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Association between the CYP1A1 
MspI polymorphism and risk 
of head and neck cancer: 
a meta‑analysis
Hady Mohammadi1, Mehrnoush Momeni Roochi2, Farzad Rezaei3, Ata Garajei4, 
Hosein Heidar2, Bayazid Ghaderi5 & Masoud Sadeghi  6*

The studies recommended the relationship between lots of polymorphisms with the head and neck 
cancers (HNCs) risk. Herein, we reported the association between the CYP1A1 MspI polymorphism 
and the risk of HNC in an updated meta-analysis. The PubMed/MEDLINE, Web of Science, Cochrane 
Library, and Scopus databases were searched until March 31, 2021, without any restrictions. Odds 
ratios (ORs) and 95% confidence intervals (CIs) were applied to assess a relationship between CYP1A1 
MspI polymorphism and the HNC risk based on five applied genetic models by RevMan 5.3 software. 
Other analyses (sensitivity analysis, meta-regression, and bias analysis) were performed by CMA 2.0 
software. Trial sequential analysis (TSA) was done by TSA software (version 0.9.5.10 beta). Among 
the databases and other sources, 501 recorded were identified that at last, 29 studies were obtained 
for the analysis. The pooled ORs were 1.28 (95%CI 1.09, 1.51; P = 0.003), 1.68 (95%CI 1.16, 2.45; 
P = 0.007), 1.24 (95%CI 1.03, 1.50; P = 0.02), 1.26 (95%CI 1.07, 1.48; P = 0.005), and 1.66 (95%CI 1.27, 
2.16; P = 0.0002) for allelic, homozygous, heterozygous, recessive, and dominant models, respectively. 
Therefore, the m2 allele and m1/m2 and m2/m2 genotypes had significantly increased risks in HNC 
patients. With regards to stable results and enough samples, the findings of the present meta-analysis 
recommended that there was an association between CYP1A1 MspI polymorphism and the HNC risk.

Abbreviations
HNC	� Head and neck cancer
CYP	� Cytochrome P450
OR	� Odds ratio
CI	� Confidence interval
PAH	� Polycyclic aromatic hydrocarbon
TSA	� Trial sequential analysis
GST	� Glutathione-S-transferase

Head and neck cancer (HNC) affects more than 650,000 cases and 330,000 deaths each year1 and has remained 
a significant public health burden worldwide2. Men are significantly more affected by this type of cancer than 
women with a ratio of 2: 1 to 4: 1 and the prevalence of important anatomical sites of HNC (oral cavity, pharynx, 
and larynx) varies in different parts of the world3,4. HNC’s current and future estimated load is shifting to less 
developed areas that may not have the equipment to cope with this increased load and this requires immediate 
attention by policymakers through the implementation of effective cancer control policies with population-based 
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interventions2. There are many factors that can increase the incidence or prevalence of HNC, including the 
relative distribution of major risk factors such as alcohol consumption, tobacco, and smoking5. Genetic ele-
ments have also been implicated in the pathogenesis of this cancer. In support of this statement, several recent 
meta-analyses have confirmed the relationship of various polymorphisms with the risk of HNC6–11. Two reviews 
confirmed the relationship between several polymorphisms with the risk of HNC12,13. Therefore, HNCs are 
a complex multifactorial disorder that includes genetic, lifestyle, and environmental factors14,15. Cytochrome 
P450 (CYP) enzymes perform a major role in the metabolic activation of polycyclic aromatic hydrocarbons 
(PAHs) to epoxide intermediates, suggesting a link between PAHs, the CYP pathway, and cancer development 
that cytochrome P450 1A1 (CYP1A1) is believed to be the most important enzyme in this link16 and CYP1A1, 
as a drug-metabolizing enzyme, is among the main enzymes imported in the processing of tobacco-related 
carcinogens17. A studied polymorphism in the CYP1A1 gene (located on chromosome 15, including 9 exons or 
chromosome 15q22–24) has been shown to be related to the cancer risk, known as CYP1A1 MspI polymorphism 
(CYP1A1*2A)18 that CYP1A1 MspI is a T → C transition placed downstream of exon 7, in 3′ noncoding region19. 
This polymorphism may change the gene expression level or the messenger RNA stability due to highly induced 
enzymatic activity20. Seven meta-analyses checked the relationship between CYP1A1 MspI polymorphism and 
the risk of HNC including two case–control studies21, twelve in Asians with oral cancer22, seven23, thirty-two24, 
twelve including oral cancer25, twelve26, and twelve27. The meta-analysis He et al.24, although had more studies 
than other meta-analyses, focused on several types of cancer at the same time and didn’t provide information 
on sensitivity analysis, meta-regression, trial sequential analysis (TSA), and publication bias for HNC. In com-
parison with our study and other meta-analyses, this meta-analysis included thyroid cancer and different sites of 
head and neck as HNC, apart from that oral cavity, larynx, and pharynx. In comparison with the meta-analysis 
of He et al.24, we excluded studies that did not have a sufficient number of cases in their groups or their control 
groups had a deviation from Hardy–Weinberg equilibrium (HWE), because reducing the bias across the stud-
ies. Therefore, we aimed to evaluate the connection between the polymorphism of CYP1A1 MspI and the risk of 
HNC with twenty-nine studies in a meta-analysis, meta-regression, and TSA.

Materials and methods
Study design.  This present study was designed by the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) protocols28. The PICO (participants of interest, intervention, control, and outcome of 
interest) question was: Is CYP1A1 MspI polymorphism related to the HNC susceptibility comparing the preva-
lence of its alleles and genotypes in HNC patients in comparison with controls according to five genetic models?

Data sources and literature search.  A systematic search was comprehensively used in PubMed/MED-
LINE, Web of Science, Cochrane Library, and Scopus databases until March 31, 2021, without any restrictions. 
The used search terms were: (“cytochrome P4501A1” or “CYP1A1” or “AHH” or “aryl hydrocarbon hydroxy-
lase”) and (“oral cancer” or “oral carcinoma” or “oral cavity cancer” or “OSCC” or “oral squamous cell carcinoma” 
or “oral SCC” or “tongue cancer” or “tongue carcinoma” or “mouth neoplasm” or “head and neck cancer” or 
“head and neck carcinoma” or “HNSCC” or “salivary gland cancer” or “salivary gland tumor” or “laryngeal can-
cer” or “larynx Cancer” or “nasopharyngeal cancer” or “nasopharynx cancer” or “Nasopharyngeal carcinoma” 
or “oropharyngeal cancer” or “oropharyngeal carcinoma” or “hypopharyngeal cancer” or “pharyngeal cancer” or 
“pharynx cancer” or “hypopharynx squamous cell carcinoma” or “hypopharynx SCC” or “larynx squamous cell 
carcinoma” or “larynx SCC”) and (“variant” or “polymorphism” or “genotype” or “gene” or “allele”). An inde-
pendent review of titles and abstracts was conducted by two authors (H.M. and M.S.). A lack of consensus was 
resolved by a conversation with a third author (M.M.R). We manually checked other electronic sources for rele-
vant studies and also the references of all subject-related studies that met the criteria so that no study was missed.

Criteria.  Inclusion criteria were: (1) studies with a case–control design and reporting the association between 
CYP1A1 MspI polymorphism and the HNC susceptibility; (2) HNC was diagnosed by pathological or histo-
logical examinations; (3) sufficient data calculating the allele or genotype frequencies of CYP1A1 MspI poly-
morphism; (4) studies without a deviation from HWE in the control group or studies that HWE could not be 
computed (because there was no the prevalence of all genotypes separately); (5) Studies having 100 or more 
than 100 cases in both groups (case and control groups). Exclusion criteria were: (1) duplicate publications; (2) 
meta-analyses, reviews, letters to the editor, book chapters, conference papers, book chapters; (3) studies in the 
absence of control group; (4) studies reporting other polymorphisms of CYP1A1; and (5) studies reporting the 
CYP1A1 expression; (5) Studies with less than 100 cases in one or two groups; and (6) family-based studies. 
Among duplicate publications, we selected one with the newest date. An independent review of full-texts was 
conducted by two reviewers (H.R.M. and M.S.) and the disagreement was resolved by discussion between both 
reviewers.

Data extraction.  The data of the involved studies were extracted independently by two reviewers (H.M. and 
M.S.) to retrieve the necessary information. In case of discrepancy between the data of the two reviewers, a new 
review was performed by other reviewers (M.M.R and F.R).

Quality assessment.  The quality evaluation was performed according to a questionnaire from the New-
castle–Ottawa scale (NOS)29. The NOS included a maximum of nine scores for the least risk of bias in three 
domains: I) selection of study groups (four scores); II) comparability of groups (two scores); and III) ascer-
tainment of exposure (three scores) for case–control studies30. Two reviewers (H.M. and M.S.) independently 
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evaluated the quality of the included studies by scoring them according to a set of pre-established criteria and 
discrepancies were resolved by a short discussion.

Statistical analysis.  Both odds ratio (OR) and 95% confidence interval (CI) were used to evaluate an 
association between the polymorphism of CYP1A1 MspI and the cancer risk. Five applied genetic models for 
CYP1A1 MspI polymorphism were (allelic (m2 vs. m1), homozygous (m2/m2 vs. m1/m1), heterozygous (m1/m2 
vs. m1/m1), recessive (m2/m2 + m1/m2 vs. m1/m1), and dominant (m2/m2 vs. m1/m1 + m1/m2) models). To 
assess heterogeneity, a Chi-square-based Q test and inconsistency index I2 were applied31,32 that a P-value > 0.10 
(I2 < 50%) presented a lack of heterogeneity and so we used fixed-effects model33 and if there was heterogeneity, 
the pooled results estimated by the random-effects model34.

Subgroup analysis is a method of analysis that involves dividing all participating data into smaller subsets 
based on a common feature and is often used to compare them and to examine the effects of different factors on 
the results. We divided the initial results based on ethnicity, control source, and tumor type.

Meta-regression is a quantitative method performed in meta-analysis to estimate the effect of moderators 
on the effect size of the study applying regression-based techniques35. We assessed the effect of publication year 
and sample size on the effect size.

There were two sensitivity analyses containing “one-study-removed” and cumulative analysis” to evaluate the 
stability/consistency of pooled results.

Funnel plots are visual tools for evaluating the types of biases in meta-analyses and are designed to examine 
whether publication bias can affect the reliability of estimates36. Both Begg’s37 and Egger’s38 tests were used for the 
diagnosis of asymmetry of these plots. Asymmetry can be a reason for bias in studies that in the state, P-values 
(two-sided) < 0.05 for the tests.

The P-values (two-sided) < 0.05 was as a significant index. The results of forest plot analyses were extracted 
by Review Manager 5.3 (RevMan 5.3) software and other analyses by Comprehensive Meta-Analysis version 
2.0 (CMA 2.0) software.

We used TSA due to false-positive or negative conclusion39 in the meta-analysis using TSA software (version 
0.9.5.10 beta) (Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen, 
Denmark) to reduce these statistical errors40. The required information size (RIS) was calculated when an alpha 
risk of 5%, a beta risk of 20%, and a two-sided boundary type were used. While the Z-curve reached the RIS line 
or monitoring the boundary line or futility area, it illustrated that enough samples are involved in the studies, 
and therefore their results were valid. Otherwise, the value of information was not great enough, and additional 
studies were needed.

Ethics approval and consent to participate.  All methods were performed in accordance with the rel-
evant guidelines and regulations.

Results
Study selection.  Among the databases and other sources, 501 recorded were identified (Fig.  1). After 
omitting duplicates and unrelated records, 91 full-text articles were evaluated for eligibility. Then, 57 articles 
excluded with reasons (one mixed oral precancerous and cancer cases, one had no control group, two reviews, 
four reported CYP1A1 expression, two didn’t report the prevalence of alleles and genotypes, one book chapter, 
twenty-two reported other polymorphisms of CYP1A1, two reported duplicate publications, one family-based 
study, one had no sufficient data, one reported oral precancerous cases, twelve studies reported less than 100 
cases in one or two groups (case and control groups), and seven meta-analyses). After that, 34 studies17,41–73 
were included systematic review and we deleted 5 studies41,53,66,71,72 with a deviation from HWE in their control 
groups. Finally, 29 studies were entered into the analysis.

Basic characteristics.  Table  1 is shown the characteristics of the studies17,42–52,54–65,67–70,73 involved in 
the meta-analysis. The studies were published from 1996 to 2019 including 8392 HNC cases and 8646 con-
trols. Eighteen studies43–46,48,52,55,59,61–66,68–70,73 were reported in Asians, seven17,42,49,51,54,57,58 in Caucasians, and 
four47,50,56,60 in mixed ethnicity. The control source in eighteen studies42–44,47,49–52,54,58,60–63,66,69,70,73 was hospital-
based and in eleven17,45,46,48,55–57,59,64,65,68 was population-based. The type of tumor and the genotyping method 
were other variables for the studies.

Quality assessment.  Ten criteria were identified to evaluate the quality of the studies contained in the 
meta-analysis (Table 2). Twenty-five studies had a high quality (score ≥ 7).

Genotype prevalence.  Table 3 is shown the genotype prevalence of CYP1A1 MspI polymorphism in the 
HNC patients and the controls. Seven studies17,44,46,48,50,52,62 had not reported any data about HWE.

Pooled analyses.  Figures 2, 3, 4, 5 and 6 are shown the random-effects analyses of allelic, homozygous, 
heterozygous, recessive, and dominant models of the association between CYP1A1 MspI polymorphism and 
the risk of HNC, respectively. The pooled ORs were 1.28 (95%CI 1.09, 1.51; P = 0.003; I2 = 75%) for allelic, 1.68 
(95%CI 1.16, 2.45; P = 0.007; I2 = 68%) for homozygous, 1.24 (95%CI 1.03, 1.50; P = 0.02; I2 = 66%) for heterozy-
gous, 1.26 (95%CI 1.07, 1.48; P = 0.005; I2 = 75%) for recessive, and 1.66 (95%CI 1.27, 2.16; P = 0.0002; I2 = 64%) 
for dominant models. The m2 allele and m1/m2 and m2/m2 genotypes had significantly an elevated risk in HNC 
patients.
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Subgroup analyses.  The subgroup analysis was performed on the ethnicity, the control source, and the 
tumor type (Table 4). The results showed that ethnicity, control source, and tumor type could be effective fac-
tors on the pooled ORs. With regard to the ethnicity, the association of CYP1A1 MspI polymorphism and HNC 
risk based on five models (allelic, homozygous, heterozygous, recessive, and dominant), two models (allelic and 
heterozygous)), and two models (allelic and heterozygous) were statistically significant for Asian, Caucasian, and 
mixed ethnicities, respectively, that in contrast with Asian and Caucasian ethnicities, there was a decreased risk 
of m2 allele and m1/m2 genotype in mixed ethnicity. For the control source, the association was statistically sig-
nificant in four models (allelic, homozygous, and dominant) for hospital-based controls and three models (het-
erozygous and recessive) for population-based controls. For tumor type, the association in four models (allelic, 
homozygous, recessive, and dominant) for oral cancer, three models (allelic, homozygous, and dominant) for 
laryngeal cancer, and three models (allelic, heterozygous, and recessive) for pharyngeal cancer was statistically 
significant.

Publication bias.  Figure 7 is shown the funnel plots of the relationship between CYP1A1 MspI polymor-
phism and the risk of HNC based on the genetic models. Both Egger’s and Begg’s tests were: (allelic model: 0.322 
and 0.151; homozygous model: 0.340 and 0.471; heterozygous model: 0.570 and 0.421; recessive model: 0.030 

Figure 1.   Flowchart of the study selection.
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and 0.050; and dominant model: 0.064 and 0.243). The P-values > 0.05 were for both tests that determined lack 
of any publication bias across the studies, exception for Egger’s test in dominant model (P < 0.05) that showed the 
publication bias across the studies in this model.

Trial sequential analysis.  The Z-curve (blue line) of the allelic, homozygous, heterozygous, recessive, and 
dominant models reached the RIS line (vertical red line), revealing that the CYP1A1 MspI polymorphism was 
related to the HNC risk with enough samples and reliable results that we selected the graphs for four models 
because of the better quality of the graphs (Fig. 8).

Sensitivity analysis.  The sensitivity analyses including “one-study-removed” (Fig. 9) and “cumulative anal-
ysis” (Fig. 10) showed the stability of the initial pooled ORs. We included the results of the sensitivity analyses 
for the recessive model.

Table 1.   Basic characteristics of included studies in the meta-analysis.

First author, 
publication year Country Ethnicity Cases Controls Source of controls Tumor type Genotyping method

Lucas57 France Caucasian 302 253 PB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Sato64 Japan Asian 142 142 PB Oral cancer PCR

Tanimoto73 Japan Asian 100 100 HB Oral cancer PCR–RFLP

Ko54 Germany Caucasian 195 177 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Cheng45 Taiwan Asian 172 218 PB Pharyngeal cancer PCR–RFLP

Gronau51 Germany Caucasian 187 139 HB Oral, laryngeal, and 
pharyngeal cancers PCR-RFLPAS-PCR

Matthias58 Germany Caucasian 335 205 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Gajecka49 Poland Caucasian 213 149 HB Laryngeal cancer PCR–RFLP

Gattás50 Brazil Mixed 103 102 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Boccia42 Italy Caucasian 210 245 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Sam63 India Asian 408 220 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Singh68 India Asian 200 200 PB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Olivieri60 Brazil Mixed 153 145 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Chatterjee43 India Asian 102 100 HB Oral cancer PCR

Sabitha61 India Asian 150 145 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Sam62 India Asian 408 220 HB Oral, laryngeal, and 
pharyngeal cancers PCR

Sharma65 India Asian 203 201 PB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Lourenço56 Brazil Mixed 142 142 PB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Cury47 Brazil Mixed 313 417 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Guo52 China Asian 300 300 HB Oral cancer PCR

Shukla67 India Asian 100 100 HB Oral cancer PCR–RFLP

Singh69 India Asian 122 127 HB Oral cancer PCR–RFLP

Choudhury46 India Asian 180 240 PB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Lourembam55 India Asian 105 115 PB Pharyngeal cancer PCR–RFLP

Maurya59 India Asian 750 749 PB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Singh70 India Asian 170 230 HB Oral, laryngeal, and 
pharyngeal cancers PCR–RFLP

Zakiullah17 Pakistan Caucasian 200 151 PB Pharyngeal cancer RT-PCR

Dong48 China Asian 750 750 PB Oral cancer PCR–RFLP

Chen44 China Asian 874 874 HB Oral cancer PCR
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Meta‑regression.  A meta-regression analysis based on the publication year and the sample size were car-
ried out on the relationship between the HNC risk and CYP1A1 MspI polymorphism (Table 5). The analysis 
showed the sample size in recessive and dominant models, the tumor type in allelic, homozygous, and heterozy-
gous models, and the ethnicity in allelic, homozygous, recessive, and dominant models could be important 
confounding factors for the association between the HNC risk and CYP1A1 MspI polymorphism (P < 0.05). 
Increasing the sample size, the risk of HNC significantly increased (a direct correlation).

Discussion
A recent systematic review reported that 242 genes have associated with the risk of HNC74. Our meta-analysis 
reported the association of one of the polymorphisms (CYP1A1 MspI) in these genes with the HNC susceptibility. 
The results were stable and showed elevated risks of m2 allele and m2/m2 and m1/m2 genotypes in HNC patients 
with enough samples that the results were under the influence of the ethnicity, the tumor type, and the control 
source. In addition, the sample size, the tumor type, and the ethnicity could be confounding factors on the results.

A 5.71-fold risk of nasopharyngeal cancer has been reported in cases carrying glutathione-S-transferases 
(GSTs) such as GSTT1, GSTM1, and CYP1A1 MspI genotypes, suggesting that cross-linking between these 
genes may modulate nasopharyngeal cancer susceptibility, with similar results reported in HNCs17,46,62,71,75. As 
the results of one study showed, CYP1A1 polymorphisms alone were not related to an increased risk of oral 
cancer and the moderate risk for oral cancer was combining this polymorphism with GST polymorphisms69. 
Cha et al.76 showed the role of combined genotypes of CYP1A1 m2/m2 and GSTM1 null in the oral cancer risk. 
Cyp1A1 MspI polymorphism in lung cancer was associated with PAH-DNA adduct levels77 and the frequency of 
p53 gene mutations78. Smokers had the significant elevated risk (OR 7.13, P < 0.0001) of nasopharyngeal cancer 
among individuals carrying CYP1A1 MspI m2/m2 + m1/m2 genotype71.

One study in Northeast India found that the susceptibility to HNC related to tobacco and alcohol consump-
tion is modulated by CYP1A1 MspI polymorphism, showing the interaction of gene-environment in prediction 
the HNC susceptibility and therefore this polymorphism is a predisposing risk factor for HNC70. In addition, 
another study reported tobacco use (particularly tobacco chewing) appeared as a significant moderator in cases 
with variant genotypes of CYP1A1 in India69. Sharma et al.65 expressed that CYP1A1 gene haplotype (C2453A, 

Table 2.   Criteria of quality assessment based on Newcastle–Ottawa Scale (NOS). Each asterisk shows one 
score.

First author, publication year Selection Comparability Exposer NOS score

Lucas57 **** * *** 8

Sato64 **** ** *** 9

Tanimoto73 ** ** *** 7

Ko54 *** * *** 7

Cheng45 *** ** *** 7

Gronau51 ** ** *** 7

Matthias58 ** * *** 6

Gajecka49 *** - *** 6

Gattás50 ** ** ** 6

Boccia42 ** ** *** 7

Sam63 ** ** *** 7

Singh68 **** ** *** 9

Olivieri60 **** ** *** 9

Chatterjee43 **** ** *** 9

Sabitha61 **** ** *** 9

Sam62 *** ** *** 8

Sharma65 **** ** *** 9

Lourenço56 **** ** *** 9

Cury47 ** ** *** 7

Guo52 ** * *** 6

Shukla67 *** ** *** 8

Singh69 *** ** *** 8

Choudhury46 **** ** *** 9

Lourembam55 **** ** *** 9

Maurya59 **** ** *** 9

Singh70 *** ** *** 8

Zakiullah17 **** * *** 8

Dong48 **** ** *** 9

Chen44 *** ** *** 8
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A2455G, and T3801C) frequency distribution in HNC patients was significantly higher than controls. Therefore, 
it is important to consider the haplotype and the combined impacts of genetic and environmental factors when 
examining the genetic risk to complex illnesses such as HNC62,65.

The discrepancies between results of the association between CYP1A1 polymorphisms and HNCs in Indians 
may be due to ethnic differences in culture, linguistics, and diets in this population, or they may be because of 
a difference in the sample size of the studies63. As our meta-analysis confirmed that the sample size was a con-
founding factor on the association and increasing the sample size, OR increased.

Wang et al.79 reported that the association between CYP1A1 polymorphisms and the risk of HNC could be 
affected by tumor type as that they observe an elevated risk of laryngeal and pharyngeal cancers, but no for oral 
cancer. Another study70 showed that the m2/m2 genotype of CYP1A1 MspI polymorphism had a significantly 
elevated risk in oral cancer patients, but there was no significant relationship between this polymorphism and 
pharyngeal and laryngeal cancers that one review80 confirmed it. Also, Sam et al.63 showed the association 
between m1/m2 genotype had just significant risk in laryngeal and pharyngeal cancers, not oral cancer. In our 
meta-analysis, the m1/m2 genotype had just a significant association with pharyngeal cancer and m2/m2 just 
in oral and laryngeal cancers.

Seven meta-analyses21–27 reported the association between CYP1A1 MspI polymorphism and the risk of 
HNCs. Two meta-analyses22,25 illustrated that the CYP1A1 MspI polymorphism may be associated with oral can-
cer susceptibility in Asians as well as Xie et al.81 in a stratified analysis by ethnicity, showed significant evidence 
of the association of CYP1A1 MspI polymorphism with the HNC risk in Asian ethnicity, but not mixed and 
Caucasian ethnicities. These results showed the impact of ethnicity on the relationship between CYP1A1 MspI 
polymorphism and the HNC risk as the meta-analysis of He et al.24 and our meta-analysis reported. In addi-
tion, our meta-analysis showed an association between other cancers (laryngeal and pharyngeal cancers), both 
in Asians and in other ethnicities (Caucasian and mixed ethnicities). Some studies82–84 and our meta-analysis 
to follow them, classified Indians in Caucasian ethnicity and some other studies85,86 as Asians, but based other 
studies87,88, Indians include several ethnicities (mixed). One possible difference between the results of studies can 
be due to the different classification of the ethnicity for each region. Therefore, it should be noted that there is a 

Table 3.   Prevalence of genotypes of CYP1A1 MspI polymorphism in the patients with head and neck cancer 
(cases) and the controls. HWE Hardy–Weinberg equilibrium. NA  Not available.

First author, publication year

Case Control

P-value of HWE in controlsm1/m1 m1/m2 m2/m2 m1/m1 m1/m2 m2/m2

Lucas57 235 66 1 212 38 3 0.389

Sato64 56 55 31 62 65 15 0.737

Tanimoto73 32 53 15 62 30 8 0.126

Ko54 158 36 1 146 29 2 0.681

Cheng45 74 75 23 83 96 39 0.226

Gronau51 142 45 0 113 24 2 0.581

Matthias58 290 44 1 184 19 2 0.074

Gajecka49 191 21 1 230 18 1 0.325

Gattás50 65 38 63 39 NA

Boccia42 169 41 189 56  > 0.05

Sam63 146 199 63 115 91 14 0.475

Singh68 109 75 16 135 56 9 0.312

Olivieri60 133 20 0 106 39 0 0.061

Chatterjee43 30 46 26 42 39 19 0.077

Sabitha61 40 73 37 71 66 8 0.141

Sam62 146 262 115 105 NA

Sharma65 107 74 22 129 66 6 0.479

Lourenço56 90 52 91 51  > 0.05

Cury47 207 106 262 155  > 0.05

Guo52 185 115 237 63 NA

Shukla67 60 30 10 48 46 6 0.241

Singh69 60 45 17 50 58 19 0.746

Choudhury46 80 100 130 110 NA

Lourembam55 27 50 28 28 48 39 0.091

Maurya59 391 280 79 451 254 44 0.304

Singh70 77 70 23 125 83 22 0.140

Zakiullah17 124 76 96 55 NA

Dong48 463 287 593 157 NA

Chen44 318 556 468 406 NA
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need for a comprehensive classification to select the type of ethnicity of each country or region in the future so 
that the results of meta-analyzes based on the ethnicity be more homogeneous. In addition, in the meta-analyzes 
mentioned21–27, the number of studies was different and this could be another reason for the difference between 
their results. So, more studies are needed in different areas in the world to reduce this difference in results 
between studies. As the results of different studies and their contradictions showed, the relationship between 
this polymorphism and HNC risk is influenced by various factors, and paying attention to the effective factors 

Figure 2.   Forest plot of allelic model of the association between CYP1A1 MspI polymorphism and the risk of 
head and neck cancer.

Figure 3.   Forest plot of homozygous model of the association between CYP1A1 MspI polymorphism and the 
risk of head and neck cancer.
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Figure 4.   Forest plot of heterozygous model of the association between CYP1A1 MspI polymorphism and the 
risk of head and neck cancer.

Figure 5.   Forest plot of recessive model of the association between CYP1A1 MspI polymorphism and the risk 
of head and neck cancer.
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in future studies can provide a way to find more dominant factors. As a result, treatment of these patients and 
as a result of increasing their survival can be done more easily and under more effective and better conditions.

Figure 6.   Forest plot of dominant model of the association between CYP1A1 MspI polymorphism and the risk 
of head and neck cancer.

Table 4.   Subgroup analysis of association between the head and neck cancer risk and CYP1A1 MspI 
polymorphism. *Some studies analyzed the data for head and neck cancers separately, too. All models 
included 19 studies, except for recessive (m2/m2 + m1/m2 vs. m1/m1) and dominant (m2/m2 vs. m1/m1 + m1/
m2) models including 27 and 21 studies, respectively. N: number of studies in allelic, homozygous, and 
heterozygous models. N’: number of studies for recessive model. N’’: number of studies for dominant model. 
OR Odds ratio, CI Confidence interval. Bold data means statistically significant (P < 0.05).

Subgroup (N,N’,N’’)

m2 versus m1
m2/m2 versus m1/
m1

m1/m2 versus m1/
m1

m2/m2 + m1/m2 
versus m1/m1

m2/m2 versus m1/
m1 + m1/m2

OR (95%CI), P, I2 OR (95%CI), P, I2 OR (95%CI), P, I2 OR (95%CI), P, I2 OR (95%CI), P, I2

All (19,27,21) 1.28 (1.09, 1.51), 75% 1.68 (1.16, 2.45), 68% 1.24 (1.03, 1.50), 66% 1.26 (1.07, 1.48), 75% 1.66 (1.27, 2.16), 64%

Ethnicity

 Asian (13,16,15) 1.35 (1.12, 2.64), 79% 1.94 (1.32, 2.86), 73% 1.28 (1.02, 1.59), 67% 1.47 (1.20, 1.81), 76% 1.80 (1.39, 2.34), 68%

 Caucasian (5,7,5) 1.28 (1.02, 1.59), 0% 0.37 (0.12, 1.12), 0% 1.42 (1.12, 1.81), 0% 1.13 (0.94, 1.36), 0% 0.32 (0.11, 0.98), 0%

 Mixed (1,4,1) 0.45 (0.26, 0.79) Not estimable 0.41 (0.23, 0.74) 0.79 (0.56, 1.12), 0.19 Not estimable

Source of controls

 Hospital-based 
(13,17,13) 1.32 (1.04, 1.66), 77% 1.99 (1.19, 3.33), 65% 1.25 (0.94, 1.66), 74% 1.25 (1.97, 1.61), 82% 1.97 (1.60, 2.41), 44%

 Population-based 
(6,10,8) 1.20 (0.96, 1.50), 70% 1.29 (0.74, 2.23), 71% 1.24 (1.07, 1.45), 25% 1.30 (1.16, 1.46), 26% 1.51 (0.94, 2.44), 81%

Tumor type*

 Oral cancer (9,12,11) 1.53 (1.17, 2.00), 78% 2.03 (1.43, 2.86), 59% 1.10 (0.88, 1.38), 64% 1.32 (1.05, 1.66), 76% 2.12 (1.85, 2.43), 75%

 Laryngeal cancer 
(5,7,5) 1.91 (1.61, 2.26), 48% 2.65 (1.11, 6.31), 77% 1.33 (0.87, 2.05), 68% 1.44 (0.98, 2.12), 60% 2.55 (1.75, 3.70), 44%

 Pharyngeal cancer 
(4,6,4) 1.44 (1.03, 2.00), 80% 2.11 (1.00, 4.44), 79% 1.38 (1.14, 1.67), 46% 1.39 (1.04, 1.87), 62% 1.78 (0.97, 3.29), 78%
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Apart from several strengths (enough samples, stability of the results, and lack of publication bias across the 
studies), the present meta-analysis also had some limitations as (1) High heterogeneity between the studies. (2) 
Few numbers of studies in Asian and mixed ethnicities. (3) The impact of risk factors on the results with different 
distributions in included studies. (4) We just included published studies.

Conclusions.  The findings of the present meta-analysis recommended the association between CYP1A1 
MspI polymorphism and the HNC susceptibility with enough samples and stable results. The ethnicity, the 
tumor type, the control source, and the sample size were significant risk factors for the results. Therefore, pay 
attention to these factors can be important in relation to the association of CYP1A1 MspI polymorphism and the 
HNC risk in future studies. In addition, well-designed studies with large samples in various areas of the world 
with precise matching criteria are required to reveal the present meta-analysis conclusions.

Figure 7.   Funnel plots of the association between CYP1A1 MspI polymorphism and the risk of head and 
neck cancer. (A) Allelic model; (B) Homozygous model; (C) Heterozygous model; (D) Recessive model; (E) 
Dominant model.
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Figure 8.   Trial sequential analyses for CYP1A1 MspI polymorphism and the head and neck risk. (A,B,C,D,E) 
show allelic, homozygous, heterozygous, and recessive models, respectively. Abbreviation: D2, diversity; RRR, 
relative risk reduction; IIA, incidence in intervention arm; ICA, incidence in control arm. IIA and ICA were 
calculated from the average incidence in case and control groups. Error α and 1 − β were defined as 5% and 80%, 
respectively in each model.



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1527  | https://doi.org/10.1038/s41598-022-05274-z

www.nature.com/scientificreports/

Figure 9.   “One-study-removed” analysis of the association between CYP1A1 MspI polymorphism and the risk 
of head and neck cancer based on recessive model.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1527  | https://doi.org/10.1038/s41598-022-05274-z

www.nature.com/scientificreports/

Figure 10.   Cumulative analysis of the association between CYP1A1 MspI polymorphism and the risk of head 
and neck cancer based on recessive model.



15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1527  | https://doi.org/10.1038/s41598-022-05274-z

www.nature.com/scientificreports/

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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