase and how to mitigate the spread of the
pandemic merit consideration, especially when in order to maintain activities the radical isolation
of the population is not applicable persistently.

3 PROPOSED APPROACH

Throughout this section, we describe the proposed approach in detail.

3.1 Global agent architecture

The proposed approach is based on a global agent architecture IDQN I-SIR presented in Figure 1.
This architecture is composed of three main different modules:

• IDQN: Independent Deep Q Networks model: the role of this module is to control the agent
movements,
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T A B L E 1 Comparison of previous work-related studies

Works
Goal of each
work

Multiagent
methods Algorithm

Crisis situation
epidemic Case study

19 Optimizing lock-down
policies for epidemic
control

Macroscopic
model

DQN SEIRD Lock-down
phase

21 Model epidemic to
follow the spread of
the disease

Microscopic
model

Q learning Model according to
certain
assumptions

Normal and
reduced levels
of activities

20 Focus on how to design
environments to
represent the problem
of epidemics and
finding optimal
interventions

No agents No algorithm Built epidemic
control
environments:
SIR and SEIR

In general

18 Illustrate the application
of RL to the
development of
context-dependent
outbreak response
policies to minimize
outbreaks of foot and
mouth disease

No multiagent
systems

Deep network The virus spread
depends on
probability

Outbreak period
and to help
ensure a
human
readable
policy

22 Propose an architecture
to control spread of
COVID’19

Multiagent
systems

DQN COVID’19 In relation to
the lockdown
and travel
restrictions

23 Optimizing damage
mitigation policies;
The goal is to
minimize the
economic impact
without exceeding
hospital capacity

Agents RL COVID’19

24 Decision-making
system; incorporate
different parameters
to minimize the
impact of widespread
respiratory infectious
pandemics

Agents RL COVID’19 and
others pandemics

• I-SIR: Improvement of SIR model to control the virus spread,
• Final decision.

The inputs of the IDQN-ISIR architecture are a matrix of obstacles, a matrix of goals, a
matrix of agents and numbers of As, Ai, Ar that are respectively: safe agents, infected agents, and
recovered agents. The outputs of the architecture are action to do, Status of the agent, crowd
probability, and the state.
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F I G U R E 1 Global agent architecture IDQN I-SIR based on independent Deep Q Learning (IDQN),
improved SIR model (I-SIR), and the block final decision

Each agent receives the information from outside from the environment and the moderator
agent. The agent reasons according to these three modules and makes the final decision, which is
the output. The modules are linked to help the agent to achieve its objective. In the next section,
IDQN I-SIR architecture is presented with more details.

3.2 Detailed agent architecture

Figure 2 shows the detailed IDQN I-SIR architecture, and we present the internal work-
ings of each model of this architecture. The agent reasoning is based on two main
blocks: IDQN and I-SIR, to find the shortest path avoiding crowds and contaminated
agents.

3.2.1 IDQN based shortest path reasoning

In this article, we used the independent Deep Q Learning for many reasons: DQN is recom-
mended for environments that have a discrete space for action and a unique process. Besides,
DQN is a practical tool for studying decentralized learning of Multiagent systems in a complex
environment.25

For a given state, the DQN returns a vector of possible actions. These actions define the move-
ments that the agent could take to maximize rewards. As the aim of the agent is to achieve its
goal, these actions are stored in a way that the best action leads to the shortest path. The agent
should find the shortest path to the goal considering the obstacles and other agents (safe, infected,
or recovered) in the environment.

The neural network receives the state of the agent at t. After the process of IDQN, the outputs
are a set of Q values of Actioni that takes it to another Statei at t + 1. This result of the IDQN model
is then injected into the ISIR Model to evaluate the impact of the current State i on the spread
contamination.
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F I G U R E 2 Detailed agent architecture IDQN I-SIR with detailed IDQN based shortest path reasoning,
I-SIR based epidemic distance reasoning, and final decision to select action and update status

F I G U R E 3 SIR model chart flow26

3.2.2 I-SIR based epidemic distance reasoning

The SIR or the Kermack–Mckendrick-model is our reference in this article (Figure 3). SIR Model
aims to explain the rapid rise and fall in the number of infected patients observed in epidemics.
It assumes that the population size is fixed, an incubation period of the infectious agent is instan-
taneous, and the duration of infectivity is the same as the length of the disease. The studied
population is divided into three compartments labeled S, I, and R. Susceptible individuals (S)
become infected through contact with infectious individuals (I), and infectious individuals can
recover (R) at a fixed rate.26 A system of ordinary differential equations of the SIR model is given
by these equations26 (1):

dS
dt

= −𝛽SI; dI
dt

= 𝛽SI − 𝛾I; dR
dt

= 𝛾I. (1)
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The SIR model has two variables: the transmission rate 𝛽 and the recovery rate 𝛾 .
An individual has on average 𝛽 interacts with randomly chosen others will be infected. On

the other hand, the recovery rate 𝛾 indicates infected individuals will recover or die from a set
average rate 𝛾 .

In the present article, we improve the cited model to be more reliable to the COVID’19 case
by introducing an infection rate I (I-SIR). The transmission process is based on the number of
the agent’s neighbors and their status (S, R, or I). That is to say, an agent is infected if the sum of
infection rates of its neighbors exceeds a threshold.

Moreover, the traditional SIR model neglects the time-varying property of 𝛾 (to move from
infected status to recovered status). Therefore, we propose a period of rehabilitation as a function
of time. Therefore, the agent will recover over time as in reality.

In I-SIR model, the inputs are from the output of IDQN. For every Q value (Ai, Si) of an agent,
I-SIR searches the infected neighbors around it to compute the output status i at (t+1) and the
crowd probability at (t+1). So at each move, an agent must know the status of its neighbors and
the crowd probability.

3.2.3 Final decision

The final decision is based on the results of the two models IDQN and I-SIR. In the proposed
module, an agent must choose the best action. IDQN gives all the possible actions, I-SIR calculates
the best action that leads to an environment with less contamination. After using the best action,
the agent status will be updated. The outputs of this model are action, status, crowd probability,
and state.

3.3 Multiagent system architecture

Our system is composed of many agents. Each agent has its architecture to achieve its goal.
Figure 4 is a global multiagent system architecture. It consists of an agent IDQN I-SIR and a
moderator agent.

F I G U R E 4 Multiagents system architecture IDQN I-SIR; agents with IDQN I-SIR architecture and
moderator agent to moderate global variables
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The role of the moderator is to receive the outputs from other agents and reinject the necessary
information to help agents to get the right information, which means shared global variables. For
example the number of As, Ai, and Ar. The moderator agent calculates the global variables such
as agent state and crowd probability to be used by other agents.

3.4 RL environment design

The environment design is one of the most crucial parts when experimenting with RL. The main
function of the environment is to simulate the inputs; an agent would receive and modify itself
according to the outputs of this agent.

Many reinforcement-learning libraries contain simulations and game environments to train
reinforcement learning-based agents. However, we did not find an environment that satisfies our
objective. Therefore, we built our environment that has the same structure as OpenAI gym27

environments, so it can be used easily in the same manner.

3.4.1 The general environment design

For the intents and purposes of this article, we aimed for a minimalist and efficient environ-
ment, that of an emergency department. The design consists of a limited two dimensional
square grid-based environment in which the agent must perform its task while interacting with
the different elements of the environment. Figure 5 represents the environment used for our
method.

Each tile in the grid contains exactly zero or one object, and the agents can only be on an
empty tile or a tile containing a goal. Each object has an associated discrete color. The agents
A are blue, the goals G are in green and the obstacles X are yellow. The positions of agents are
random.

3.4.2 Process for epidemic control

We make use of the traditional SIR model, just to estimate the values of 𝛽 and 𝛾 with a real date.

Process for epidemic control
Suppose there are N agents in the environment. Initially n0 agents are infected. The agents are
indexed from 1 to N. Each agent Ai has its own:

F I G U R E 5 Grid environment two-dimensional 10*10
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• State Si: Si = 0 healthy (susceptible), Si = 1 infected, and Si = 2 recovered,
• Infection rate 𝛽i,
• Recovery rate 𝛾i, initialized to zero and once the agent is infected this rate is updated each time

step in order to be more realistic.

The model is evaluated in discrete time. The time interval is set to be one day (same as the
COVID-19 dataset). The evolution of the infection rate for consecutive days depends on agents’
actions. We define the state transition probability for an agent as follows:

• P(Si(t + 1) = 1|Si(t) = 0) =
∑

j∈J 𝛽j > 𝛽,

• P(Si(t + 1) = 2|Si(t) = 1) = 𝛾i(t + 1) > 𝛾 ; 𝛾i(t + 1) = 𝜖 + 𝛾i(t),

where J is a set of infected neighbors according to a defined perimeter. 𝛽 and 𝛾 are the optimal
values explained in the next paragraph.

In other words, a “healthy” agent, at step t, transit to the infection state if the sum of infection
rate of his infected neighbors is higher than 𝛽. In addition, an infected agent can recover if his
recovered rate achieved 𝛾 .

Estimation of the optimal values for 𝛽 and 𝛾

For the simulation with COVID-19 data, we have used the data source available in Reference 28
the Center for Systems Science and Engineering at Johns Hopkins University. It offers us the
number of cases: confirmed, deaths, and recovered. The initial uninfected population should be
equal to the number of agents in the simulation environment.

To fit the model to the data we need two things:

• A solver for the differential equations,
• An optimizer to find the optimal values for our two unknown parameters.

In fact, we can fit the SIR model to our data by finding the values for 𝛽 and 𝛾 that minimize the
residual sum of squares between the observed cumulative incidence (from dataset) and the pre-
dicted cumulative incidence (predicted by our model). The loss function used in the optimization
process was the root mean squared error (RMSE).

3.4.3 Action space-state space

Each IDQN I-SIR agent has five possible actions to perform, namely: UP, DOWN, LEFT,
RIGHT, clearly to move up, move down, move left and move right, and STAY when any other
action leads to an obstacle or the limits of the environment, the agent did not move but it
is still considered as an executed step. Each position in the environment is considered as a
state.

3.4.4 Reward function

What makes reinforcement learning versatile and powerful is the reward philosophy. Therefore,
the reward system design acquires great relevance and importance.
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After completing a step, each agent receives a reward signal that is computed based on the
outcome of its last action. However, providing an individual reward function can slow down the
learning process and undermine the performance of the decentralized MARL system as the indi-
vidual rewards that agents receive do not reflect the performance of the other agents involved in
the task. To address this issue, the rewards that the agents receive at each step are full informative
team rewards.

Thus, we consider a reward function (2) that is made up of three main terms:

Rtotal = Robs + Rdist + Rvirus, (2)

where:

• Robs is a constant penalization given in situations when an agent is in front of an obstacle, to
tell him not only to avoid that obstacle but to recognize his place also.

Robs =

{
−10 if an agent-obstacle overlay
0 else

.

• Rdist: at each time step, all the agents receive a penalty of:

Rdist = −
n∑

a=1
ming∈G||post

a − posg||1, (3)

where: n = number of agents.
G = goals set.

With this penalty, each agent will follow the path with the minimum distance so the
shortest path.

• Rvirus this reward would control the epidemic spread with the following equation:

Rvirus = −10Nt
inf + 10Nt

rec, (4)

where Nt
inf and Nt

rec are respectively the number of affected agents and the number of recovered
agents at time step t.

With this shared reward function, the performance of each agent in the system contributes to
the reward that they get after acting. Thus, it is in their best interest if all the agents receive higher
as it directly affects their reward signals.

3.5 Multiagent setting

Due to the complexity and dimension of the state space in this problem, we needed DRL (deep
reinforcement learning). Therefore, we trained the agents in the environment described above
using the independent Deep Q-Learning (IDQN). Each agent is equipped with two neural net-
works, online and target, to approximate its own state-action Q-function and a memory to
store the experiences. The agents are trained in prioritized experience replay (PER) memory. In
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addition to IDQN, we considered independent Double Q-learning (IDDQN) and dueling IDDQN,
to compare these three algorithms.

3.5.1 Structure of the MLP

A multilayer perceptron (MLP) is the most typical feedforward artificial neural network (ANN).
An MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output layer.
The only parts that require some more careful thought are how we will represent our input and out
layer, because the hidden layer is designed with the trial and error method until its performance
is good enough.

The input layer of the MLP
The independent agents have to use their observation of the environment to create the input layer
of the multilayer perceptron. To shape the input layer, the agents have to process their observa-
tion matrix first, as in Figure 6, and create three matrices, each representing one of the three
components involved in the task.

The three matrices are created for goals, agents, and obstacles by encoding the observed matrix
such that each cell occupied by the respective component is encoded as one and all other cells
are encoded as 0. Therefore with these three matrices, the agent knows the position of the other
components and the empty tiles on the board. The matrices are flattened and used for constructing
the input layer by the MLP. The agents also receive their (x,y) coordinates on the board, and use
two nodes to represent them.

Figure 7 illustrates an example of the process of creating the input layer of the MLP used for
a decentralized MARL agent given an arbitrary observation matrix.

The output layer of the MLP
A neural network will approximate, given a state, the different Q-values for each action, so,
the last layer will simply produce an output vector of Q-values, one for each possible action.
Therefore, the output layer is determined by the number of actions the agent can perform, in
our case five actions (UP, DOWN, LEFT, RIGHT, STAY). For the dueling DQN, we consider two
streams of fully-connected layers where the first stream has a single output for each possible
action, while the second stream has one single output. The outputs of these two streams are then
combined.

F I G U R E 6 Visual representation versus matrix representation
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F I G U R E 7 The process of creating an input layer of the MLPs

F I G U R E 8 Structure of transition sets stored in the experience replay memory

3.5.2 Experience replay

For the sake of the agent’s learning process, a prioritized experience replay29 was designed. The
information stored in the memory as a transition consists of all the information related to the
agent’s current state and next state. This information is the current state, the action taken to
transition from the current state to the next state, the reward obtained due to performing this
transition, the next state, a value determining if the simulation has terminated or not, and the
assigned priority. Figure 8 shows a simple representation of it.

3.5.3 Simulation cycle

The process that the system performs to simulate an episode is described in Figure 9. The
simulation cycle is executed as many times as the number of episodes set for an experiment.
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F I G U R E 9 Navigation agent decision flow chart

4 EXPERIMENTS AND RESULTS

The case study is to simulate the propagation of the virus in the environment case of the emer-
gency department where agents take precautions (avoid a collision; select the path with minimal
steps). The objective is to validate our architecture in a real case.

The simulation environment is a grid of size 10*10. As a first step, we have chosen five agents.
After getting 𝛽 and 𝛾 values, we train our model on the environment including one infecting agent
and four “healthy” agents. In order to demonstrate how this infected agent could contaminate the
other agents; we exploit the number of Susceptible, Infected, and recovered agents in each episode
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F I G U R E 10 (A) Agent with eight neighbors, (B) agent with 16 neighbors

(A) (B) (C)

F I G U R E 11 Simulation result based on the first scenario; an agent with eight neighbors. The figures show
the number of agents according to time; (A) shows the number of Infected agents, (B) illustrates the number of
Recovered agents, and (C) for susceptible agents. As a result, the number of infected agents decreases with time

during the training. As discussed in our model, the spread of the virus depends on the agents’
neighbor, which is why we carried out two experiments where the perimeter of considering that
one agent is neighboring another is different. In the first scenario, we consider that an agent could
be infected by his eight neighbors, as in Figure 10A. With the second experiment, we expand the
neighborhood radius to 16 as in Figure 10B.

As a result, Figures 11 and 12 present, for each case, the number of infected, recovered, and
susceptible agents per episode. These figures reveal that the first episodes are characterized by
a large number of contaminated agents, a low number of susceptible agents, and no recovered
agents. Nevertheless, at the end of the training, there was only one infected agent per episode.
These findings prove how effective our approach is since the agents learned to avoid infected
agents. Comparing the two scenarios, the number of infected increases considering a larger
perimeter.

Figures 13 and 14 show the evolution of the number of infected agents between the first and
the second scenario respectively.

IDQN versus IDDQN versus IDuelingDQN
To better evaluate our approach, we compare the efficiency of the different algorithms Deep Rein-
forcement Learning in the case of crowd crisis: independent DQN (IDQN), independent double
DQN (IDDQN), and independent dueling DQN (IDuelingDQN). IDuelingDQN:30,31 is a network
architecture from the original DQN that decouples the Q-value estimation in two streams. One
stream estimates how good it is to be in state V(s) and the other stream estimates the advantage of
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(A) (B) (C)

F I G U R E 12 Simulation result based on the second scenario; an agent with 16 neighbors. The figures show
the number of agents according to time; (A) shows the number of Infected agents, (B) illustrates the number of
Recovered agents, and (C) for susceptible agents. As a result, the number of infected agents decreases with time

(A) (B)

F I G U R E 13 (A,B) show the number of infectious agents from the first episode to the last one. These results
are those of the first simulation scenario—agent’s neighbors are eight. At the end of the simulation, and applying
the proposed architecture, the number of infected agents has decreased, and agents have reached their exit gate

(A) (B)

F I G U R E 14 (A,B) show the number of infectious agents from the first episode to the last one. These results
are those of the first simulation scenario—agent’s neighbors are 16. At the end of the simulation, and applying
the proposed architecture, the number of infected agents has decreased, and agents have reached their exit gate
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F I G U R E 15 Reward evolution over time of the proposed approach for each algorithm: independent DQN
(IDQN), independent double DQN (IDDQN), and independent dueling DQN (IDuelingDQN)

F I G U R E 16 Steps number evolution over time of the proposed approach for each algorithm: independent
DQN (IDQN), independent double DQN (IDDQN), and independent dueling DQN (IDuelingDQN)
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T A B L E 2 Performance according to each algorithm

IDQN IDDQN IDuelingDQN

Max-reward −72 −72 −72

Average-reward −90.22 −90.34 −89.73

Min-reward −2049 −2028 −2110

Min-steps 9 9 9

Average-steps 12.09 11.91 11.25

Episodes with missed goals 553 486 554

Episodes with goals achieved in minimal steps 30,610 30,872 32,467

taking action in that state A(s,a). Then the two streams will be combined through a special aggre-
gation layer to get an estimate of Q(s,a). The outcome of that architecture is that the state value
can be learned separately, without getting confused by the influence of the action advantage.

The three algorithms were evaluated in the same configuration and complexity of environ-
ment; 10 × 10 grid, two agents, and two goals. As a result, Figure 15 represents the reward
evolution, and Figure 16 represents the evolution of the number of the steps. Table 2 shows more
metrics to make the comparison.

The first observation is that with the independent dueling DQN algorithm, the agents obtained
the highest reward and achieved the goals in a minimal number of steps in fewer episodes.
Unlike the other algorithms where the agents had more than 10,000 episodes in order to reach
the goals with the same steps. However, we can notice that with the independent dueling
DQN algorithm even though the agents achieved the goals in minimal steps, they kept mak-
ing further steps as in the independent double DQN algorithm. However, the independent DQN
agents, after several episodes making the maximum number of steps, succeed in making fewer
steps.

These findings can be explained by the difference between the architectures of the algorithms.
DQN agents do not have enough knowledge about the best action to take and take the full Q value
at the beginning of the training. As a result, certain suboptimal actions were obtaining higher val-
ues so the time to learn optimal policy increased, which is why in the first episodes we observed
that these agents took more effort. However, the dueling DQN agents learn the state value sep-
arately, without getting confused by the influence of the action advantage. For this reason, we
found that dueling DQN agents have tried many steps in the last episodes even when they founded
the best actions from the beginning of the training.

5 CONCLUSION

In this article, a decision-making architecture in a crisis case of COVID-19 was presented. The
architecture integrates reinforcement-learning methodology. The environment was created in a
grid form with some obstacles to make the task more complex. The basis of this process is the
Q learning algorithm combined with the approximation of the Q function by a multilayer per-
ceptron. To control the spread of the virus we used the SIR mathematical model with some
improvements such as taking into account neighbors in the virus transmission and using a real
data set to obtain real parameters to model the spread of the virus more realistically.
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Experiments results, in the environment of an emergency department, prove that DQN gives
us interesting results to take the shortest path and control the spread of the virus. The num-
ber of infected persons at the end is very negligible. These results are the mix between different
parameters of DQN, I-SIR model, and the crowded parameter.

With this approach we have given a reasoning model to move in a place avoiding obstacles
based on IDQN. The obstacles can be objects or infected agents. Our decision making approach
used the SIR model which can be applied to any pandemic. It is a way to control the spread
of the virus in the postcontainment phase. It is a way to control the spread of the virus in the
postcontainment phase.

With the proposed system and sufficient computing power and time, we suggest increasing
the complexity of the environment. It is interesting to completely change the configuration of
the world and to use new configurations that can give more importance to the multiplicity of
objectives in the environment. For example, we can build a maze with several entry points along
the boundaries of the grid so that agents can start their process using the layout of the obstacles.
Depending on the starting point of the agents, the difficulty of reaching each entry point will not
only be based on distance but also determined by the challenge of moving toward them in the
maze.
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