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Abstract: The spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), is an emerging
invasive pest, which attacks a wide variety of fruits and berries. Although previous studies have
focused on different aspects of D. suzukii reproductive biology, there are no protocols available
for determining the mating status of D. suzukii females and drosophilids in general. In this study,
a step-by-step protocol for tissue dissection, isolating spermathecae, and determining the mating
status of females was developed specifically for D. suzukii. This protocol is an effective and relatively
quick method for determining female mating status. It has important applications from exploring
reproductive output of D. suzukii females to understanding the biology of D. suzukii winter morph,
which presumably plays the main role in the overwintering of this invasive species. We demonstrated
applicability of this protocol for both field collected flies and flies reared in the lab, including fly
specimens stored on a long-term basis.

Keywords: Drosophila suzukii; invasive species; mating status; spermathecae; sperm storage; spotted
wing drosophila; tissue dissection

1. Introduction

The spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), native to
Southeast Asia, is an emerging invasive pest in Europe, North America, and South America,
which attacks a wide variety of soft-skinned fruits and berries [1–5]. First detected in Hawaii in 1980s,
D. suzukii acquired a pest status in the United States only in 2008 after its detection in California [3,4].

Although the host preferences and phenology of D. suzukii have been extensively explored [3,6–10],
the reproductive biology of D. suzukii has received less attention in entomological studies. The few
studies of the sexual behavior of D. suzukii explored female oviposition, male courting behavior,
and the production of sex pheromones [11–13]; however, the morphology and development of the
reproductive organs in D. suzukii in relation to female fertility and mating behavior are still poorly
understood. Meanwhile, understanding the reproductive biology of D. suzukii is important for effective
control of this invasive species [13].

One of the important steps towards exploring D. suzukii reproductive biology and ecology is to
accurately determine a female’s mating status. It has been demonstrated with several fruit fly species
that mating can induce different physiological changes in females such as: (1) tissue differentiation in
the oviduct, which may result in increased egg production [14,15]; (2) strong rejection of males after
mating [14]; and (3) changes in female longevity [16]. As D. suzukii is such a detrimental invasive
species, it is also important to know female mating status at different times during a year to better
understand D. suzukii seasonal phenology. Particularly, such information can be helpful for studying
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D. suzukii reproductive diapause; that was suggested by Asplen et al. [4] as one of the important
directions for studies involving this species.

The mating status of D. suzukii females can be determined by detecting the presence of
sperm in one of two sperm storage organs: (1) the paired spermathecae (long-term sperm storage)
connected with the paired spermathecal glands or (2) a single seminal receptacle (short-term sperm
storage) [17,18]. As in any other drosophilid species, after mating, a D. suzukii female stores sperm
received from a male and releases it later to fertilize mature eggs. Although the seminal receptacle
could serve as the principal sperm storage organ [19] and may store a larger amount of sperm
than the spermathecae, the sperm from the seminal receptacle releases sooner than that from the
spermathecae [17,20,21]; consequently, detecting the sperm in the spermathecae rather than in the
seminal receptacle could potentially confirm that the female has mated.

The spermathecae are paired structures; each of them consists of a spermathecal reservoir and a
spermathecal duct, which connects the spermatheca with the common oviduct (Figure 1).
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status. Some of the previous studies focusing on D. suzukii phenology and its attraction to different 
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details on how the spermathecae were isolated and how the sperm mass was detected nor images of 
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Figure 1. Scheme of Drosophila suzukii‘s reproductive system from the dorsal perspective; the seminal
receptacle is not shown due to its location on the ventral side of the common oviduct. (The drawing is
by Claire Mattmiller; images by Kathryn Hietala-Henschell and Alina Avanesyan).

It was demonstrated with D. melanogaster that, during mating, sperm is transferred from the uterus
to the spermathecal reservoir and coils around the reservoir’s ‘center’ forming a toroidal mass [17];
the spermathecae can contain the sperm from multiple males and store it for up to two weeks [20].
The toroidal mass can be easily detected under the light microscope; consequently, its presence or
absence can be used as a criterion for determining a female’s mating status.

Spermathecae morphology has been studied in several orders; Blattodea [22], Orthoptera [23],
Coleoptera [24–27], Heteroptera [28–31], Hymenoptera [32,33], and Diptera [34–39] including
D. melanogaster [17–19,21]. However, to the best of our knowledge, there is only one recent study on
D. suzukii spermathecae morphology [40], and there are no studies on determining D. suzukii mating
status. Some of the previous studies focusing on D. suzukii phenology and its attraction to different
bait mixtures involved dissections of the fly reproductive tract and reported the mating status of
flies based on sperm presence in the spermathecae [41]. However, these studies provided neither
details on how the spermathecae were isolated and how the sperm mass was detected nor images of a
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sperm-containing spermatheca, which could be used as a reference for future research on D. suzukii
reproductive biology. In addition, different studies can use different fly specimens (flies reared in lab
or field collected and preserved flies); consequently, it is important to know whether determining the
mating status by isolating the spermathecae can be effective for different fly specimens.

To address these issues, in this study we (1) provide a detailed protocol for D. suzukii tissue
dissection, isolating spermathecae and determining a female’s mating status, and (2) demonstrate
the applicability of this protocol for flies reared in the laboratory and for preserved
field-collected specimens.

2. Materials and Methods

2.1. Study Species

For the protocol development, D. suzukii individuals from a laboratory colony housed at the
University of Wisconsin-Madison were used; the flies were originally collected in 2015 from infested
raspberries in Wisconsin. The fly stock was maintained at room temperature (at around 25 ◦C) on
a standard molasses-based diet containing 4500 mL water, 500 g cornmeal, 500 g molasses, 200 g
yeast, 54 g agar, 20 mL 100% propionic acid, and 45 mL 20% tegosept in 95% ethanol (provided by the
Department of Genetics, University of Wisconsin-Madison). In April 2016, ten females were randomly
selected from the rearing vials and collected within two hours after hatching (presumably virgin);
similarly, ten females were randomly selected and collected 24 h after hatching or later (presumably
mated). Virgin and mated females were transferred to new vials and were stored separately in 70%
ethanol at room temperature until they were dissected.

2.2. Protocol Development

2.2.1. Step 1: Dissection and Isolation of Spermathecae

Each female fly from each subsample (virgin and mated) was placed in a Petri dish in a drop of
distilled water (Figure 2). Under the dissecting microscope (OLYMPUS SZX16, Olympus America
Inc., Center Valley, PA, USA), the abdomen of the fly was open using a pair of fine tweezers from
the micro dissecting kit (BioQuip Products Inc., Rancho Dominguez, CA, USA; micro dissecting
kit, Cat. No. 4761). Then the ovipositor with the spermathecae and spermathecal glands were
pulled out, transferred to a microscope slide, and placed in a drop of water (Figure 2). On the
slide, both spermathecae were separated from the rest of the tissues using the micro slide tool
kit (BioQuip Products Inc., Rancho Dominguez, CA, USA; micro slide tool kit, Cat. No. 4831).
Each dissection step, as well as all the slides with isolated spermathecae, were photographed with an
Olympus DP73 digital camera using the cellSens software package (Olympus).

2.2.2. Step 2: Tissue Preparation

The spermathecal glands were removed as much as possible to make staining and further
observation of the spermathecae and sperm mass easier (Figure 2). The ovipositor and all remaining
tissues were also removed from the slide before staining. A small drop of 2% aceto-orcein
(Thermo Fisher Scientific Inc., Pittsburgh, PA, USA) was added to the water drop with the spermathecae,
and the slide was immediately covered with a cover slip.
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Figure 2. Basic steps of dissecting female Drosophila suzukii flies and isolating spermathecae. Step 1
includes cutting the exoskeleton of the abdomen and pulling out the reproductive system; step 2
includes removal of the spermathecal glands and surrounding tissues and staining the spermathecae
(Images by Alina Avanesyan).

2.2.3. Step 3: Determining Mating Status

The content of the intact spermathecae and their surrounding tissues (if not all the tissues had been
successfully removed) was observed under the compound microscope (Wild M20, Wild Heerbrugg,
Heerbrugg, Switzerland) using 25× and 40× objective lenses. The mating status of the fly was
tentatively determined as virgin if no toroidal mass was present in the spermathecae and the walls of the
spermathecal reservoir and the spermathecal gland were uniform in appearance. If the spermathecal
reservoir contained a toroidal mass (distinguishable under both 25× and 40× objective lenses), the fly
was described as mated. The spermatheca was then photographed with an Olympus DP73 (using 20×
and 40× objective lenses) for future reference (Figure 3).

Due to the different appearance of the stained spermathecae under the microscope (e.g. the walls
of the spermathecal reservoir could occasionally be broken, the tissues could be overstained, etc.)
determining a fly’s mating status could be challenging. To confirm the presence or absence of the
sperm mass in our study, the spermathecae were gently crushed on the slide under the cover slip using
a pencil-top eraser and then repeatedly observed using 25× and 40× objective lenses. If the fly had
mated, the released sperm mass was visible between broken parts of the spermathecal reservoir’s walls
and in the surrounding area (Figure 4). If the fly was virgin, no sperm was observed after crushing
the spermathecae.

2.3. Testing the Protocol

The applicability of the proposed protocol for flies other than those reared from the lab colony
was demonstrated on (1) preserved field collected flies and (2) flies reared from fruit samples.

To determine the mating status of field collected flies, 48 female flies were randomly chosen from
the preserved samples and dissected following the protocol’s steps. The flies were collected from
infested raspberries at three different locations in Wisconsin in 2014 and had been preserved in 70%
ethanol in the laboratory, as described in Pelton et al. [10]. Before the collection, the flies remained
immersed in the yeast-sugar bait within the traps for one week.
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To determine the mating status of flies reared from fruit samples, 50 late stage pupae were
removed from another lab colony (the flies were originally collected near Fennville, MI, USA in 2015)
and placed in individual 1 oz polyethylene containers with lids. The containers with the pupae were
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then placed in a growth chamber under a 16:8 L:D light cycle at 26 ◦C and monitored every day for
the emergence of adults. Newly emerged adults were sexed within 24 h. Then, twenty females were
randomly selected and placed individually in 1 oz containers containing fruit (2–4 g of raspberry).
The females were then randomly arranged in two groups: (1) ten females were isolated into individual
containers (‘virgin’ treatment) and (2) ten females had two males introduced into the containers
(‘mated’ treatment). The lid of each container was perforated with three small holes (1mm); and a
2 cm2 square piece of filter paper (FisherbrandTM P8, purchased from Thermo Fisher Scientific Inc.,
Pittsburgh, PA, USA) was placed underneath the raspberry. A separate set of ten individual cups,
each with 2–4 g of raspberry, was similarly prepared to ensure no prior infestation of raspberries;
no flies were added to those cups. All the cups (with and without flies) were placed for 72 h in the
growth chamber under a 16:8 L:D light cycle, at 23 ◦C. After 72 h, the flies were immobilized using
CO2 and the females were placed into 95% ethanol. After the adults were removed, the raspberries
were checked for the presence of eggs daily for three consecutive days or until the eggs were first
observed. Starting on day 3, the raspberries were checked for the presence of larvae for five days or
until the larvae were first observed.

Each female was then assigned a code, and a blind assessment of the mating status of each
fly was conducted using the developed protocol for isolating the spermathecae (described above).
The numbers of mated and unmated flies were recorded, and the numbers of correct identifications
were concluded by comparing the identification results with the type of the treatment (‘virgin’ and
‘mated’). The Kruskal-Wallis test was then used to determine whether the numbers of correct
identifications differed between the treatments.

3. Results

3.1. Protocol Development

The protocol for isolating the spermathecae and determining fly mating status was developed
using ten presumably virgin and ten mated females. The spermathecae of 17 dissected females were
isolated and were screened under the compound microscope for the presence or absence of sperm.
The spermathecae containing sperm mass (Figures 3 and 4), as well as the spermathecae without
sperm mass (image is not provided), were photographed; these images then served as references for
subsequent testing of the protocol on different fly specimens. Due to considerable sperm length in
drosophilids, the sperm mass was easily distinguishable in the spermathecae [42]. The results showed
that all ten females dissected within two hours after emergence were characterized by the absence of
sperm in both spermathecae, while seven out of ten females collected 24 h after emergence or later
contained sperm. We were not able to determine the presence or absence of sperm in spermathecae
from three other presumably mated females due to our inability to locate the spermathecae on the
slide after covering it with the cover slip or due to overstaining the slide.

3.2. Testing the Protocol

The proposed protocol was successfully applied for about 90% of field collected female flies
(Figure 5 and Table 1). In five out of 48 flies we were unable to determine the female’s mating status due
to dissection and staining issues, i.e., in three flies the spermathecae were ‘lost’ during the dissection
or transferring the slide to the compound microscope; one slide was overstained and the sperm in the
spermathecae was difficult to observe, and the spermathecae on one slide were ‘overcrushed’.

The appearance of the spermathecae in the field collected flies slightly differed from that in the
flies from the lab colony; in most cases, the walls of the spermathecal reservoir were ‘wrinkled’ and
easy to crush, and the sperm was visible in the surrounding tissues even before crushing (Figure 5).

The spermathecae were successfully isolated from 100% of the flies reared from the berries in
the lab (Table 2). The appearance of the spermathecae in mated females was similar to that of the
field collected flies (Figure 5). The larvae were observed in all the vials with the ‘mated’ treatment
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confirming that all the dissected females from these vials were indeed mated. The larvae were not
observed in the vials with ‘virgin’ treatment, as well as in the control vials with raspberry only;
this confirmed that the dissected females from these vials were unmated and that raspberry was not
previously infected.

The mating status was correctly determined for 60% females from the ‘virgin’ treatment and 70%
females from the ‘mated’ treatment; 65% of the total number of flies were correctly identified.

We did not find a significant difference between the numbers of females with correctly determined
mating status in the ‘virgin’ and the ‘mated’ treatments (Kruskal-Wallis test: H = 0.2, df = 1, p > 0.05).
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Table 1. Efficiency of the protocol for determining mating status in different Drosophila suzukii
individuals collected across different locations in Wisconsin in 2014.

Preservation Time (Days)
Mating Status 1

Virgin Mated

565 0 5
572 0 4
575 0 5
579 2 2
579 0 1
582 0 3
589 0 3
590 1 0
593 0 1
603 0 5
603 ? ?
645 1 0
667 0 5
691 0 5

1 Undetermined females are denoted as ‘?’.

Table 2. Efficiency of the protocol for determining the mating status of Drosophila suzukii females reared
in the laboratory from infested raspberries.

Parameters
Mating Status

Total Number of Flies
Virgin Mated

Number of flies per treatment 10 10 20
Number of correctly identified flies 60% 70% 65%

Data comparisons
(Correctly identified virgin vs. mated flies)

Kruskal-Wallis test:
H = 0.2, df = 1, p > 0.05

4. Discussion

Accurately determining the mating status of D. suzukii females is a necessary step in studies
on reproductive biology and seasonal phenology that involve dissecting flies [15]. Considering that
this species is highly invasive [4], the availability of an effective protocol for tissue dissection and
detection of sperm mass in the spermathecae can be essential for understanding D. suzukii biology
and developing effective control strategies. To the best of our knowledge, this is the first attempt to
develop a step-by-step protocol for isolating spermathecae and determining the mating status of the
invasive D. suzukii. We also obtained images of the spermathecae from mated flies, which could be
used as a reference for future studies involving fly tissue dissection and determining a female’s mating
status. In addition, we demonstrated the effectiveness of the developed protocol for both ‘fresh’ fly
individuals reared in the lab and fly specimens collected from the field and preserved in ethanol for
about two years.

The results from the protocol validation using flies reared from raspberry in the lab suggested
that successful determination of a female’s mating status might depend on accurate dissection and
tissue preparation. We were unable to correctly determine the mating status in 35% of females due
to the following: (a) the presence of some other fly tissues and organs on the slide, which often
overlapped with some parts of the spermathecae; (b) a lack of some parts of the isolated spermathecae;
and (c) squashing, overstaining, or overcrushing of the spermathecae. The lack of difference between
the numbers of correctly identified flies from the ‘virgin’ and ‘mated’ treatments also suggests that
careful tissue preparations could be critical and, once it is done accurately, detecting the sperm mass
within the spermathecal reservoir or even spermathecal duct (Figures 3 and 5) could be performed
without issues. Additionally, the dissections for developing this protocol were conducted in water,
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which might explain our issues with tissue preparations. Following other studies that involved tissue
dissections in Drosophila [43,44] we recommend using a standard saline to minimize osmotic damage
to the tissues.

The described protocol has many important applications for studies on D. suzukii and on both
other drosophilids and non-drosophilid flies. For example, considering the seasonal variation in
D. suzukii, which is currently extensively explored [45,46], information about the mating status of
D. suzukii winter morphs would allow us to better understand the reproductive state in which D. suzukii
females can potentially overwinter. Applicability of the protocol for different fly specimens is especially
useful for studies on D. suzukii seasonal phenology when researchers might not be able to process
the fly trap catches right after collecting, or when data from multiple years are analyzed. In addition,
it has been demonstrated on tephritids that sperm presence in the spermathecae can help accurately
differentiate sterile females from fertile ones, especially when other methods such as using fluorescent
dye may fail [39]. Finally, the developed protocol is a relatively quick method for determining a fly’s
mating status; it takes approximately 15–20 min to dissect one fly, isolate the spermathecae, and detect
the presence of the sperm mass.

While developing this protocol, in addition to possible issues with fly dissection (described above),
we identified the following potential difficulties: (1) occasional inability to locate the spermathecae
on a slide due to its shifting during staining; (2) overstaining of the slide; and (3) overcrushing of the
spermathecae. The first two issues can be addressed by extremely gentle staining of the slide with an
aceto-orcein solution and observing the whole process of staining under the dissecting microscope.
To prevent overstaining of the spermathecae, we recommend placing a drop of the stain on the slide
at a 1 mm distance from the water drop; then, using a dissecting needle, the stain can be lightly
mixed with water solution around the spermathecae. To prevent overcrushing of the spermathecae,
we recommend crushing the spermathecae only when the presence of the toroidal mass is not clear
(in most flies dissected in this study the toroidal mass was well distinguishable in an intact spermatheca
even at 25×) or when only one spermatheca was isolated.

It is possible that detecting sperm within a seminal receptacle might also provide an accurate
way to determine a female’s mating status. It can be especially applicable to those Drosophila species
that could primarily use the seminal receptacle to store sperm [19] and rarely rely exclusively on the
spermathecae. This could be addressed in future studies on the reproductive biology of D. suzukii.

Spermathecae play an important role in the reproduction of fly females: sperm storage increases
both female fecundity and fertility while allowing females to save the energy needed for repeated
matings [17,18]. The developed protocol is a helpful tool for detecting the presence of the sperm
mass in the spermathecae, determining the reproductive status of fly females and predicting their
reproductive behavior during a season. Following Revadi et al. [13], by developing this protocol we
would like to stimulate research on the reproductive biology of D. suzukii, which may provide us with
an important tool for the effective control of this highly invasive species.

5. Conclusions

In this study, we developed a protocol for determining a female’s mating status, which can be
used in various studies on D. suzukii reproductive biology. We also demonstrated that this protocol
could be used for both flies reared in lab and field-collected flies, as well as for flies preserved in
ethanol for about two years. The developed protocol might have potential issues, and we provided
suggestions for improving dissection and tissue preparation. Using this protocol will be helpful in
studies on the reproductive biology of D. suzukii and especially in studies exploring the reproductive
winter diapause of this invasive species.
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