24747 measured reflections

 $R_{\rm int} = 0.025$

6019 independent reflections

3731 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[(E)-2-Formyl-1-(4-methylphenyl)ethenyl]-3-(4-methylphenyl)pyrazole-4carbaldehyde

P. Ramesh,^a A. Subbiahpandi,^a Ramaiyan Manikannan,^b S. Muthusubramanian^b and M. N. Ponnuswamy^c*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600.025 India

Correspondence e-mail: mnpsy2004@yahoo.com

Received 20 August 2008; accepted 28 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.055; wR factor = 0.174; data-to-parameter ratio = 26.4.

In the crystal structure of the title compound, $C_{21}H_{18}N_2O_2$, molecules are linked through C-H···O interactions. Two symmetry-related molecules form a cyclic centrosymmetric $R_2^2(20)$ dimer. These dimers are further connected into chains running along the b axis.

Related literature

For related literature, see: Baraldi et al. (1998); Bernstein et al. (1995); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001).

Experimental

Crystal data

C H N C	II. 1500 00 (11) Å3
$C_{21}H_{18}N_2O_2$	$V = 1/22.90 (11) \text{ A}^3$
$M_r = 330.37$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.2914 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 15.3618 (5) Å	T = 293 (2) K
c = 11.0271 (4) Å	$0.30 \times 0.20 \times 0.16 \text{ mm}$
$\beta = 98.778 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.980, \ T_{\max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	228 parameters
$wR(F^2) = 0.174$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.35 \text{ e} \text{ Å}^{-3}$
6019 reflections	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C22 - H22A \cdots O2^{i} \\ C5 - H5 \cdots O1^{ii} \end{array}$	0.96	2.60	3.378 (2)	139
	0.93	2.23	3.1094 (17)	159

Symmetry codes: (i) -x + 3, -y, -z; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

PR thanks Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2774).

References

- Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-66.
- Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.

Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Londershausen, M. (1996). Pestic. Sci. 48, 269-274.
- Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.

Acta Cryst. (2008). E64, o1889 [doi:10.1107/S1600536808027694]

1-[(*E*)-2-Formyl-1-(4-methylphenyl)ethenyl]-3-(4-methylphenyl)pyrazole-4-carbaldehyde

P. Ramesh, A. Subbiahpandi, R. Manikannan, S. Muthusubramanian and M. N. Ponnuswamy

Comment

Pyrazoles and its derivatives have been reported to possess significant antiarrhythmic and sedative (Bruno *et al.*, 1990), hypoglycemic (Cottineau *et al.*, 2002), antiviral (Baraldi *et al.*, 1998), and pesticidal (Londershausen, 1996) activities. Some of their derivatives have also been successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra *et al.*, 1998) and anti-inflammatory (Smith *et al.*, 2001) properties.

The pyrazole ring A and methylphenyl ring C are near-coplanar with the inter-ring dihedral angle of $17.08 (7)^{\circ}$, whereas the pyrazole ring is twisted from the methylphenyl ring B as can be seen from the dihedral angle of 79.70 (8)°. The propenal group assumes an extended conformation which is evidenced from the torsion angle of [N1—C6—C14—C15] -175.47 (12)°.

The crystal structure is stabilized by C—H···O type of intermolecular interactions. Atom C5 at (x, y, z) donates a proton to atom O1 at (3/2 - x, -1/2 + y, 1/2 - z) form a one dimensional C7 chain (Bernstein *et al.* 1995) running along *b* axis. The molecules at positions (x, y, z) and (3 - x, -y, -z) form a cyclic centrosymmetric $R_2^2(20)$ dimer through C22—H22A···O2 hydrogen bonds.

Experimental

A mixture of 1-(4-methylphenyl)-1-ethanone N-[(E)-1-phenylethylidene] hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in an ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was rectystalized in dichloromethane to obtain 3-(4-methylphenyl)-1-[(E)-1-(4-methylphenyl) -3-oxo-1-propenyl]-1H-pyrazole-4-carbaldehyde in 57% yield.

Refinement

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H $1.2U_{eq}(C)$ for other H atoms. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1. Perspective view of the molecules showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small circles of arbitrary radii.

Fig. 2. Perspective view of the crystal packing showing hydrogen-bond interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

1-[(*E*)-2-Formyl-1-(4-methylphenyl)ethenyl]-3-(4-methylphenyl)pyrazole- 4-carbaldehyde

Crystal data

$C_{21}H_{18}N_2O_2$	$F_{000} = 696$
$M_r = 330.37$	$D_{\rm x} = 1.274 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4580 reflections
a = 10.2914 (4) Å	$\theta = 2.3 - 32.2^{\circ}$
<i>b</i> = 15.3618 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 11.0271 (4) Å	T = 293 (2) K
$\beta = 98.7780 \ (10)^{\circ}$	Block, colorless
$V = 1722.90 (11) \text{ Å}^3$	$0.30 \times 0.20 \times 0.16 \text{ mm}$
Z = 4	

Data collection

Bruker APEX2 CCD area-detector diffractometer	6019 independent reflections
Radiation source: fine-focus sealed tube	3731 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 293(2) K	$\theta_{\text{max}} = 32.3^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -9 \rightarrow 15$
$T_{\min} = 0.980, \ T_{\max} = 0.987$	$k = -22 \rightarrow 19$
24747 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.174$	$w = 1/[\sigma^2(F_o^2) + (0.0833P)^2 + 0.2417P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.037$
6019 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
228 parameters	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.65358 (11)	0.31462 (7)	0.28639 (13)	0.0678 (3)
O2	1.23915 (18)	-0.09914 (9)	0.0928 (2)	0.1340 (9)
N1	0.93785 (9)	0.08384 (7)	0.22048 (10)	0.0378 (2)
N2	1.03155 (10)	0.13820 (7)	0.18711 (10)	0.0395 (2)
C3	1.12006 (11)	0.08674 (8)	0.14811 (11)	0.0367 (3)
C4	1.08139 (12)	-0.00258 (8)	0.15437 (12)	0.0413 (3)
C5	0.96509 (12)	-0.00004 (8)	0.20099 (12)	0.0401 (3)
H5	0.9144	-0.0478	0.2163	0.048*
C6	0.82656 (11)	0.11747 (8)	0.26494 (11)	0.0367 (3)
C7	0.75369 (11)	0.05214 (8)	0.32683 (12)	0.0381 (3)
C8	0.80708 (14)	0.01954 (10)	0.44021 (14)	0.0509 (3)
H8	0.8884	0.0396	0.4784	0.061*
C9	0.74082 (17)	-0.04269 (11)	0.49748 (15)	0.0593 (4)
H9	0.7777	-0.0632	0.5744	0.071*
C10	0.62160 (17)	-0.07477 (10)	0.44295 (16)	0.0594 (4)
C11	0.56858 (16)	-0.04197 (12)	0.33110 (18)	0.0648 (5)
H11	0.4876	-0.0627	0.2931	0.078*
C12	0.63277 (14)	0.02175 (11)	0.27265 (14)	0.0527 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12	0.5940	0.0437	0.1971	0.063*
C13	0.5526 (2)	-0.14496 (13)	0.5044 (2)	0.0956 (8)
H13A	0.4601	-0.1432	0.4741	0.143*
H13B	0.5667	-0.1356	0.5915	0.143*
H13C	0.5872	-0.2008	0.4867	0.143*
C14	0.79599 (12)	0.20179 (9)	0.25103 (13)	0.0438 (3)
H14	0.8454	0.2369	0.2066	0.053*
C15	0.68876 (13)	0.24017 (10)	0.30271 (14)	0.0487 (3)
H15	0.6441	0.2053	0.3516	0.058*
C16	1.23610 (11)	0.12790 (9)	0.10905 (12)	0.0386 (3)
C17	1.26700 (13)	0.21329 (10)	0.14214 (14)	0.0497 (3)
H17	1.2159	0.2431	0.1911	0.060*
C18	1.37242 (14)	0.25480 (10)	0.10352 (15)	0.0527 (4)
H18	1.3910	0.3122	0.1268	0.063*
C19	1.45103 (12)	0.21259 (10)	0.03075 (13)	0.0454 (3)
C20	1.42132 (13)	0.12763 (10)	-0.00071 (14)	0.0503 (3)
H20	1.4736	0.0978	-0.0486	0.060*
C21	1.31552 (13)	0.08512 (10)	0.03692 (13)	0.0475 (3)
H21	1.2976	0.0276	0.0137	0.057*
C22	1.56456 (14)	0.25876 (12)	-0.01291 (16)	0.0582 (4)
H22A	1.6425	0.2240	0.0057	0.087*
H22B	1.5783	0.3140	0.0277	0.087*
H22C	1.5451	0.2677	-0.1000	0.087*
C23	1.13601 (18)	-0.08585 (10)	0.12661 (19)	0.0684 (5)
H23	1.0849	-0.1346	0.1362	0.082*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0641 (7)	0.0420 (7)	0.0968 (9)	0.0162 (5)	0.0110 (6)	-0.0076 (6)
O2	0.1215 (13)	0.0506 (8)	0.263 (2)	0.0205 (8)	0.1355 (15)	0.0071 (11)
N1	0.0371 (5)	0.0308 (5)	0.0488 (6)	0.0001 (4)	0.0169 (4)	0.0010 (4)
N2	0.0387 (5)	0.0325 (6)	0.0508 (6)	-0.0020 (4)	0.0180 (4)	0.0002 (4)
C3	0.0366 (5)	0.0355 (7)	0.0399 (6)	0.0009 (4)	0.0117 (4)	0.0008 (5)
C4	0.0424 (6)	0.0353 (7)	0.0493 (7)	0.0019 (5)	0.0171 (5)	-0.0013 (5)
C5	0.0433 (6)	0.0298 (6)	0.0502 (7)	-0.0006 (5)	0.0167 (5)	-0.0007 (5)
C6	0.0337 (5)	0.0343 (6)	0.0442 (6)	0.0010 (4)	0.0129 (5)	0.0013 (5)
C7	0.0373 (5)	0.0332 (6)	0.0470 (7)	0.0008 (4)	0.0166 (5)	0.0000 (5)
C8	0.0489 (7)	0.0486 (8)	0.0561 (8)	0.0020 (6)	0.0110 (6)	0.0086 (6)
C9	0.0766 (10)	0.0492 (9)	0.0572 (9)	0.0087 (8)	0.0266 (8)	0.0136 (7)
C10	0.0757 (10)	0.0409 (8)	0.0730 (11)	-0.0059 (7)	0.0476 (8)	-0.0042 (7)
C11	0.0556 (8)	0.0655 (11)	0.0784 (12)	-0.0242 (8)	0.0266 (8)	-0.0120 (9)
C12	0.0471 (7)	0.0578 (9)	0.0545 (8)	-0.0103 (6)	0.0115 (6)	0.0000 (7)
C13	0.1297 (19)	0.0620 (12)	0.1154 (18)	-0.0239 (12)	0.0837 (15)	-0.0010 (11)
C14	0.0411 (6)	0.0357 (7)	0.0578 (8)	0.0027 (5)	0.0176 (6)	0.0040 (6)
C15	0.0424 (6)	0.0409 (8)	0.0647 (9)	0.0053 (5)	0.0145 (6)	-0.0028 (6)
C16	0.0360 (5)	0.0412 (7)	0.0404 (6)	-0.0007 (5)	0.0113 (5)	0.0016 (5)
C17	0.0474 (7)	0.0471 (8)	0.0599 (9)	-0.0060 (6)	0.0247 (6)	-0.0076 (6)

C18	0.0500 (7)	0.0461 (8)	0.0661 (9)		-0.0105 (6)	0.0221 (7)	-0.0054 (7)	
C19	0.0356 (6)	0.0564 (9)	0.0455 (7)		-0.0020 (5)	0.0102 (5)	0.0086 (6)	
C20	0.0445 (7)	0.0573 (9)	0.0537 (8)		0.0025 (6)	0.0216 (6)	-0.0006 (6)	
C21	0.0459 (7)	0.0447 (8)	0.0556 (8)		-0.0015 (5)	0.0198 (6)	-0.0052 (6)	
C22	0.0425 (7)	0.0709 (11)	0.0644 (9)		-0.0070 (7)	0.0180 (6)	0.0116 (8)	
C23	0.0755 (11)	0.0359 (8)	0.1052 (14	+)	0.0070 (7)	0.0502 (10)	0.0005 (8)	
Geometric paran	neters (Å, °)							
O1—C15		1.2048 (17)	(С12—Н1	2		0.9300	
O2—C23		1.1949 (19)	(С13—Н1	3A		0.9600	
N1—C5		1.3429 (16)	(С13—Н1	3B		0.9600	
N1—N2		1.3679 (13)	(С13—Н1	3C		0.9600	
N1—C6		1.4108 (14)	(C14—C1	5		1.4429 (17)	
N2—C3		1.3263 (15)	(С14—Н1	4		0.9300	
C3—C4		1.4332 (18)	(С15—Н1	5		0.9300	
C3—C16		1.4726 (16)	(C16—C1	7		1.386 (2)	
C4—C5		1.3734 (16)	(C16—C2	1		1.3896 (17)	
C4—C23		1.449 (2)	(C17—C1	8		1.3806 (18)	
C5—H5		0.9300	(С17—Н1	7		0.9300	
C6—C14		1.3364 (18)	(C18—C1	9		1.384 (2)	
C6—C7		1.4804 (16)	(С18—Н1	8		0.9300	
C7—C12		1.3771 (19)	(C19—C2	0		1.373 (2)	
С7—С8		1.3807 (19)	(C19—C2	2		1.5072 (17)	
C8—C9		1.382 (2)	(C20—C2	1		1.3864 (18)	
C8—H8		0.9300	(С20—Н2	0		0.9300	
C9—C10		1.373 (3)	(С21—Н2	1		0.9300	
С9—Н9		0.9300	(С22—Н2	2A		0.9600	
C10—C11		1.367 (3)	(С22—Н2	2B		0.9600	
C10—C13		1.507 (2)	(222—Н2	2C		0.9600	
C11—C12		1.393 (2)	(223—Н2	.3		0.9300	
C11—H11		0.9300						
C5—N1—N2		111.71 (9)	(C10—C1	3—H13C		109.5	
C5—N1—C6		127.40 (10)	H	H13A—C	C13—H13C		109.5	
N2—N1—C6		120.86 (10)	H	Н13В—С	C13—H13C		109.5	
C3—N2—N1		105.69 (10)	(C6—C14	—C15		122.12 (12)	
N2—C3—C4		110.22 (10)	(C6—C14	—H14		118.9	
N2—C3—C16		117.81 (11)	(C15—C1	4—H14		118.9	
C4—C3—C16		131.96 (11)	(D1—C15	—C14		124.02 (14)	
C5—C4—C3		104.78 (11)	(D1—C15	—Н15		118.0	
C5—C4—C23		119.51 (13)	(C14—C1	5—H15		118.0	
C3—C4—C23		135.70 (12)	(C17—C1	6—C21		117.85 (11)	
N1—C5—C4		107.59 (11)	(C17—C1	6—C3		119.56 (11)	
N1—C5—H5		126.2	(C1—C1	6—C3		122.58 (12)	
C4—C5—H5		126.2	(C18—C1	7—C16		121.04 (12)	
C14—C6—N1		120.30 (11)	(C18—C1	7—H17		119.5	
C14—C6—C7		125.66 (10)	(C16—C1	7—H17		119.5	
N1—C6—C7		114.03 (10)	(C17—C1	8—C19		121.24 (14)	
C12—C7—C8		118.58 (12)	(C17—C1	8—H18		119.4	

<i>Hydrogen-bond geometry (A, °)</i>			
II 1 1 1 (² C)			
C8—C9—C10—C13	177.79 (15)		
C8—C9—C10—C11	-1.4 (2)	C3—C4—C23—O2	3.3 (4)
C7—C8—C9—C10	1.0 (2)	C5—C4—C23—O2	-175.2 (2)
C6—C7—C8—C9	-178.73 (13)	C3—C16—C21—C20	177.95 (12)
C12—C7—C8—C9	0.5 (2)	C17—C16—C21—C20	-0.5 (2)
N1—C6—C7—C8	71.12 (15)	C19—C20—C21—C16	-0.4 (2)
C14—C6—C7—C8	-107.93 (16)	C22—C19—C20—C21	-178.68 (13)
N1—C6—C7—C12	-108.04 (14)	C18—C19—C20—C21	0.9 (2)
C14—C6—C7—C12	72.91 (19)	C17—C18—C19—C22	178.93 (14)
N2—N1—C6—C7	-164.79 (11)	C17—C18—C19—C20	-0.7 (2)
C5—N1—C6—C7	17.72 (18)	C16—C17—C18—C19	-0.2 (2)
N2—N1—C6—C14	14.31 (18)	C3—C16—C17—C18	-177.75 (13)
C5—N1—C6—C14	-163.17 (14)	C21—C16—C17—C18	0.7 (2)
C23—C4—C5—N1	178.89 (14)	C4—C3—C16—C21	18.7 (2)
C3—C4—C5—N1	-0.02 (15)	N2-C3-C16-C21	-162.11 (13)
C6—N1—C5—C4	178.37 (12)	C4—C3—C16—C17	-162.88 (14)
N2—N1—C5—C4	0.69 (15)	N2-C3-C16-C17	16.27 (18)
C16—C3—C4—C23	-0.1 (3)	C6-C14-C15-O1	-175.65 (15)
N2—C3—C4—C23	-179.31 (18)	C7—C6—C14—C15	3.5 (2)
C16—C3—C4—C5	178.52 (13)	N1-C6-C14-C15	-175.47 (12)
N2—C3—C4—C5	-0.68 (15)	C10—C11—C12—C7	1.0 (3)
N1—N2—C3—C16	-178.26 (10)	C6—C7—C12—C11	177.74 (13)
N1—N2—C3—C4	1.07 (14)	C8—C7—C12—C11	-1.4 (2)
C6—N1—N2—C3	-178.96 (11)	C13—C10—C11—C12	-178.80 (16)
C5—N1—N2—C3	-1.10 (14)	C9—C10—C11—C12	0.4 (2)
H13A—C13—H13B	109.5		
U10	109.5	C4—C23—H23	116.3
C10—C13—H13A	109.5	02—C23—H23	116.3
C11—C12—H12	120.1	02-023-02	127.49 (16)
C/—C12—H12	120.1	H22B—C22—H22C	109.5
C/C12C11	119.90 (15)	H22A—C22—H22C	109.5
C12—C11—H11	119.2	C19—C22—H22C	109.5
C10—C11—H11	119.2	H22A—C22—H22B	109.5
C10—C11—C12	121.64 (15)	C19—C22—H22B	109.5
C9—C10—C13	120.70 (19)	C19—C22—H22A	109.5
C11 - C10 - C13	121.26 (18)	C16—C21—H21	119.8
CII—CI0—C9	118.04 (14)	C20—C21—H21	119.8
C8—C9—H9	119.4	C_{20} C_{21} C_{16}	120.39 (14)
C10—C9—H9	119.4	C21—C20—H20	119.1
C10-C9-C8	121.24 (15)	C19—C20—H20	119.1
С9—С8—Н8	119.7	C19—C20—C21	121.80 (12)
С7—С8—Н8	119.7	C18—C19—C22	120.99 (14)
C7—C8—C9	120.59 (14)	C20—C19—C22	121.35 (13)
C8—C7—C6	120.25 (11)	C20—C19—C18	117.67 (12)
C12—C7—C6	121.17 (12)	C19—C18—H18	119.4

C22—H22A····O2 ⁱ	0.96	2.60	3.378 (2)	139	
C5—H5···O1 ⁱⁱ	0.93	2.23	3.1094 (17)	159	
Symmetry codes: (i) $-x+3$, $-y$, $-z$; (ii) $-x+3/2$, $y-1/2$, $-z+1/2$.					

Fig. 1

Fig. 2

