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The number of older drivers is steadily increasing, and advancing age is associated with a

high rate of automobile crashes and fatalities. This can be attributed to a combination of

factors including decline in sensory, motor, and cognitive functions due to natural aging

or neurodegenerative diseases such as HIV-Associated Neurocognitive Disorder (HAND).

Current clinical assessment methods only modestly predict impaired driving. Thus, there

is a need for inexpensive and scalable tools to predict on-road driving performance.

In this study EEG was acquired from 39 HIV+ patients and 63 healthy participants

(HP) during: 3-Choice-Vigilance Task (3CVT), a 30-min driving simulator session, and

a 12-mile on-road driving evaluation. Based on driving performance, a designation of

Good/Poor (simulator) and Safe/Unsafe (on-road drive) was assigned to each participant.

Event-related potentials (ERPs) obtained during 3CVT showed increased amplitude of

the P200 component was associated with bad driving performance both during the

on-road and simulated drive. This P200 effect was consistent across the HP and

HIV+ groups, particularly over the left frontal-central region. Decreased amplitude of the

late positive potential (LPP) during 3CVT, particularly over the left frontal regions, was

associated with bad driving performance in the simulator. These EEG ERP metrics were

shown to be associated with driving performance across participants independent of HIV

status. During the on-road evaluation, Unsafe drivers exhibited higher EEG alpha power

compared to Safe drivers. The results of this study are 2-fold. First, they demonstrate that

high-quality EEG can be inexpensively and easily acquired during simulated and on-road

driving assessments. Secondly, EEG metrics acquired during a sustained attention task

(3CVT) are associated with driving performance, and these metrics could potentially be

used to assess whether an individual has the cognitive skills necessary for safe driving.

Keywords: EEG, event related potentials, sustained attention, driving, HIV, neurodegeneration, driving impairment

test, on-road evaluation

INTRODUCTION

Driving is an essential aspect of maintaining health, independence and quality of life as individuals
age (Ball et al., 1998). Those who voluntarily avoid driving due to perceived age-related sensory
or cognitive deficits often suffer substantial consequences such as decreased mobility, increased
dependency, social isolation, depression, and higher incidence of nursing home placement
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(Marottoli et al., 1997, 2000; Fonda et al., 2001; Ragland et al.,
2005; Freeman et al., 2006; Czigler et al., 2008; Choi et al.,
2013). Driving requires a myriad of cognitive functions including
attention, visuospatial processing, psychomotor integration,
adequate processing speed, and executive function (Kellison,
2009). Normal aging, in the absence of any neurological or
psychiatric disease, can lead to declines in these cognitive abilities
increasing the risk for an automobile collision (Brayne et al.,
2000; Ball, 2009). However, the aging process and its effects
on driving performance vary significantly between individuals
(Ball, 2009). It has been suggested that specific age-related
functional impairments, and not age itself, put one at risk for
impaired driving (Ross et al., 2009). Overall, older drivers as
a group incur the highest number of fatalities per mile driven
compared to other age groups (although the physical frailty
of older individuals contributes significantly to this mortality
rate) (Tefft, 2017). In addition to normal aging, functional
deficits associated with neurodegenerative diseases (NDDs) such
as Alzheimer’s (AD), Mild Cognitive Impairment (MCI), or
HIV-associated neurocognitive disorders (HAND) may affect
driving performance. While NDD patients are more likely to
be at-risk drivers, research suggests that memory deficits alone
may not necessarily lead to unsafe driving (Carr et al., 1998;
Marcotte et al., 1999, 2004; Silverstein et al., 2002; Charlton et al.,
2003; Duchek et al., 2003; Uc et al., 2004, 2005; Man-Son-Hing
et al., 2007; Frittelli et al., 2009; Wadley et al., 2009; Kawano
et al., 2012). Cognitive impairments that affect driving, such as
visuospatial processing deficits often found in patients with MCI
or HAND, may be subclinical and unobserved by the patient
themselves or their friends and family (Cysique et al., 2009; Chiao
et al., 2013). Therefore, driving impairment cannot be established
using only age and/or a NDD diagnosis.

In the United States, legal requirements for elderly drivers
vary greatly from state to state. Some states have no safety-
related policies for older drivers, whereas other states may have
limited requirements for elderly individuals. For example, license
renewal in California for those over the age of 70 may require a
vision and/or written test, and in rare cases an on-road evaluation
is administered (Department of Motor Vehicles, 2018a). Other
states like Connecticut and Delaware have no age-related safety
policies in place. Driver’s licenses in these states need to be
renewed every 6–8 years for all drivers regardless of age, often
with no functional assessment required (Department of Motor
Vehicles, 2018b,c).

Physicians have a responsibility to identify patients of all ages
that might be considered at-risk drivers. However, they are often
reluctant to take action due to privacy concerns and/or the severe
impact their intervention could have on the patient’s quality of
life that results from the loss of a driver’s license. Currently,
there is no definitive diagnostic test for physicians to administer
that identifies at-risk drivers, but individuals deemed potentially
high risk may be referred for neuropsychological testing. The
relationships between on-road driving performance and standard
neuropsychological tests are modest, particularly in patients
with mild to moderate cognitive decline or those recovering
from trauma, surgery or treatments such as chemotherapy
(Withaar et al., 2000; Reger et al., 2004; Leproust et al., 2008;

Classen et al., 2009). The most reliable method of evaluating
driving impairment is an on-road test with a DMV-certified
driving examiner, but annual on-road driving evaluations for all
seniors, or even just those with clinically diagnosed cognitive
impairments, are neither practical nor economical (Schanke and
Sundet, 2000; Kay et al., 2008; Versijpt et al., 2017). Therefore,
there is a need for inexpensive and sensitive tests to predict
on-road driving impairment.

This study investigated the use of simultaneous
electroencephalogram (EEG) and electrocardiogram (ECG)
measurement in a population of healthy participants and HIV+
patients (>55 years old) during a test of sustained attention
and processing speed. The combination of EEG, ECG, and
behavioral performance metrics derived from the 3CVT were
previously proven highly sensitive and specific in quantifying
daytime drowsiness associated either with sleep deprivation in
healthy participants or in sleep disordered patients, predicting
susceptibility to sleep deprivation, and assessing neurocognitive
deficits in patients with Parkinson’s disease (PD), AD, MCI,
and sleep disorders (Westbrook et al., 2002; Berka et al., 2006,
2007, 2009; Pojman et al., 2009a,b; Johnson et al., 2010, 2011;
Waninger et al., 2018). The 3CVT evaluates sustained attention,
visuospatial processing speed, and decision-making. These
cognitive abilities are relevant to driving performance and prior
work suggests that EEG metrics obtained during 3CVT were
sensitive to improvements in cognition as a result of successful
interventions for both sleep deprivation and sleep disorders
(Westbrook et al., 2002; Berka et al., 2006, 2007, 2009; Pojman
et al., 2009a,b; Johnson et al., 2010, 2011; Stoiljkovic et al.,
2018). In addition to 3CVT, EEG and ECG were also acquired
during both a simulated driving scenario and an on-road
driving evaluation to conduct an exploratory analysis to assess
any potential real-time neurophysiological changes associated
with driving performance. Specifically, differences in the early
(P200) and late (LPP) components evoked by the 3CVT have
been associated with differences in cognitive abilities such as
selective attention, memory, and decision-making. Since the
3CVT EEG metrics were previously shown to be associated with
neurocognitive deficits in cognitively impaired populations, the
investigators hypothesized that these metrics could be useful in
distinguishing Safe and Unsafe drivers.

Physiological (heart rate, heart rate variability, skin
conductance, and respiration) and neurophysiological (EEG)
measures have long been used to unobtrusively assess the
psychophysiological correlates of driving performance during
simulated and on-road driving. Characteristic changes in EEG
Power Spectral Densities (PSDs) have been associated with
real-time changes in driving performance, phasic task demands,
multiple domains of workload, and drowsiness (Zwinkels
et al., 1990; de Waard and Brookhuis, 1991; Brookhuis and
de Waard, 1993; Rookhuis et al., 1993; Mitler et al., 1997;
Lei and Roetting, 2011; Dijksterhuis et al., 2013). Similarly,
heart rate and heart rate variability have proven useful in
measuring dynamic changes in cognitive demand during driving
(Brookhuis et al., 1991; Mulder, 2004; Mehler et al., 2009,
2012). Several recent reports suggest the potential utility of
real-time EEG-based algorithms to detect driver drowsiness

Frontiers in Human Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 532

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rupp et al. EEG Metrics Predict On-Road Driving

and inattention. Continuous monitoring of EEG and heart rate
data during driving provides excellent temporal resolution and
offers the potential for identifying driver fatigue early enough
to intervene and prevent sleep onset. Several recent reports
suggest the potential utility of real-time EEG-based algorithms to
detect driver drowsiness and inattention (Ajinoroozi et al., 2016;
Perrier et al., 2016; Hajinoroozi et al., 2017). Several challenges
remain for the implementation of integrated driver monitoring
systems including: obtaining high quality EEG and ECG with
unobtrusive sensor systems, validating and implementing
the real-time algorithms to achieve accurate identification of
fatigue or inattention, and determining the optimal approach
to interventions during driving (Dong et al., 2010). Another
important consideration is the generalizability of the algorithms
across all age groups, as the majority of published results use
algorithms that have been designed and tested on college age
research participants. These EEG-based algorithms are used to
monitor real-time changes during driving. To date, EEG metrics
have not been used to predict driving performance in elderly
individuals with or without cognitive impairment.

As normal aging is associated with changes in cognitive
abilities related to driving, normal aging also affects EEG signals.
Older individuals show a decrease in power in the alpha
band (8–13Hz) and decreased amplitude of ERP components,
particularly the P300 and Late Positive Potential (LPP) (De
Gennaro et al., 2005; Polich and Corey-Bloom, 2005; Olichney
et al., 2008; Vecchio et al., 2013; López et al., 2014; Ishii et al.,
2017). Older drivers are also more likely to exhibit EEG based
signs of fatigue and distraction that increase risks of driving
errors (Johansson, 1997). In patients diagnosed with Alzheimer’s
disease, the most commonly reported findings for resting-state
EEG are: a shift of the power spectrum to slower frequencies (i.e.,
increased delta and theta specifically over the temporal-parietal
regions; decreased alpha, beta, and gamma) (Bonanni et al.,
2008; Jelic and Kowalski, 2009; Dauwels et al., 2010a,b; Tsolaki
et al., 2014). Patients with AD also display prolonged latencies
and diminished ERP amplitudes and these cognitive-evoked
measures do tend to correlate better with severity of cognitive
impairments (Polich and Corey-Bloom, 2005; Garn et al., 2014).
The EEG power shifts and ERP differences in AD are primarily
associated with memory related functions. Additionally, patients
with HIV (with a subset of those potentially having HAND)
exhibited decreased amplitude and increased latency of the P300
and the Late Positive Potential (LPP) components compared to
healthy controls (Polich et al., 2000; Polich and Basho, 2002;
Chao et al., 2004; Bauer, 2011; Olichney et al., 2011; Papaliagkas
et al., 2011). To date, these studies have not directly examined
the relationship between EEG metrics associated with aging or
cognitive impairment and driving competencies.

This paper contributes to the field by: (1) establishing
the link between neurophysiological measures obtained during
computerized neurocognitive assessments and on-road driving
performance, (2) evaluating older adults (>55 years old)
and individuals with a condition that can lead to cognitive
impairment (HIV+). As such, this research offers the potential
to provide a standardized methodology for predicting driving
impairment due to disease related causes or natural aging.

MATERIALS AND METHODS

Participants
Sixty-three healthy participants (HP) (age 55–87 years,
mean = 65 ± 8.2 years, 49.2% male) and 39 HIV+ patients (age
55–74 years, mean = 61 ± 4.7 years, 87.1% male) were enrolled
in the study. The groups did not differ in years of education
(HIV+: 9–20 years of education, mean = 15.5 ± 2.9; HP: 10–21
years of education, mean = 15.6 ± 2.7). HIV+ patients were
primarily recruited from the University of California, San Diego
HIV Neurobehavioral Research Program (UCSD HNRP) and
healthy participants from the surrounding San Diego community
using flyers and handouts.

Participants were selected after an initial telephone screening
to determine their eligibility including the capability to provide
informed consent to cognitive testing, simulator testing, and an
on-road driving evaluation. Participants were included only if
they possessed a current driver’s license which was confirmed by
the California Department of Motor Vehicles (CA DMV) on the
day of their visit.

Additional exclusion criteria were: a history of loss of
consciousness >30min, current substance dependence,
psychosis, diagnosis of a cardiovascular, sleep, or pulmonary
disorder, and central nervous system opportunistic infections or
neurologic disease other than HIV infection, reported diagnoses
of Attention Deficit Hyperactivity Disorder (ADHD) or anxiety
related disorders. All HIV+ individuals were on anti-retroviral
therapy to control viral load, and healthy participants were
excluded for all medication except for over the counter drugs
and drugs for hypertension, diabetes, arthritis (non-opioid pain
medication), and mild to moderate depression. The HIV+
populations used for this study were taking the following
medications: 15 on antidepressants, eight on benzodiazepines,
two on antipsychotics, three on anxiolytics, three on narcotics,
and one on an anticoagulant. Urine toxicology (7-panel) and
breathalyzer evaluations were also collected from all participants
prior to starting the study visit. If either test was positive or the
participant acted in a manner suggesting intoxication, he/she
was rescheduled, or withdrawn from the study.

Three participants who signed informed consent forms and
began the study protocol were excluded from all analyses due to
a positive urine test for methamphetamine, and one additional
participant was excluded due to being severely cognitively
impaired despite a negative HIV status. Protocols were approved
by both the UCSD IRB and Sharp IRB (IRBANA).

Procedures
All participants completed neuropsychological (NP) testing and
Advanced Brain Monitoring’s (ABM) 3-Choice Vigilance Task
(3CVT) as well as driving simulations (a screening drive, and
subsequent challenge drive). A subset of the participants from
the HIV+ (N=20) and HP (N=30) groups also completed
an on-road driving evaluation (see below). EEG was collected
concurrently using ABM’s STATTM X10 EEG sensor headset
during all three tasks: 3CVT, simulated driving, and the on-road
driving evaluation. The X10 is a battery-powered, lightweight,
easy-to-apply wireless EEG system that acquires 9 channels
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of EEG (Fz, F3, F4, Cz, C3, C4, P3, P4, POz, referenced to
linked mastoids), and ECG. It uses passive, Ag/AgCl electrodes
printed on PET strip flex circuit cables. A piece of single-
use foam filled with conductive cream (Synapse by Kustomer
Kinetics) was attached to the strip over each electrode site
in order to make contact with the scalp. Impedances were
measured and all channels were considered acceptable at or
below 40 kOhms. Amplification and the A/D conversion was
done adjacent to the electrode sites, allowing for high-quality
data to be collected with higher than traditional impedance
cut-offs. Data were sampled at 256Hz with a high band pass
at 0.1Hz and a low band pass, fifth order filter, at 100Hz
obtained digitally with sigma-delta 16-bit A/D converters. Data
were transmitted wirelessly via Bluetooth to a host computer,
where acquisition software then stored the psychophysiological
data.

Cognitive and Medical Assessment
Cognitive status was successfully obtained through NP testing for
85 of the 102 participants (29 HIV+ and 56 HP), determined
using either the HNRP NP assessment battery (56% of cohort)
or the NIH Toolbox Cognition module (44% of cohort) (Berka
and Marcotte, 2017). For this subset of participants, 34% of the
HIV+ group was classified as impaired and 27% of the healthy
participants were classified as impaired based on the NP testing,
meaning there were no group differences in cognitive status due
to HIV status. Impairment was defined for the toolbox as a T
score of <40 on two of the tests, and for the NP assessment as
a global deficit score of <0.5. For all participants, HIV status was
confirmed through a finger stick blood test.

3CVT and EEG Measures
All participants were administered 3CVT, with concurrent
EEG recording to assess neurocognitive functions. The 3CVT
incorporates features of the most commonmeasures of sustained
attention, such as the Continuous Performance Test, Wilkinson
Reaction Time, and the PVT-192 (Riccio et al., 2001; Sateia,
2003). The 3CVT requires subjects to discriminate one primary
Target (triangle shapeN, 70% of trials) fromNon-Target (triangle
shape upside down H, 15% of trials). The remaining 15% of the
trials were used as Distracters (presenting a diamond shape: �)
to increase the task complexity but are not included in the final
Event Related Potential analysis. The test is 20-min long, during
which 376 images are presented for a duration of 0.2 s each. A
training period is provided prior to the start to minimize practice
effects (Levendowski et al., 2000, 2001). The 3CVT challenges the
participant’s ability to sustain attention by increasing the inter-
stimulus interval (ISI) across four, 5-min quartiles. During the
first quartile, the ISI ranges between 1.5 and 3 s, increasing up to
6 s during the second quartile, and up to 10 s during the third and
fourth quartiles.

ERP Measures
For the 3CVT task, raw EEG signals were filtered between 0.1
and 50Hz using a Hamming windowed Sinc FIR filter (0.1Hz
transition band). For each event type, EEG data were epoched
from 1 s before and 2 s after the stimulus onset. The baseline

was adjusted using data from 100ms before the stimulus onset.
Artifacted epochs were detected and excluded using automated
algorithms (EEGLAB software) (Delorme and Makeig, 2004).
Outliers were detected based on kurtosis of signal distribution
(kurtosis >5 standard deviation), joint probability of values in
an epoch given the whole data set (thresholded at 5 standard
deviation), and unusual spectral patterns of epochs (with power
spectrum 35 dB higher or lower than the baseline in the frequency
range of 20–30Hz). To exclude trials contaminated by ocular
artifacts, trials were rejected if the absolute value of the EEG
amplitude in any channel exceeded 100 microvolts during a
window of 50ms pre-stimulus onset to 750ms post-stimulus
onset. A minimum of 15 clean trials for each of the stimulus
subtypes in 3CVT (Target and Non-Target) were required to be
included in the analysis of that subtype. Grand average ERPs in
each condition and trial type were calculated using a weighted
average with the number of ERPs in each condition as the
weights. For each participant, ERPs were measured using the
average of the signal during a window of 180–220ms post-
stimulus onset for the P200 component, and the late positive
potential (LPP) was measured using the average of the signal
during a window 300–700ms post-stimulus onset.

Simulated Driving
Participants completed two simulated driving scenarios: an initial
screening and a challenge. Seventy-eight percent of eligible
participants were able to complete both scenarios. The remaining
22% were unable to complete both scenarios, primarily due to
mild to severe motion sickness. To mitigate motion sickness,
the driving scenario was split into three sessions with breaks in
between. A STISIMM300WS Console driving simulator (System
Technology Inc., Hawthorne, CA, USA) was used for both sets of
driving simulations (Figure 1). The screening drive is a practice
session of approximately 15min given in order to familiarize
participants with the driving simulator. Following the Screening
Drive, participants began the Challenge Drive, which is a longer
(3, 10-min segments, 30min total), more complex drive assessing
a range of abilities. Participants were instructed to complete the
Challenge Drive while following traffic laws. The Challenge Drive
was designed to be a surrogate for measuring on-road driving
performance.

The Challenge Drive consisted of monotonous, uneventful,
and low-load driving scenarios as well as highly demanding
events such as busy intersections, crash avoidance, and
unprotected turns. Busy sections were interspersed throughout
the simulation run and lasted for 4–5min. For example, one
complex segment required the driver to avoid and pass slow
moving cars while driving through dense fog. Once the fog lifted,
the driver entered a city scene where a van was parked in the left
lane and two pedestrians suddenly stepped into the road from in
between two parked cars. Other highly engaging events included
passing through a narrow construction zone with many barriers,
avoiding cars suddenly entering the roadway, making left turns in
front of oncoming traffic, passing slow moving trucks on a two-
lane highway with oncoming traffic, and avoiding pedestrians
stepping into the roadway without warning. The non-challenging
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FIGURE 1 | STISIM M300WS console with participant (written informed

consent obtained).

sections consisted of stretches of highway where no other cars
were present and no challenging events were triggered.

The Challenge Drive also contained a divided attention task
called the Surrogate Reference Task (SuRT), aimed at examining
distracted driving. The SuRT was initiated by an auditory cue
(phone ringing) and required the participant to look down and
to their right, forcing them to take their eyes entirely off the
roadway to perform this secondary task, much like using a GPS
or infotainment system. Participants were required to identify a
circle that was different in size from other circles on the screen
of a tablet (Figure 2). The easy, medium, and hard trials of this
task were differentiated by the difference in size between the
target and distractor circles. The target circle radii remained
20.7mm for all three trials, while the distractor circle radii
increased from 10.4 to 13.8 to 17.4mm. Throughout this task, the
simulation consisted of a two lane freeway without turns, a speed
limit of 65 MPH, and no cars in either direction. Outcomes of
interest included swerving [standard deviation of lateral position
(SDLP)], speed maintenance (including variability) as well as
accuracy and reaction time on the secondary task.

On-Road Driving Evaluation
A subset of 50 participants (age 55–79 years, mean = 62 ±

6.6, 66% male, 40% HIV+) who completed the neurocognitive
testbed and the driving simulator were selected to complete
the on-road drive. Only 50 were selected due to time and
budget restraints; selected participants must have completed the
3CVT and driving simulator scenarios. The on-road driving
route was approximately 12 miles and required, on average,
45min to complete (Supplementary Figure 1). It was conducted
by the Sharp Rehabilitation Services Driving Program using
a standardized approach with excellent inter-rater reliability
(Cohen’s K = 0.86) and established sensitivity to HIV-
related driving changes. A DMV-certified driving examiner was
positioned in the front passenger seat of a dual-brake automobile;
an occupational therapist (OT) and ABM technician (taking

FIGURE 2 | Example of a participant identifying correct, target circle.

detailed notes about the driving safety and performance as well
as monitoring the EEG signals) observed the drive in the rear
seats. Participants were instructed to drive through residential
and commercial areas, across controlled and uncontrolled
intersections, and on freeways (including multiple merges).
The participants followed single and multi-step directions (e.g.,
“Make the next available right turn. . . In three traffic lights, make
a left turn”) throughout the duration of the drive.

Evaluating Driving Performance
In order to evaluate driving performance participants were
divided into groups of “Good” or “Poor” drivers based on
performance in the simulator and “Safe” or “Unsafe” drivers
based on on-road performance. The following sections describe
this group assignment process.

On-Road Performance
Both the driving examiner and OT evaluated the drive in two
ways. First, 186 scoring criteria for correctly performing traffic
checks, maintaining lane position and speed, yielding when
appropriate, etc. were assigned either a zero for pass, or a one
for fail. Second, participants were given an overall score of 1
(excellent) through 5 (recommends they should not be driving)
(Supplementary Table 1).

Each evaluator independently completed the pass/fail scores
during the drive, and assigned an overall score after the
conclusion of the drive. The driving instructor and OT would
then arrive at a consensus evaluation for the overall score as
well as a consensus regarding individual pass/fails. In addition,
the OT documented critical errors in the form of physical
or verbal interventions. Physical interventions included using
the passenger-side brake and grabbing the wheel, while verbal
interventions included any additional instructions or warnings
that were not part of the scripted directions. Each driver was
designated Safe or Unsafe based on the consolidated raters scores,
comments, critiques, observations, and critical errors. Thirty-five
of the 50 drivers were designated Safe (70%) and 15 drivers were
designated Unsafe (30%).
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Driving Simulator Performance
Individual mistakes over the course of the challenge drive were
counted and given weights to generate a weighted score as
follows:

- 3 pts for a collision with another vehicle
- 2 pts for running stop signs or red lights
- 1 pt for speed exceedances and lane marker collisions (e.g., a

traffic cone in a construction zone)
- 0.5 pts for crossing over the center dividing line or crossing

into the right shoulder without causing a collision.

Using these weights, a total weighted score was computed
for each participant who completed the simulated drive. This
weighted score was used to divide drivers into either Good
or Poor groups. Drivers with a weighted score of 35 or more
designated as Poor. This threshold of 35 was chosen to result in
70/30% Good/Poor ratio to match the Safe/Unsafe ratio observed
during the on-road drive (see On-Road Performance). Figure 3
shows the distribution of weighted scores for all participants who
completed the simulated driving scenario.

Predicting Driving Performance
A linear discriminant function (LDF) was designed to
classify Safe vs. Unsafe drivers using EEG ERP measures
(P200 and LPP for both Target and Non-Target trials
across all channels) obtained during the 3CVT test.
The variables used for the LDF were selected through a
step-wise algorithm in a logistic regression analysis. The
classifier was evaluated using a leave-one-out cross validation
method.

RESULTS

EEG and behavioral measures were computed for all three tasks
(3CVT, simulated driving, and on-road evaluation). Performance
in the driving simulator was used to group subjects into either

FIGURE 3 | The distribution of weighted scores (higher scores indicate worse

performance) across all subjects who completed the simulated drive, with the

red line showing the cut-off threshold of 35.

Good or Poor (section Driving Simulator Performance), and on-
road driving performance was used to designate subjects as either
Safe or Unsafe (section On-Road Performance). To investigate
the relationship between each behavioral/EEG measure and
driving performance, these measures were averaged across the
Safe (or Good) groups and were compared to the average of the
Unsafe (or Poor) groups.

To investigate the relationships between HIV seropositivity
and driving performance, chi-square tests of independence were
performed for simulated and on-road driving groups. The
proportion of Good vs. Poor (60.6 vs. 39.4%) drivers in the HIV+
group was not significantly different than that of the HP group
(69.2 vs. 30.8%) [χ2 (1, n = 85) = 0.34, p = 0.56]. Similarly,
the proportion of Safe vs. Unsafe (60.0 vs. 40.0%) drivers in
the HIV+ group was not significantly different than that of the
HP group (76.6 vs. 23.4%) [χ2 (1, n = 50) = 0.89, p = 0.34].
Therefore, driving performance both in the simulator and on-
road was determined to be independent of HIV status in this
population.

Behavioral Measures
Behavioral measures included simulated driving performance,
on-road driving performance, and Reaction Time (RT)/Accuracy
for the 3CVT, as described in sections Driving Simulator
Performance, On-Road Performance, and 3CVT and EEG
Measures, respectively.

3CVT Behavioral Measures as Predictors of Driving

Performance
Behavioral measures during the 3CVT attention task were
computed for each participant including RT, Accuracy (percent
correct), and a combined measure of performance (F-measure,
i.e., a harmonic mean of normalized accuracy and reaction time)
(Stikic et al., 2011). A student’s t-test was used to determine
whether group averages of 3CVT behavioral measures were
different for Safe/Unsafe (on-road drive) andGood/Poor (driving
simulator) drivers. F-measure showed no significant difference
in performance between Safe and Unsafe drivers (p = 0.81,
df = 47) (Figure 4A). However, Good drivers in the simulator
had significantly higher performance compared to Poor drivers
(p < 0.01, df= 77) (Figure 4B).

FIGURE 4 | Comparison of F-measure for (A) Safe vs. Unsafe and (B) Good

vs. Poor.
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Driving Simulator
Throughout the driving simulation, there was high variability
between subjects in speed, speed deviation, SDLP, and time to
collision as individuals navigated the various complex segments
with varying approaches. For example, Supplementary Table 2

shows the high variance of speed between subjects for each
block. Although participants were instructed to follow the rules
of the road, the completion time for each segment of the
driving scenario varied widely between participants. Because
of the high between- and within- subject variability of these
metrics, driving performance in the simulator was quantitatively
computed using the variables described in section Driving
Simulator Performance. To assess the relationship between on-
road driving performance and simulator performance, a chi-
squared test of independence was performed. 72.7% of Safe
drivers were Good in the simulator and 71.4% of Unsafe drivers
were Poor in the simulator [χ2 (1, n= 47)= 6.23, p= 0.01].

SuRT Performance in Driving Simulator to Predict

Simulator/On-Road Driving Performance
The mean Number Correct and mean Reaction Time for each of
the three difficulty levels of the secondary task are illustrated in
Figure 5. Students’ t-tests revealed that no significant difference
in Number Correct from easy to medium was present, but
Number Correct did differ significantly between medium and
hard (t-test, df= 141, p< 0.01), and easy to hard (t-test, df= 141,
p < 0.01). Mean Reaction Time significantly increased from easy
to medium (t-test, df = 143, p < 0.05) and medium to hard
(t-test, df= 141, p < 0.01).

Ideal driving behavior during the SuRT would be
characterized by a low rate of swerving (low SDLP), an
average speed close to the speed limit (65 MPH), and a low rate
of speed deviation. SDLP significantly increased from easy to

hard (t-test, df= 141, p< 0.01) and frommedium to hard (t-test,
df = 141, p < 0.01). Speed deviation significantly increased
from easy to hard (t-test, df = 141, p < 0.05) and medium to
hard (t-test, df = 141, p < 0.01). Average Speed decreased from
medium to hard (df= 141, p < 0.05).

While the SuRT task proved to be useful in measuring the
effect of multitasking on driving behavior, neither SuRT driving
performance nor secondary task performance were significantly
different for Good vs. Poor (simulator) or for Safe vs. Unsafe
(on-road) drivers.

On-Road Drive
The overall Safe and Unsafe driver’s scores were computed as
described in section On-Road Performance and were used for
group comparisons.

Association Between 3CVT EEG ERP
Measures and Driving Performance
EEG measures obtained during 3CVT were compared for each
group in order to discover any potential associations between
3CVT EEG measures and driving performance measures.
Figure 6 shows the grand average ERPs for 3CVT Non-Target
trials (left) and Target trials (right) plotted to compare the Safe
and Unsafe drivers. On average, Unsafe drivers exhibit higher
amplitudes at 200ms post-stimulus onset and lower amplitude
from 300 to 700ms post-stimulus onset.

For each participant, ERPs were measured using the average
of the signal during a window of 180–220ms post-stimulus onset
for the P200 component, and the late positive potential (LPP) was
measured using the average of the signal during a window 300–
700ms post-stimulus onset. Safe drivers exhibited a significantly
smaller P200 over the left central region for Non-Target trials
compared to Unsafe drivers (Figure 7A). HP Safe drivers

FIGURE 5 | Secondary task performance and driving performance during the SuRT Easy, Medium, and Hard task. Participants performed worse, as indicated by all

metrics except average speed, on the most difficult SuRT task.
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FIGURE 6 | Grand Average ERP plots (averaged across participants) for (A) Non-Target and (B) Target trials during 3CVT task plotted for Safe (blue)/Unsafe (red).

FIGURE 7 | Topographical maps of (A) the average P200 component in Non-Target ERP trials (left panel) and (B) average LPP component in Target trials (right panel)

plotted for all subgroups: Safe/HP, Safe/HIV+, Unsafe/HP and Unsafe/HIV+. In each panel, the difference plot between total Safe and Unsafe groups is shown on the

right side. Channels with significant differences between the two groups (t-test, p < 0.05) are marked with a diamond sign.

exhibited a significantly larger LPP over the left frontal region
compared to HP Unsafe drivers for Target trials (Figure 7B).
There was no significant difference between HIV Safe and HIV
Unsafe in terms of LPP amplitude (Figure 7B). Additionally,
there was no significant difference in LPP amplitude when
comparing Safe and Unsafe drivers from both groups. Table 1
summarizes the significant findings. The difference in the P200
and LPP components between Safe and Unsafe drivers are listed
for both trial types (Target and Non-Target) and for all channels
in Supplementary Table 3.

Figure 8 shows the grand average ERPs for 3CVT Non-Target
trials (left) and Target trials (right) plotted to compare the Good
and Poor drivers in the simulator. On average, Poor drivers
exhibit higher amplitudes at 200ms post-stimulus onset, and
lower LPP amplitude from 300 to 700ms post-stimulus onset.

Overall, Poor drivers had a significantly higher P200 over left
frontal-central channels (Figure 9A) and a significantly lower
LPP amplitude over left frontal channels (Figure 9B) compared
to Good drivers. Table 2 summarizes the P200 findings and
Table 3 summarizes the LPP findings for all significant channels.
The difference in the P200 and LPP components between Good

and Poor drivers are listed for both trial types (Target and
Non-Target) and for all channels in Supplementary Table 4.

EEG Measures During the Simulator and
On-Road Drive
EEG was acquired during the simulated driving scenario as
well as the on-road drive in order to identify any possible
real-time neurophysiological differences associated with driving
performance. However, there were no significant findings.

EEG and Behavioral Measures in Relation
to Cognitive Status
Cognitive status (impaired vs. unimpaired, see section Cognitive
and Medical Assessment) was not correlated with any of the
behavioral, EEG, and driving performance measures included in
this study.

Classifier for Predicting On-Road Driving
Performance
At the operating point the true positive rate and false positive rate
of the classifier were 0.85 and 0.23, respectively. The area under
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ROC curve was also used as an overall measure of classification
performance. The results (AUC = 0.88) were compared with
another LDF using only performance measures obtained from
the driving simulator as the predictors (see Driving Simulator

TABLE 1 | Average P200 components for all groups and subgroups based on

on-road driving performance.

P200 avg (NonTarget)

Mean ± SEM (uV)

Condition Group n Cz C3

HP Safe 19 −1.07 ± 0.96 −0.31 ± 0.80

Unsafe 7 2.76 ± 1.36 2.30 ± 0.95

HIV+ Safe 9 1.32 ± 1.89 2.37 ± 1.35

Unsafe 7 3.34 ± 1.94 3.97 ± 1.98

All Safe 28 −0.30 ± 0.90 0.55 ± 0.72

Unsafe 14 3.05 ± 1.14 3.14 ± 1.08

HP 1 = Safe-Unsafe 26 −3.83* −2.62

HIV+ 1 = Safe-Unsafe 16 −2.02 −1.60

All 1 = Safe-Unsafe 42 −3.35* −2.59*

Significant differences (t-test, p < 0.05) are marked with asterisk.

Performance) resulting in AUC = 0.73. The true positive and
false positive rate at the operating point of this second classifier
was 0.64 and 0.21, respectively. Figure 10 shows the ROC curve
for both classifiers. The higher performance of the EEG-based
classifier, as opposed the classifier based on simulator data,
demonstrates the power of EEG measures during an attention
task in predicting on-road driving performance.

DISCUSSION

Evidence from the present study revealed an association between
on-road driving performance and EEG ERP data obtained during
a short neurocognitive test of sustained attention (3CVT). The
3CVT EEG ERP measures were related to driving performance
during a driving simulator task as well as an on-road driving
evaluation. Unsafe on-road drivers and Poor drivers in the
simulator both exhibited significantly larger P200 amplitude over
the left frontal-central region compared to Safe (on-road) and
Good (simulator) drivers, respectively. While this finding was
observed for Target (frequent) and Non-Target (less frequent)
trials, it was largest in response to Non-Target trials during the
3CVT. The P200 component is believed to index automatic,
stimulus-driven allocation of attention to stimuli and may

FIGURE 8 | Grand average ERP plots (averaged across participants) for (A) Non-Target and (B) Target trials during 3CVT task plotted for Good (blue)/Poor (red).

FIGURE 9 | Topographical maps of (A) the average P200 component in Non-Target ERP trials (left panel) and (B) average LPP component in Target trials (right panel)

plotted for all subgroups: Good/HP, Good/HIV+, Poor/HP and Poor/HIV+. In each panel the difference plot between total Good and Poor groups is shown on the

right side. Channels with significant differences between the two groups (t-test, p < 0.05) are marked with a diamond shape.
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TABLE 2 | Average P200 amplitude for all groups and subgroups based on simulator driving performance.

n P200 avg (NonTarget)

Mean ± SEM (uV)

Cz C3 Fz F3

HP Good 30 −0.84 ± 0.73 −0.63 ± 0.58 1.15 ± 0.79 1.19 ± 0.68

Poor 13 2.92 ± 0.90 2.88 ± 0.78 4.70 ± 1.01 5.7 ± 1.06

HIV+ Good 17 2.90 ± 0.89 3.19 ± 0.62 4.48 ± 1.13 5.55 ± 0.99

Poor 10 3.54 ± 1.89 2.91 ± 1.60 5.03 ± 1.66 5.39 ± 1.84

All Good 47 0.51 ± 0.61 0.75 ± 0.51 2.34 ± 0.68 2.77 ± 0.63

Poor 23 3.19 ± 0.92 2.89 ± 0.80 4.84 ± 0.90 5.56 ± 0.97

HP 1 = Good-Poor 43 −3.77** −3.50** −3.57** −4.51**

HIV+ 1 = Good-Poor 27 −0.64 0.28 −0.55 0.16

All 1 = Good-Poor 70 −2.68* −2.14* −2.50* −2.80*

Significant differences (t-test, *p < 0.05, **p < 0.01) are marked with an asterisk.

TABLE 3 | Average LPP amplitude for all groups and subgroups based on

simulator driving performance.

n LPP (Target) Mean ± SEM (uV)

Fz F3

HP Good 32 3.94 ± 0.70 2.89 ± 0.60

Poor 16 0.49 ± 1.58 −0.12 ± 1.34

HIV+ Good 19 2.74 ± 0.78 2.76 ± 0.77

Poor 11 2.56 ± 1.34 2.04 ± 1.61

All Good 51 3.49 ± 0.52 2.84 ± 0.47

Poor 27 1.33 ± 1.08 0.75 ± 1.03

HP 1 = Good-Poor 48 3.45* 3.02*

HIV+ 1 = Good-Poor 30 0.19 0.72

All 1 = Good-Poor 78 2.16* 2.08*

Significant differences (t-test, *p < 0.05, **p < 0.01) are marked with an asterisk.

reflect biases for preferential processing of particular types of
stimuli (Eldar et al., 2010; Gole et al., 2012; McIntosh et al.,
2015). In this study, the association between P200 amplitude
and driving performance may be linked to deficits in selective
attention. Bad drivers exhibit impaired ability to maintain focus,
improper allocation of attention, and are more easily distracted.
In a separate study in which 3CVT EEG ERP biomarkers
were evaluated in patients with a neurodegenerative disease
affecting memory (amnestic MCI), no P200 differences were
observed compared to healthy controls (Waninger et al., 2018).
These amnestic MCI patients did not present with noticeable
attentional deficits.

Additionally, Unsafe on-road drivers and Poor drivers in the
simulator both exhibited a lower LPP amplitude over the frontal
region, particularly for Target trials, compared to Safe (on-road)
and Good (simulator) drivers, respectively. The late positive
potential (LPP) has been shown to reflect feature evaluation,
memory matching, and decision making (Withaar et al., 2000;
Reger et al., 2004; Meghdadi et al., under review). Multiple
reports suggest reduced amplitude of the LPP is associated with

FIGURE 10 | Receiver operating curve (dotted line, simulator; solid line, 3CVT

EEG ERP).

cognitive decline (Schanke and Sundet, 2000; Charlton et al.,
2003; Kay et al., 2008; Cysique et al., 2009; Versijpt et al.,
2017; Department of Motor Vehicles, 2018a,c; Meghdadi et al.,
under review) and normal aging (Polich and Corey-Bloom, 2005;
Babiloni et al., 2006, 2010; Olichney et al., 2008; López et al.,
2014; Ishii et al., 2017). The association of bad driving and
reduced amplitude of the LPP reported in the present study
is consistent with previous studies that reported a correlation
between LPP reduction and severity of cognitive impairment
(Polich and Corey-Bloom, 2005; Garn et al., 2014).

The current study included healthy participants (HP)
as well as HIV+ participants with well-controlled immune
function as a result of antiretroviral therapy. Although current
antiretrovirals are increasing the longevity and overall health
of HIV+ individuals, HAND is still prevalent and may
affect driving performance. The present study included only
participants over the age of 55 due to the high likelihood
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of age-related decline in driving performance. There were
no significant differences observed in driving performance
between the HIV+ and healthy groups. In fact, the proportion
of bad drivers was equivalent for both groups. Bad drivers
(Unsafe or Poor) exhibited an increase in P200 amplitude
independent of HIV status with highest observed P200
amplitude in HIV+ Unsafe (or Poor) drivers and lowest
P200 amplitude in HP Safe (or Good) drivers. Cognitive
status as measured by standard neuropsychological testing (see
Cognitive and Medical Assessment) did not correlate with P200
amplitude.

Additionally, group differences were observed in the LPP
during 3CVT, with the association between bad driving
performance and the reduced amplitude of the LPP only
significant for the HP group. While bad drivers (Unsafe or Poor)
in the HP group show a significant decrease in LPP compared
to HP Safe or Good drivers, this reduction was not observed for
the HIV+ group. This may be because the LPP has already been
significantly reduced as a result of HIV seropositivity (Hillyard
et al., 1973; Polich et al., 2000; Olichney et al., 2011; Papaliagkas
et al., 2011).

The classifier used both P200 and LPP metrics to predict
drivers as either Safe or Unsafe. However, variables selected by
the stepwise feature selection and the results from 3CVT ERP
data of the present study suggest the P200 is a stable and reliable
predictor of driving performance. Preliminary results suggest this
P200 effect is consistently observed across other tests of focused
and divided attention (Meghdadi et al., under review).

While EEG measures acquired during the 3CVT sustained
attention task were highly associated with driving performance,
analysis of the EEG measures acquired in the driving
simulator and on-road drive did not significantly predict
driving performance. The complexity of the driving scenarios
and varying driving strategies employed by participants
did not allow for precise event locked EEG analyses
as was the case for 3CVT. Although participants were
instructed to follow the rules of the road, the completion
time for each segment of the driving scenario and on-
road drive varied widely between participants. The only
highly controlled segment of the either task was the SuRT
task performed during the simulated driving scenario.
SuRT task difficulty was inversely correlated with SuRT
driving and secondary task performance. However, neither
was correlated with overall simulated or on-road driving
performance.

In this study, EEG ERPs observed during attention tasks
and their relation to driving performance provide the basis for
an inexpensive, fast, and reliable screening exam for elderly
drivers using only EEG acquired concurrently during attention
tasks. Performance in the driving simulator alone provided
only a reasonable prediction of on-road driving performance
but was not nearly as accurate as the 3CVT EEG-based
classifier.

Driving is an essential aspect of maintaining independence,
but driving ability can begin to deteriorate as people age.
Through natural aging or disease-related causes, functional
impairments can impede elderly drivers from driving safely.

ERP measures (P200 and LPP) described in this study are
shown to reliably predict driving performance in both healthy
and HIV+ individuals across a broad age spectrum (55–87
years old). A diagnosis of a neurodegenerative disease (MCI,
PDD, HAND, AD, etc.) alone does not necessarily mean an
individual is too impaired to drive safely. In the present study,
standard neuropsychological testing was not predictive of driving
performance. Currently, there is no sensitive test to determine
if an individual is actually impaired except for an on-road
drive with a driving examiner. To address this unmet need, a
portable EEG system could be used to perform a short and
inexpensive neurocognitive test to obtain ERP data for any
patient. This ERP data could in turn be fed into a classifier
to determine whether or not an individual requires an on-
road driving evaluation (classifier responded Unsafe or Safe).
While there is a false positive rate of 23%, this approach offers
a much better alternative than requiring on-road evaluations
for all older or cognitively impaired drivers. Additionally,
the model will be improved and refined by increasing the
size of the dataset with other populations currently being
studied.

Future research is required to fully describe the P200
effect by implementing different types of tasks designed to
activate neural circuitry associated with varying aspects of
attention and cognition. In the field of driving assessment,
further experiments with larger and more diverse populations
(including drivers with a variety of neurodegenerative
diseases) are needed. A more in-depth analysis of driving
performance is also needed to further understand the
specific functional deficits associated with increased P200
amplitude.

DATA AVAILABILITY STATEMENT

A link to download the de-identified data (.edf files) will be made
available upon request.

ETHICS STATEMENT

The protocols in the study were approved by both the University
of California, San Diego (UCSD) IRB and Sharp IRB (IRBANA)
with written informed consent of all subjects. The authors only
received de-identified data. HIPPA guidelines were followed
throughout the study to protect patient privacy.

AUTHOR CONTRIBUTIONS

TM and CB conceived the present project, and CB supervised
the project. GR wrote the manuscript with the help of CB,
AM, SS, and TM. ES and KM collected the in-lab data,
and GR collected the data in the field. AM, MK, MC, and
GR analyzed the data. TM, ES, KM, and TR designed and
implemented the simulated drive and TM designed the on-
road drive. CB, AM, GR, MC, and MK interpreted the
results.

Frontiers in Human Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 532

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rupp et al. EEG Metrics Predict On-Road Driving

FUNDING

This work was supported by the NIH [Grant Number:
5R42MH097303].

ACKNOWLEDGMENTS

The authors would like to thank the following people for
their contributions to various aspects of this project: Vedeline

Torreon, Bradly Stone, Rudy Chang, Robin Johnson, Kyla
Manawatao, and Josh Miller.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2018.00532/full#supplementary-material

REFERENCES

Ajinoroozi, M., Mao, Z., Jung, T.-P., and Lin, C.-T., Huang, Y. (2016). EEG-based
prediction of driver’s cognitive performance by deep convolutional neural
network. Signal Process. 47, 549–555. doi: 10.1016/j.image.2016.05.018

Babiloni, C., Binetti, G., Cassarino, A., Dal Forno, G., Del Percio, C.,
Ferreri, F., et al. (2006). Sources of cortical rhythms in adults during
physiological aging: a multicentric EEG study. Hum. Brain Mapp. 27, 162–172.
doi: 10.1002/hbm.20175

Babiloni, C., Visser, P. J., Frisoni, G., De Deyn, P. P., Bresciani, L., Jelic,
V., et al. (2010). Cortical sources of resting EEG rhythms in mild
cognitive impairment and subjective memory complaint. Neurobiol. Aging 31,
1787–1798. doi: 10.1016/j.neurobiolaging.2008.09.020

Ball, K. (2009). Cognitive training: impact on driving and everyday function. Eye
Auto.

Ball, K., Owsley, C., Stalvey, B., Roenker, D. L., Sloane, M. E., and Graves, M.
(1998). Driving avoidance and functional impairment in older drivers. Accid.
Anal. Prev. 30, 313–322. doi: 10.1016/S0001-4575(97)00102-4

Bauer, L. O. (2011). Interactive effects of HIV/AIDS, body mass, and substance
abuse on the frontal brain: a P300 study. Psychiatry Res. 185, 232–237.
doi: 10.1016/j.psychres.2009.08.020

Berka, C., Ayappa, I., Burschtin, O., Piyathilake, H., Rapoport, D. M., Westbrook,
P., et al. (2009). “High throughput brain-behavior assay. Quantification of eeg
and performance in patients referred for assessment of daytime drowsiness,” in
Sleep (Westchester, NY: American Academy of Sleep Medicine OneWestbrook
Corporate CTR). A161–A161.

Berka, C., Levendowski, D. J., and Davis, G. (2006). “Nicotine administration
and withdrawal effects on EEG metrics of attention, memory and workload:
implications for cognitive resource allocation,” in Augmented Cognition: Past,

Present and Future, Foundations of Augmented Cognition (Arlington, VA:
Strategic Analysis, Inc), 174–183.

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V.
T., et al. (2007). EEG correlates of task engagement and mental workload in
vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(Suppl. 5),
B231–B244.

Berka, C., and Marcotte, T. (2017). A Novel Approach to Assessing Cognitive State

During Real-World Tasks.

Bonanni, L., Thomas, A., Tiraboschi, P., Perfetti, B., Varanese, S., and Onofrj, M.
(2008). EEG comparisons in early Alzheimer’s disease, dementia with Lewy
bodies and Parkinson’s disease with dementia patients with a 2-year follow-up.
Brain 131, 690–705. doi: 10.1093/brain/awm322

Brayne, C., Dufouil, C., Ahmed, A., Dening, T. R., Chi, L. Y., McGee, M.,
et al. (2000). Very old drivers: findings from a population cohort of
people aged 84 and over. Int. J. Epidemiol. 29, 704–707. doi: 10.1093/ije/29.
4.704

Brookhuis, K. A., de Vries, G., and de Waard, D. (1991). The effects of
mobile telephoning on driving performance. Accid. Anal. Prev. 23, 309–316.
doi: 10.1016/0001-4575(91)90008-S

Brookhuis, K. A., and de Waard, D. (1993). The use of psychophysiology to assess
driver status. Ergonomics 36, 1099–1110. doi: 10.1080/00140139308967981

Carr, D. B., LaBarge, E., Dunnigan, K., and Storandt, M. (1998). Differentiating
drivers with dementia of the Alzheimer type from healthy older persons with
a traffic sign naming test. J. Gerontol. A Biol. Sci. Med. Sci. 53, M135–M139.
doi: 10.1093/gerona/53A.2.M135

Chao, L. L., Lindgren, J. A., Flenniken, D. L., and Weiner, M. W. (2004). ERP
evidence of impaired central nervous system function in virally suppressed
HIV patients on antiretroviral therapy. Clin. Neurophysiol. 115, 1583–1591.
doi: 10.1016/j.clinph.2004.02.015

Charlton, J. L., Koppel, S., Odell, M., Devlin, A., Langford, J., O’Hare, M.,
et al. (2003). Influence of Chronic Illness on Crash Involvement of Motor

Vehicle Drivers. Clayton, VIC: Monash University. Accident Research Centre
(MUARC).

Chiao, S., Rosen, H. J., Nicolas, K., Wendelken, L. A., Alcantar, O., Rankin, K. P.,
et al. (2013). Deficits in self-awareness impact the diagnosis of asymptomatic
neurocognitive impairment in HIV. AIDS Res. Hum. Retroviruses 29, 949–956.
doi: 10.1089/aid.2012.0229

Choi, M., Adams, K. B., and Kahana, E. (2013). Self-regulatory driving behaviors:
gender and transportation support effects. J. Women Aging 25, 104–118.
doi: 10.1080/08952841.2012.720212

Classen, S., Levy, C., McCarthy, D., Mann, W. C., Lanford, D., and Waid-Ebbs, J.
K. (2009). Traumatic brain injury and driving assessment: an evidence-based
literature review. Am. J. Occup. Ther. 63, 580–591. doi: 10.5014/ajot.63.5.580

Cysique, L. A., Vaida, F., Letendre, S., Gibson, S., Cherner, M., Woods,
S. P., et al. (2009). Dynamics of cognitive change in impaired HIV-
positive patients initiating antiretroviral therapy. Neurology 73, 342–348.
doi: 10.1212/WNL.0b013e3181ab2b3b

Czigler, B., Csikós, D., Hidasi, Z., Anna Gaál, Z., Csibri, E., Kiss, E.,
et al. (2008). Quantitative EEG in early Alzheimer’s disease patients -
power spectrum and complexity features. Int. J. Psychophysiol. 68, 75–80.
doi: 10.1016/j.ijpsycho.2007.11.002

Dauwels, J., Vialatte, F., and Cichocki, A. (2010a). Diagnosis of Alzheimer’s disease
from EEG signals: where are we standing? Curr. Alzheimer Res. 7, 487–505.

Dauwels, J., Vialatte, F., Musha, T., and Cichocki, A. (2010b). A comparative study
of synchrony measures for the early diagnosis of Alzheimer’s disease based on
EEG. Neuroimage 49, 668–693. doi: 10.1016/j.neuroimage.2009.06.056

De Gennaro, L., Vecchio, F., Ferrara, M., Curcio, G., Rossini, P. M., and
Babiloni, C. (2005). Antero-posterior functional coupling at sleep onset:
changes as a function of increased sleep pressure. Brain Res. Bull. 65, 133–140.
doi: 10.1016/j.brainresbull.2004.12.004

de Waard, D., and Brookhuis, K. A. (1991). Assessing driver status: a
demonstration experiment on the road. Accid. Anal. Prev. 23, 297–307.
doi: 10.1016/0001-4575(91)90007-R

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. J.
Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Department of Motor Vehicles (2018a). State of California Department of Motor

Vehicles. Available online at: www.dmv.ca.gov
Department of Motor Vehicles (2018b). State of Connecticut Department of Motor

Vehicles. Available online at: www.ct.gov/dmvb
Department of Motor Vehicles (2018c). State of Deleware Division of Motor

Vehicles. Available online at: www.dmv.de.gov
Dijksterhuis, C., de Waard, D., Brookhuis, K. A., Mulder, B. L., and de

Jong, R. (2013). Classifying visuomotor workload in a driving simulator
using subject specific spatial brain patterns. Front. Neurosci. 7:149.
doi: 10.3389/fnins.2013.00149

Dong, Y., Hu, Z., Uchimura, K., and Murayama, N. (2010). Driver Inattention

Monitoring System for Intelligent Vehicles: A Review. IEEE Transactions on
Intelligent Transportation Systems.

Frontiers in Human Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 532

https://www.frontiersin.org/articles/10.3389/fnhum.2018.00532/full#supplementary-material
https://doi.org/10.1016/j.image.2016.05.018
https://doi.org/10.1002/hbm.20175
https://doi.org/10.1016/j.neurobiolaging.2008.09.020
https://doi.org/10.1016/S0001-4575(97)00102-4
https://doi.org/10.1016/j.psychres.2009.08.020
https://doi.org/10.1093/brain/awm322
https://doi.org/10.1093/ije/29.4.704
https://doi.org/10.1016/0001-4575(91)90008-S
https://doi.org/10.1080/00140139308967981
https://doi.org/10.1093/gerona/53A.2.M135
https://doi.org/10.1016/j.clinph.2004.02.015
https://doi.org/10.1089/aid.2012.0229
https://doi.org/10.1080/08952841.2012.720212
https://doi.org/10.5014/ajot.63.5.580
https://doi.org/10.1212/WNL.0b013e3181ab2b3b
https://doi.org/10.1016/j.ijpsycho.2007.11.002
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1016/j.brainresbull.2004.12.004
https://doi.org/10.1016/0001-4575(91)90007-R
https://doi.org/10.1016/j.jneumeth.2003.10.009
www.dmv.ca.gov
www.ct.gov/dmvb
www.dmv.de.gov
https://doi.org/10.3389/fnins.2013.00149
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rupp et al. EEG Metrics Predict On-Road Driving

Duchek, J. M., Carr, D. B., Hunt, L., Roe, C. M., Xiong, C., Shah, K., et al. (2003).
Longitudinal driving performance in early-stage dementia of the Alzheimer
type. J. Am. Geriatr. Soc. 51, 1342–1347. doi: 10.1046/j.1532-5415.2003.51481.x

Eldar, S., Yankelevitch, R., Lamy, D., and Bar-Haim, Y. (2010). Enhanced neural
reactivity and selective attention to threat in anxiety. Biol. Psychol. 85, 252–257.
doi: 10.1016/j.biopsycho.2010.07.010

Fonda, S. J., Wallace, R. B., and Herzog, A. R. (2001). Changes in driving patterns
and worsening depressive symptoms among older adults. J. Gerontol. B Psychol.

Sci. Soc. Sci. 56, S343–S351. doi: 10.1093/geronb/56.6.S343
Freeman, E. E., Gange, S. J., Muñoz, B., and West, S. K. (2006). Driving status

and risk of entry into long-term care in older adults. Am. J. Public Health 96,
1254–1259. doi: 10.2105/AJPH.2005.069146

Frittelli, C., Borghetti, D., Iudice, G., Bonanni, E., Maestri, M., Tognoni, G., et al.
(2009). Effects of Alzheimer’s disease andmild cognitive impairment on driving
ability: a controlled clinical study by simulated driving test. Int. J. Geriatr.
Psychiatry 24, 232–238. doi: 10.1002/gps.2095

Garn, H., Waser, M., Deistler, M., Schmidt, R., Dal-Bianco, P., Ransmayr, G.,
et al. (2014). Quantitative EEG in Alzheimer’s disease: cognitive state, resting
state and association with disease severity. Int. J. Psychophysiol. 93, 390–397.
doi: 10.1016/j.ijpsycho.2014.06.003

Gole, M., Schäfer, A., and Schienle, A. (2012). Event-related potentials during
exposure to aversion and its anticipation: the moderating effect of intolerance
of uncertainty. Neurosci. Lett. 507, 112–117. doi: 10.1016/j.neulet.2011.11.054

Hajinoroozi, M., Jianqiu, Z., and Yufei, H. (2017). Prediction of fatigue-related
driver performance from EEG data by deep riemannian model. Conf. Proc.
IEEE Eng. Med. Biol. Soc. 2017, 4167–4170. doi: 10.1109/EMBC.2017.8037774

Hillyard, S. A., Hink, R. F., Schwent, V. L., and Picton, T. W. (1973). Electrical
signs of selective attention in the human brain. Science 182, 177–180.
doi: 10.1126/science.182.4108.177

Ishii, R., Canuet, L., Aoki, Y., Hata, M., Iwase, M., Ikeda, S., et al. (2017).
Healthy and pathological brain aging: from the perspective of oscillations,
functional connectivity, and signal complexity. Neuropsychobiology 75,
151–161. doi: 10.1159/000486870

Jelic, V., and Kowalski, J. (2009). Evidence-based evaluation of diagnostic accuracy
of resting EEG in dementia andmild cognitive impairment.Clin. EEGNeurosci.

40, 129–142. doi: 10.1177/155005940904000211
Johansson, K. (1997). “Traffic Safety in an aging society,” in Transportation, Traffic

Safety and Health, eds H.v. Holst, Nygren, Ake, Thord, and Roland. Springer.
doi: 10.1007/978-3-662-03409-5_9

Johnson, R., Behneman, A., and Mills, P. (2010). Mitigation of sleep deprication
through omega-3 fatty acids: neurocognitive, inflammatory, EEG, and EKG
evidence. Soc. Neurosci.

Johnson, R. R., Popovic, D. P., Olmstead, R. E., Stikic, M., Levendowski,
D. J., and Berka, C. (2011). Drowsiness/alertness algorithm development
and validation using synchronized EEG and cognitive performance
to individualize a generalized model. Biol. Psychol. 87, 241–250.
doi: 10.1016/j.biopsycho.2011.03.003

Kawano, N., Iwamoto, K., Ebe, K., Suzuki, Y., Hasegawa, J., Ukai, K., et al. (2012).
Effects of mild cognitive impairment on driving performance in older drivers.
J. Am. Geriatr. Soc. 60, 1379–1381. doi: 10.1111/j.1532-5415.2012.04021.x

Kay, L., Bundy, A., Clemson, L., and Jolly, N. (2008). Validity and reliability of the
on-road driving assessment with senior drivers. Accid. Anal. Prev. 40, 751–759.
doi: 10.1016/j.aap.2007.09.012

Kellison, M. R. I. (2009). Neuropsychology of Everyday Functioning- Chapter 7 The
Brain on the Road. New York, NY: The Guilford Press.

Lei, S., and Roetting, M. (2011). Influence of task combination on EEG spectrum
modulation for driver workload estimation. Hum. Factors 53, 168–179.
doi: 10.1177/0018720811400601

Leproust, S., Lagarde, E., and Salmi, L. R. (2008). Systematic screening for unsafe
driving due to medical conditions: still debatable. BMC Public Health 8:27.
doi: 10.1186/1471-2458-8-27

Levendowski, D., Berka, C., Olmstead, R., Konstantinovic, Z. R., Davis, G.,
Lumicao, M. N., et al. (2001). Electroencephalographic indices predict future
vulnerability to fatigue induced by sleep deprivation. Sleep 24, A243–A244.

Levendowski, D., Olmstead, R. E., Konstantinovic, Z. R., Berka, C., and
Westbrook, P. (2000). Detection of electroencephalographic indices of
drowsiness in real-time using amulti-level discriminant function analysis. Sleep
23, A243–A244.

López, M. E., Bruña, R., Aurtenetxe, S., Pineda-Pardo, J. Á., Marcos,
A., Arrazola, J., et al. (2014). Alpha-band hypersynchronization in
progressive mild cognitive impairment: a magnetoencephalography
study. J. Neurosci. 34, 14551–14559. doi: 10.1523/JNEUROSCI.0964-
14.2014

Man-Son-Hing, M., Marshall, S. C., Molnar, F. J., and Wilson, K. G.
(2007). Systematic review of driving risk and the efficacy of compensatory
strategies in persons with dementia. J. Am. Geriatr. Soc. 55, 878–884.
doi: 10.1111/j.1532-5415.2007.01177.x

Marcotte, T. D., Heaton, R. K., Wolfson, T., Taylor, M. J., Alhassoon, O., Arfaa,
K., et al. (1999). The impact of HIV-related neuropsychological dysfunction
on driving behavior. The HNRC group. J. Int. Neuropsychol. Soc. 5, 579–592.
doi: 10.1017/S1355617799577011

Marcotte, T. D., Wolfson, T., Rosenthal, T. J., Heaton, R. K.,
Gonzalez, R., Ellis, R. J., et al. (2004). A multimodal assessment of
driving performance in HIV infection. Neurology 63, 1417–1422.
doi: 10.1212/01.WNL.0000141920.33580.5D

Marottoli, R. A., de Leon, C. F. M., , Glass, T. A., Williams, C. S., Cooney, L.
M., and Berkman, L. F. (2000). Consequences of driving cessation: decreased
out-of-home activity levels. J. Gerontol. B Psychol. Sci. Soc. Sci. 55, S334–S340.
doi: 10.1093/geronb/55.6.S334

Marottoli, R. A., Mendes de Leon, C. F., Glass, T. A., Williams, C. S., Cooney, L.
M., Berkman, L. F., et al. (1997). Driving cessation and increased depressive
symptoms: prospective evidence from the New Haven EPESE. Established
populations for epidemiologic studies of the elderly. J. Am. Geriatr. Soc. 45,
202–206. doi: 10.1111/j.1532-5415.1997.tb04508.x

McIntosh, R. C., Tartar, J. L., Widmayer, S., and Rosselli, M. (2015). Negative
attention bias and processing deficits during the cognitive reappraisal of
unpleasant emotions in HIV+ women. J. Neuropsychiatry Clin. Neurosci. 27,
e32–e39. doi: 10.1176/appi.neuropsych.13090222

Mehler, B., Reimer, B., and Coughlin, J. F. (2012). Sensitivity of physiological
measures for detecting systematic variations in cognitive demand from a
working memory task: an on-road study across three age groups. Hum. Factors

54, 396–412. doi: 10.1177/0018720812442086
Mehler, B., Reimer, B., Coughlin, J. F., and Dusek, J. A. (2009). impact of

incremental increases in cognitive workload on physiological arousal and
performance in young adult drivers. Transport. Res. Record 2138, 6–12.
doi: 10.3141/2138-02

Mitler, M. M., Miller, J. C., Lipsitz, J. J., Walsh, J. K., and Wylie, C. D.
(1997). The sleep of long-haul truck drivers. N. Engl. J. Med. 337, 755–761.
doi: 10.1056/NEJM199709113371106

Mulder, L. J. M. (2004). “EstimatingMental Effort UsingHeart Rate andHeart Rate
Variability,” inHandbook of Human Factors and Ergonomics Methods, eds. K. A.
Brookhuis, A. Hedge, E. Salas, H. W. Hendrick (CRC Press), 1–20.

Olichney, J. M., Taylor, J. R., Gatherwright, J., Salmon, D. P., Bressler, A. J.,
Kutas, M., et al. (2008). Patients with MCI and N400 or P600 abnormalities
are at very high risk for conversion to dementia. Neurology 70, 1763–1770.
doi: 10.1212/01.wnl.0000281689.28759.ab

Olichney, J. M., Yang, J. C., Taylor, J., and Kutas, M. (2011). Cognitive event-related
potentials: biomarkers of synaptic dysfunction across the stages of Alzheimer’s
disease. J. Alzheimers Dis. 26(Suppl 3), 215–228. doi: 10.3233/JAD-2011-0047

Papaliagkas, V. T., Kimiskidis, V. K., Tsolaki, M. N., and Anogianakis,
G. (2011). Cognitive event-related potentials: longitudinal changes
in mild cognitive impairment. Clin. Neurophysiol. 122, 1322–1326.
doi: 10.1016/j.clinph.2010.12.036

Perrier, J., Jongen, S., Vuurman, E., Bocca, M. L., Ramaekers, J. G., and
Vermeeren, A. (2016). Driving performance and EEG fluctuations during
on-the-road driving following sleep deprivation. Biol. Psychol. 121, 1–11.
doi: 10.1016/j.biopsycho.2016.09.010

Pojman, N., Behneman, D., Kintz, N., Johnson, R., Chung, G., Nagashima, S., et al.
(2009b). “Characterizing the Psychophysiological Profile of Expert and Novice
Marksmen,” in Foundations of Augmented Cognition (FAC) , Neuroergonomics

and Operational Neuroscience, Lecture Notes in Computer Science, Vol. 5638.
eds D. D. Schmorrow, I. V. Estabrooke, and M. Grootjen (Berlin; Heidelberg:
Springer), 524–532.

Pojman, N., Johnsion, R., Kintz, N., Behneman, L., Popovinc, V., and Davis,
G. (2009a). “Assessing fatigue using EEG classification metrics during
neurocognitive testing,” in Sleep, eds D. D. Schmorrow, I. V. Estabrooke, and

Frontiers in Human Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 532

https://doi.org/10.1046/j.1532-5415.2003.51481.x
https://doi.org/10.1016/j.biopsycho.2010.07.010
https://doi.org/10.1093/geronb/56.6.S343
https://doi.org/10.2105/AJPH.2005.069146
https://doi.org/10.1002/gps.2095
https://doi.org/10.1016/j.ijpsycho.2014.06.003
https://doi.org/10.1016/j.neulet.2011.11.054
https://doi.org/10.1109/EMBC.2017.8037774
https://doi.org/10.1126/science.182.4108.177
https://doi.org/10.1159/000486870
https://doi.org/10.1177/155005940904000211
https://doi.org/10.1007/978-3-662-03409-5_9
https://doi.org/10.1016/j.biopsycho.2011.03.003
https://doi.org/10.1111/j.1532-5415.2012.04021.x
https://doi.org/10.1016/j.aap.2007.09.012
https://doi.org/10.1177/0018720811400601
https://doi.org/10.1186/1471-2458-8-27
https://doi.org/10.1523/JNEUROSCI.0964-14.2014
https://doi.org/10.1111/j.1532-5415.2007.01177.x
https://doi.org/10.1017/S1355617799577011
https://doi.org/10.1212/01.WNL.0000141920.33580.5D
https://doi.org/10.1093/geronb/55.6.S334
https://doi.org/10.1111/j.1532-5415.1997.tb04508.x
https://doi.org/10.1176/appi.neuropsych.13090222
https://doi.org/10.1177/0018720812442086
https://doi.org/10.3141/2138-02
https://doi.org/10.1056/NEJM199709113371106
https://doi.org/10.1212/01.wnl.0000281689.28759.ab
https://doi.org/10.3233/JAD-2011-0047
https://doi.org/10.1016/j.clinph.2010.12.036
https://doi.org/10.1016/j.biopsycho.2016.09.010
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rupp et al. EEG Metrics Predict On-Road Driving

M. Grootjen (Westchester, IL: American Academy of Sleep Medicine One
Westbrook Corporate Center).

Polich, J., and Basho, S. (2002). P3a and P3b auditory ERPs in HIV
patients receiving anti-viral medication. Clin. Electroencephalogr. 33, 97–101.
doi: 10.1177/155005940203300305

Polich, J., and Corey-Bloom, J. (2005). Alzheimer’s disease and P300: review
and evaluation of task and modality. Curr. Alzheimer Res. 2, 515–525.
doi: 10.2174/156720505774932214

Polich, J., Ilan, A., Poceta, J. S., Mitler, M. M., and Darko, D. F. (2000).
Neuroelectric assessment of HIV: EEG, ERP, and viral load. Int. J. Psychophysiol.
38, 97–108. doi: 10.1016/S0167-8760(00)00133-1

Ragland, D. R., Satariano, W. A., andMacLeod, K. E. (2005). Driving cessation and
increased depressive symptoms. J. Gerontol. A Biol. Sci. Med. Sci. 60, 399–403.
doi: 10.1093/gerona/60.3.399

Reger, M. A., Welsh, R. K., Watson, G. S., Cholerton, B., Baker, L. D., and
Craft, S. (2004). The relationship between neuropsychological functioning
and driving ability in dementia: a meta-analysis. Neuropsychology 18, 85–93.
doi: 10.1037/0894-4105.18.1.85

Riccio, C. A., Reynolds, C. R., and Lowe, P. A. (2001). Clinical Applications of
Continuous Performance Tests: Measuring Attention and Impulsive Responding

in Children and Adults. New York, NY: John Wiley & Sons, Inc.
Rookhuis, K. A., De Vries, G., and De Waard, D. (1993). Acute and subchronic

effects of the H1-histamine receptor antagonist ebastine in 10, 20 and 30mg
dose, and triprolidine 10mg on car driving performance. Br. J. Clin. Pharmacol.

36, 67–70. doi: 10.1111/j.1365-2125.1993.tb05894.x
Ross, L. A., Anstey, K. J., Kiely, K. M., Windsor, T. D., Byles, J. E., Luszcz,

M. A., et al. (2009). Older drivers in Australia: trends in driving status
and cognitive and visual impairment. J. Am. Geriatr. Soc. 57, 1868–1873.
doi: 10.1111/j.1532-5415.2009.02439.x

Sateia, M. J. (2003). Neuropsychological impairment and quality of
life in obstructive sleep apnea. Clin. Chest Med. 24, 249–259.
doi: 10.1016/S0272-5231(03)00014-5

Schanke, A. K., and Sundet, K. (2000). Comprehensive driving assessment:
neuropsychological testing and on-road evaluation of brain injured patients.
Scand. J. Psychol. 41, 113–121. doi: 10.1111/1467-9450.00179

Silverstein, N. M., Flaherty, G., and Tobin, T. S. (2002). Dementia and Wandering

Behavior: Concern for the Lost Elder. New York, NY: Springer.
Stikic, M., Larlus, D., Ebert, S., and Schiele, B. (2011). Weakly supervised

recognition of daily life activities with wearable sensors. IEEE Trans. Pattern

Anal. Mach. Intell. 33, 2521–2537. doi: 10.1109/TPAMI.2011.36
Stoiljkovic, M., Kelley, C., Horvath, T. L., and Hajós, M. (2018).

“Neurophysiological biomarkers for alzheimer’s disease (ad) & mild cognitive
impairment (mci) acquired during sleep & waking,” in AAT- AD/PD. Torino.

Tefft, B. C. (2017). Rates of Motor Vehicle Crashes, Injuries and Deaths in

Relation to Driver Age, United States, 2014-2015. Available online at: https://
aaafoundation.org/rates-motor-vehicle-crashes-injuries-deaths-relation-
driver-age-united-states-2014-2 (Accessed April 26, 2018).

Tsolaki, A., Kazis, D., Kompatsiaris, I., Kosmidou, V., and Tsolaki, M.
(2014). Electroencephalogram and Alzheimer’s disease: clinical and research
approaches. Int. J. Alzheimers. Dis. 2014:349249. doi: 10.1155/2014/349249

Uc, E. Y., Rizzo, M., Anderson, S. W., Shi, Q., and Dawson, J. D.
(2004). Driver route-following and safety errors in early Alzheimer
disease. Neurology 63, 832–837. doi: 10.1212/01.WNL.0000139301.011
77.35

Uc, E. Y., Rizzo, M., Anderson, S. W., Shi, Q., and Dawson, J. D.
(2005). Driver landmark and traffic sign identification in early Alzheimer’s
disease. J. Neurol. Neurosurg. Psychiatr. 76, 764–768. doi: 10.1136/jnnp.2004.
049338

Vecchio, F., Babiloni, C., Lizio, R., Fallani, F. V., Blinowska, K., Verrienti, G.,
et al. (2013). Resting state cortical EEG rhythms in Alzheimer’s disease: toward
EEG markers for clinical applications: a review. Suppl. Clin. Neurophysiol. 62,
223–236. doi: 10.1016/B978-0-7020-5307-8.00015-6

Versijpt, J., Tant, M., Beyer, I., Bier, J. C., Cras, P., De Deyn, P. P., et al.
(2017). Alzheimer’s disease and driving: review of the literature and consensus
guideline from Belgian dementia experts and the Belgian road safety institute
endorsed by the Belgian Medical Association. Acta Neurol. Belg. 117, 811–819.
doi: 10.1007/s13760-017-0840-5

Wadley, V. G., Okonkwo, O., Crowe, M., Vance, D. E., Elgin, J. M., Ball,
K. K., et al. (2009). Mild cognitive impairment and everyday function: an
investigation of driving performance. J. Geriatr. Psychiatry Neurol. 22, 87–94.
doi: 10.1177/0891988708328215

Waninger, S., Berka, C., Meghdadi, A., Karic, M. S., Stevens, K., Aguero, C., et al.
(2018). Event-related potentials during sustained attention and memory tasks:
utility as biomarkers for mild cognitive impairment. Alzheimers Dement. 10,
452–460. doi: 10.1016/j.dadm.2018.05.007

Westbrook, P., Berka, C., Levendowski, J., Lumicao, M. N., Davis, G., and
Olmstead, O. N. (2002). Biobehavioral quantification of alertness and memory
in patients with sleep apnea. Sleep 25, A49–A50.

Withaar, F. K., Brouwer, W. H., and van Zomeren, A. H. (2000). Fitness to drive in
older drivers with cognitive impairment. J. Int. Neuropsychol. Soc. 6, 480–490.
doi: 10.1017/S1355617700644065

Zwinkels, J. C., Davidson, W. F., and Dodd, C. X. (1990). Optical properties of UV
transmitting acrylics for use in a heavy water Cerenkov detector. Appl. Opt. 29,
3240–3248. doi: 10.1364/AO.29.003240

Conflict of Interest Statement: GR, CB, AM, MK, MC, SS are paid salaries
or consulting fees by Advanced Brain Monitoring, and CB is a shareholder of
Advanced Brain Monitoring, Inc.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2019 Rupp, Berka, Meghdadi, Karić, Casillas, Smith, Rosenthal,
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