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Abstract

We take a data-driven approach to deducing the local volume changes accompanying early 

development of the fetal human brain. Our approach uses fetal brain atlas MRI data for the 

geometric changes in representative cases. Using a nonlinear continuum mechanics model of 

morphoelastic growth, we invert the deformation obtained from MRI registration to arrive at a 

field for the growth deformation gradient tensor. Our field inversion uses a combination of direct 

and adjoint methods for computing gradients of the objective function while constraining the 

optimization by the physics of morphoelastic growth. We thus infer a growth deformation gradient 

field that obeys the laws of morphoelastic growth. The errors between the MRI data and the 

forward displacement solution driven by the inverted growth deformation gradient field are found 

to be smaller than the reference displacement by well over an order of magnitude, and can be 

driven even lower. The results thus reproduce the three-dimensional growth during the early 

development of the fetal brain with controllable error. Our findings confirm that early growth is 

dominated by in plane cortical expansion rather than thickness increase.

1. Introduction

Like other organs, the fetal human brain undergoes large changes in volume and geometry 

during development in utero. A foundational understanding of these growth-induced changes 

can be gained from a morphoelastic treatment. Such an approach underlies the now accepted 

model of morphological development of most biological structures: Mass accretes, either 

due to cell growth and division, or from the deposition of extra-cellular matrix elements. 
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Due to the elasticity of the newly grown (accreted) tissue, some energy is stored in it, and 

the relaxation of this energy occurs via an expansion of the tissue. The brain’s grey and 

white matter are soft materials with molecular structures that are subjected to stress-

dependent breakage of secondary bonds, and furthermore, are fluid-filled. There is, 

therefore, a rate-dependence to the mechanical response of the brain’s constituent matter. 

However, on the time scales of days to weeks over which the brain undergoes morphological 

changes, viscous effects are fully relaxed, and elasticity prevails. Specifically, hyperelastic 

models governed by the equations of nonlinear elasticity describe the mechanical changes 

accompanying growth.

This is the foundation for the morphoelastic theory of growth, which relies upon a growth 
deformation tensor as one component of a multiplicative decomposition of the total 

deformation gradient tensor. In general, it is incompatible, meaning that it cannot be 

expressed as the gradient of a smooth vector field. However, the product obtained by pre-

multiplying it with the elastic deformation gradient tensor is indeed compatible, since it 

expresses the total deformation gradient. The morphoelastic theory of growth has gained 

interest over the last two decades from the standpoint of neurodevelopmental studies that 

seek to explain the folding of the brain.

Folding, or sulcification and gyrification, of the brain is common in mammals including 

primates, cetaceans, pachyderms and ungulates. Folds form in the cortical layer of grey 

matter, and in species such as humans that demonstrate pronounced gyrencephaly, the sulci 

can be significantly deeper than the cortical thickness. A folded cortex confers a cognitive 

advantage by increasing the surface area enclosed within the skull, translating to greater 

capacity for intelligence. Normally developed human brains have a gyrification index (ratio 

of actual surface area to the surface area of an enveloping surface) approaching 2.55 [49]. 

Neurodevelopmental pathologies are associated with significant departures from this value. 

In humans, polymicrogyria (shallow, more frequent folding) is associated with 

developmental delays and epilepsy [5]. Pachygyria (shallow, less frequent and flatter folds) 

is associated with seizures, cognitive impairment and in rare cases, afflictions such as 

bipolar disorder [37]. Lissencephaly (abscence of folds) is associated with abnormal EEG 

patterns, intractable epilepsy [26] and cognitive impairment [28].

Fetal MRI data indicate that the human brain is almost perfectly smooth until 24 weeks of 

gestation [17,18,23], from which stage gyrification proceeds until well after birth. Therefore, 

there is a clear neurophysiological motivation to understand the physics governing cortical 

folding and the conditions for normal or pathological cortical folding. Incompatible 

morphoelastic growth in the cortical layer results in circumferential compression and causes 

an elastic buckling bifurcation. It is then followed by extreme strains leading to highly 

folded structures in the post-bifurcation regime. While a theory of axonal tension had been 

advanced to explain cortical folding under forces imposed by interconnected neurons [41], 

subsequent studies of cutting followed by elastic relaxation on ferret brains established that 

axonal tension does not cause folding, while computational studies strongly suggested that 

incompatible growth does [47]. Bayly et al. [6] explained gyrification patterns by analytic 

and computational studies based on incompatible morphoelastic growth and Tallinen et al. 
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[39] used experiments in a surrogate, polymeric gel model combined with nonlinear finite 

element computations to further support the morphoelastic theory of growth.1

Wrinkling of surfaces, such as seen on the cortex, and of interfaces, is a common 

phenomenon. In some cases it is influenced by mismatched elastic moduli between a thin 

elastic layer and an underlying substrate, a setting common to biological and non-biological 

thin films [25]. Among the former, it also may control the patterns of wrinkling of fruit and 

vegetable skins [48]. However, the essence of the phenomenon of brain folding does not 

depend on stiffness contrasts [13,33,40]; the Young’s Modulus of cortical grey matter and of 

the white matter underlying it are of the same order of magnitude [9,46]. Therefore, the 

elastic matter of the folding brain may be reasonably taken as homogeneous.

A number of recent studies have sought to explain aspects of brain folding by incompatible 

growth under linearized and, more appropriately, nonlinear morphoelasticity 

[6-9,11,21,24,38,39,42]. While drawing upon insight from linearized buckling of beams, 

plates and shells [10,21,24], most of the computational work is based on finite strains in the 

post-bifurcation regime on analytic ellipsoidal shapes. This body of work has shed light on 

the mechanical conditions governing the development of the organ-wide pathologies of 

polymicrogyria, pachygyria and lissencephaly [8,11,21].

It is notable that the early-forming primary sulci and gyri in humans and other gyrencephalic 

species show a remarkable robustness of placement in normally developed brains [44]. This 

is emphasized in fetal brain atlases with data on the geometry of developing brains, such as 

those obtained from 67 individuals by Gholipour et al. [18]. After uniform scaling to 

normalize volumes, an “average” brain defined by computing the mean geometry showed 

well-resolved primary folds. This suggests that, when scaled for volume, the placement of 

those folds is consistent across individuals. Absent this persistence, the folds would have 

been smeared out in the averaged geometry. A second observation is that despite the organ 

scale lateral symmetry of the brain the sulci and gyri do not localize into symmetric modes 

of folding at all scales [23,31] as seen in computational studies on high-symmetry reference 

shapes. These observations serve as motivations to identify the sequence of kinematic and 

mechanical steps that lead to precise placement of the primary folds as well as the range of 

variation in secondary and tertiary folds. Recent work studied the mechanisms of cell growth 

and migration and linked them to the developing pattern of the early folds [36,42]. Here, we 

note that migration, which is largely complete by around week 26 [44], is responsible for the 

placement of cells in six layers of the cortex, with later generations occupying outer 

positions. In turn, this positioning has an influence on subsequent growth and folding.

Here, we take a broader view, seeking to deduce the local volume changes that develop 

throughout the brain and drive its expansion as well as folding by incompatible, 

morphoelastic growth. Our approach is a data-driven one. Using magnetic resonance 

imaging (MRI) data on the geometric changes of the fetal brain, recorded weekly, we seek to 

solve a series of inverse problems to arrive at the spatially varying growth deformation 

1Albeit, solved as elastic unloading from the folded configuration with first-order dynamics added to numerically stabilize the system 
against bifurcations.
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gradient tensor of the morphoelastic theory. The methods we use begin with MRI 

segmentation and computational mesh generation to enable image registration across 

successive weeks of brain development. These steps, themselves involving inverse 

modelling, provide us with the geometric data for the final stage of physics-constrained 

inference. Here, we combine direct and adjoint methods for computing gradients of 

objective functions in a generalized optimization setting, subject to the constraint imposed 

by the physics of morphoelastic growth. This will leave us with mechanics-constrained 

geometric data in the form of the precisely defined growth deformation tensor that describes 

the three-dimensional development of the fetal brain. From this basis, further physically 

well-founded inference will be possible on the dynamics of fetal brain development. In 

related work, Garcia et al. [14] used data from fetal MRI studies over weeks 27-37 of 

development, and anatomical multimodal surface matching to deduce spatiotemporal 

variations in surface growth. The minimization of the elastic strain energy is used in their 

image registration approach.

The morphoelastic growth model is discussed in Section 2, the inverse problem for the 

growth deformation tensor and tests with synthetic data appear in Section 3. MRI 

segmentation of fetal brain atlas data and computational mesh generation with it appear in 

Section 4. The MRI registration problem is discussed in Section 5, and the extraction of 

morphoelastic growth deformation data in Section 6. Results for the inferred growth 

deformation gradient tensor are in Section 7, and conclusions in Section 8

2. The theory of morphoelastic growth

The theory of morphoelastic growth is well-established and traces its roots to multiplicative 

plasticity, and even before that to multiplicative theormoelasticity. For a discussion of the 

kinematics we direct the reader to Ref [15]., to Refs [16,30] for its coupling with mass 

transport, and to Ref [2]. for a perspective of growth and remodelling. A complete treatment 

that includes the mathematical background and a proper placement of the theory within 

nonlinear elasticity can be found in Ref [20]. The treatment that follows here is rigorous, but 

eschews formalism in favor of accessibility of the important ideas.

Given the displacement field u ∈ ℝ3, and the reference position of material points X ∈ ℝ3, 

the deformation gradient tensor is F = 1 + ∂u/∂X, where 1 is the isotropic tensor. The 

multiplicative decomposition of F that underlies the theory splits it into elastic and growth 

components, Fe and Fg, respectively, so that F = Fe Fg. Incompatibility is admitted by this 

decomposition in that Fg, which we think of as driving morphoelastic growth, is not, in 

general, obtained as a gradient field in the manner that F arises from u. It therefore does not 

satisfy the classical kinematic compatibility conditions that F does.

As explained in the Introduction, we work within the theory of hyperelasticity. We adopt a 

neoHookean strain energy density function ψ from [42], which depends exclusively on the 

elastic right Cauchy-Green tensor Ce = FeT
 Fe,

ψ(Ce) = 1
4λ(detCe − 1) − 1

2
1
2λ + μ log detCe + 1

2μ(trCe − 3), (1)
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where μ and λ are the standard Lamé parameters. The first Piola-Kirchhoff stress tensor P 
follows as the derivative of the strain energy ψ:

P = ∂ψ
∂F e = μF e + 1

2λJcF e − T − 1
2λ + μ F e − T , (2)

where Jc = detFe. The first Piola-Kirchhoff stress is governed by the quasistatic balance of 

linear momentum with no body force:

∇ ⋅ P = 0 in Ω, u = ū on ∂Ωu, PN = t̄ on ∂ΩP , (3)

where Ω ⊂ ℝ3 denotes the domain, which is the brain, and its Dirichlet and Neumann 

boundaries are Ωu and ΩP, satisfying Ωu ∪ ΩP = ∂Ω and Ωu ∩ ΩP = ∅. In this study, t̄ = 0 and 

deformation will be driven by Fg. As alluded to above, this theory will be cast in the 

framework of an inverse problem by seeking to match the resulting displacement field with 

observed data.

2.1. A theory of evolving reference configurations

The theory of morphoelastic growth has traditionally been applied to a fixed reference 

configuration, relative to which the tensors F and Fg have been defined. For finite growth 

and morphogenesis, which characterise fetal brain development, however, this theory proves 

inadequate. Its premise is that the entire path of growth and morphogenesis can be described 

kinematically with the initial state of the brain as the reference configuration. This 

assumption proves problematic when taken to the logical conclusion that the reference 

configuration is therefore the singularity when the first brain cell appears. The total growth 

at all times t is Fg(t) relative to this fixed reference configuration with initial condition Fg(0) 

= 1. This hypothesis leads to unphysically large elastic and growth distortions for later times 

t ≫ 0. In numerical implementation of the theory, solvers fail to converge for these large 

distortions. Furthermore, this theory does not account for mass appearing at some time, say 

τ > 0, thereby introducing material points where none existed before and defining the 

reference state from which the newly formed material deforms. Finally, it does not address 

the evolution of local material properties, in this case represented by the strain energy 

density function. In the traditional approach to morphoelastic growth the strain energy 

density is defined with respect to the reference configuration. If the latter is fixed, it restricts 

the changes of the strain energy density function as growth and morphogenesis proceed.

To circumvent these difficulties, we define a continuously evolving reference configuration, 

Ωτ, which coincides with the deformed configuration resulting from all morphoelastic 

processes from times t ≤ τ (see Fig. 1).

In this setting, the kinematics of finite strain multiplicative morphoelasticity is elaborated 

upon by time parameterization yielding uτ, Fτ, Fτ
g, Fτ

e all corresponding to the reference 

configuration Ωτ. They satisfy the kinematic relations:
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Fτ = 1 + ∂uτ
∂Xτ

, (4)

Fτ = Fτ
eFτ

g, (5)

Cτ
e = Fτ

eTFτ
e . (6)

The strain energy density function is defined at points Xτ ∈ Ωτ and written as

ψτ(Cτ
e) = 1

4λ(detCτ
e − 1) − 1

2
1
2λ + μ log detCτ

e + 1
2μ(trCτ

e − 3) . (7)

Finally, the stress and governing partial differential equation are:

Pτ = ∂ψτ
∂Fτ

e = μFτ
e + 1

2λJcFτ
e−T − 1

2λ + μ Fτ
e−T, (8)

∇τ ⋅ Pτ = 0 in Ωτ, uτ = ūτ on ∂Ωτu, PτNτ = t̄τ on ∂ΩτP . (9)

The strain energy density, ψτ, while written here in time-independent functional form, could 

also evolve in general. This reflects the understanding that the strain energy density, like the 

free energy, is defined relative to some reference. Here, as Fig. 1 suggests, it is redefined at 

each reference state, Ωτ. In practice, a discrete time parameterization is adopted at instants τ 
∈ {t0, t1, … }. This is natural for data acquisition and computations.

3. An inverse problem posed on the geometry of the developing brain

In §4-6 we describe the steps by which we arrive at geometric field data, u that represents 

displacements during growth of the developing brain. With these data, we seek to solve an 

inverse problem for the growth tensor field Fτ
g and displacement field uτ such that the error 

uτ − uτ is minimized under the constraint of the physics expressed in Eqs. (4-9). The data 

field uτ will be interpolated from pointwise displacement vectors dτ1, …dτN at N instants 

Xτ1, … XτN. Similarly, we will use the finite-dimensional version Fτ
gℎ

 of the unknown 

growth tensor and the corresponding displacement field, uτℎ. Our approach is to use the 

finite-dimensional weak form of the governing Eq. (9), which is expressed as follows in 

terms of uτℎ and Fτ
gℎ

:
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For some uτℎ ∈ Sℎ ⊂ S, where Sℎ = {uτℎ ∈ ℋ1(Ω) ∣ uτℎ = uτ on ∂Ωu}, and ∀ wℎ ∈ Vℎ ⊂ V, 

where Vℎ = {wℎ ∈ ℋ1(Ω) ∣ wℎ = 0 on ∂Ωu}, the finite-dimensional (Galerkin) weak form of 

the problem is satisfied:

∫
Ω

∇wℎ :Pτ(uτℎ, Fτ
gℎ)dV − ∫

∂ΩP

wℎ ⋅ tdS = 0 .
(10)

In a forward solution of the weak form, a constitutive model would be written for Fτ
gℎ

. This 

approach, with some variations, has been followed almost universally in the literature up to 

this point [6-9,11,21,24,38,39,42]. The determination of Fτ
gℎ

 by solution of an inverse 

problem is a significant departure in the current work. By seeking to invert a tensor field it 

also stands in contrast to classical inverse problems in mathematical physics that infer a 

small number of scalar parameters. We decompose Ωτ into element sub-domains Ωτe, for e = 

1, … nel. The variations wh, trial displacement solutions uh and growth tensor Fτ
gℎ

 are 

defined by using a finite number of basis functions in each element,

weℎ = ∑
a = 1

n
caNa, uτe

ℎ = ∑
a = 1

n
dτaNa, Fτe

gℎ = ∑
a = 1

m
χτa

Ma (11)

where ca, dτa ∈ ℝ3, χτa ∈ ℝ3 × 3, n is the dimensionality of the function spaces Sℎ and Vℎ, m 

is the dimensionality of the expansion for Fτ
gℎ

 and Na, Ma represent basis functions. We 

assume the growth tensor to be diagonal and anisotropic, and interpolate it using nodal basis 

functions, thus reducing its dimensionality also to n. Its diagonal terms are written as:

diag Fτe
gℎ = ∑

a = 1

n
χτa

Ma (12)

where χτa ∈ ℝ3. This form was motivated by the total deformation gradient tensor, which 

when extracted from MRI data on normative, developing fetal brains in Gholipour et al.’s 

atlas [18] by the methods in Sections 4-6, was found to be similarly diagonally dominant 

and anisotropic. We made this assumption throughout the following of this communication, 

and dispensed with the tildes on χa.

We define the residual vector arising from finite element assembly of the weak form:

Rτ(dτ, χτ) = A
e ∫

Ωe

∑
a = 1

n
∇Na ⋅ q(uτℎ(dτ), Fτ

gℎ(χτ))dV − ∫
∂ΩPe

NatdS (13)

where Ae denotes the assembly operator over the elements, and the arbitrariness of the 

degrees of freedom corresponding to the variations has been used, as is the practice in the 
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variational setting. Recall that the dimensionality of the vector Rτ is the total number of 

unknown displacement degrees of freedom. The discretized, Galerkin weak form of the 

problem is then Rτ(dτ, χτ) = 0. In the current setting, it represents the physics that constrains 

the inverse problem, for whose solution we adopt two approaches.

3.1. Inverse solution for Fτ
g by gradient descent on a loss function

In this approach we directly define the field data u as a finite-dimensional function:

uτe = ∑
a = 1

n
dτaNa (14)

and use it instead of uτℎ in the weak form (10) and residual Eq. (13) to arrive at Rτ(dτ, χτ). 
The loss function is

ℓgd(Rτ) = ∣ Rτ ∣ (15)

defined via the Euclidean norm. We use gradient descent algorithms, and their variants, to 

find

χτ = arg min
χ

ℓgd(Rτ(dτ, χ)) . (16)

Note that the form of the loss, ℓgd = ∣Rτ∣, means that the exact satisfaction of the constraint 

R(d, χ) = 0 is the optimal solution to (16). As in many high-dimensional, nonlinear 

optimization problems, this solution is not attainable, in general. Instead, we seek to arrive at 

ℓgd < ε for some tolerance ε using either the classical gradient descent algorithm or one of its 

variants. The field Fτ
gℎ

 is then recovered by Eq. (12).

3.2. Solution of the inverse problem by adjoint-based gradient optimization

With uτ written as in Eq. (14) we solve the following minimization problem, beginning with 

the loss redefined as the L2-norm of the error

ℓL2 = ‖uτ(dτ) − uτℎ(dτ(χτ))‖2,
χτ = arg min

χτ
ℓL2, such that Rτ(dτ, χτ) = 0 . (17)

The minimization is solved classically, by computing gradients of the loss ℓL2. Importantly, 

the PDE constraint Rτ(dτ, χτ) = 0 makes dτ an implicit function of χ. This makes the 

functional derivatives δℓL2/δdτ challenging to compute. The obvious approach is to solve the 

PDE constraint repeatedly for a range of values of χτ and construct the implicit derivative 

by numerical differentiation. In addition to the expense of a large number of PDE forward 

solves for a single derivative evaluation, numerical differentiation is noisy and ultimately 

introduces instabilities. The well-established alternative is to employ the adjoint of the 

Jacobian of the PDE constraint with respect to dτ to compute δℓL2/δdτ. The Jacobian arises 
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in the complete first-order Taylor expansion of the PDE constraint equation, and allows the 

computation of δℓL2/δdτ with a single adjoint solution per step. We have adopted this 

approach to PDE constrained optimization here, and refer to it as adjoint-based gradient 
optimization. In this work we use the L-BFGS-B optimization algorithm from SciPy [43] 

with the aid of the dolfin-adjoint [29] package for adjoint-based gradient optimization.

3.3. Algorithm testing with synthetic data

The gradient descent and adjoint-based gradient optimization approaches were first tested 

against synthetic data for nonuniform but continuous growth tensor fields. These fields were 

obtained by solving a three-dimensional, steady state diffusion problem for a scalar field c 
and defining Fg to be a function of this argument. The steady state diffusion problem is:

∇2c = 0 in Ω, (18)

c = 1 on Γv, (19)

c = 1.2 on Γc, (20)

where Ω was taken as the normative fetal brain geometry at week 21 from the atlas of 

Gholipour et al. [18], Γv is the interface between the ventricles and sub-cortex and Γc is the 

outer surface of the cortex. The growth deformation gradient tensor is chosen to be diagonal, 

but anisotropic, and of the form:

F g = 1 + 0.15(c − 1)e1 ⊗ e1 + 0.05(c − 1)e2 ⊗ e2 + 0.1(c − 1)e3 ⊗ e3 . (21)

The field of detF g
 is shown in Fig. 2. The forward problem of morphoelastic growth, 

described in (Eqs. 4)-(13) was then solved by the finite element method for time τ = 0 on a 

mesh with 27,306 tetrahedral elements using the FEniCS open source code [1]. The 

neoHookean strain energy density function (1) was used in the nearly incompressible limit 

with λ = 82200 Pa and μ = 1677 Pa [42], corresponding to a Poisson ratio v = 0.49 in the 

infinitesimal strain regime. We denote the resulting synthetic displacement field by us. To 

model the noise present in the displacement fields extracted from the fetal brain atlas, 

varying amounts of Gaussian noise were applied to the synthetic data. For displacement 

fields with applied noise fraction p, nodal displacements were offset by δu ∼ N(0, puc), 
where p ∈ {0, 0.01, 0.02}. We did not include spatiotemporal variations of material 

properties. The results presented here do not change significantly for variations of the bulk 

and shear modulus within an order of magnitude. However, as is well understood, forward 

and inverse solution steps converge more slowly as the incompressible limit is approached 

(studies not shown).

3.3.1. Inverse solution by gradient descent on synthetic data—The problem as 

posed in Sections 3.1 and 3.2 admits a multitude of feasible solutions, and optimal solutions, 

if they are obtained also could be non-unique. This situation is typical of inverse problems. 
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The optimization algorithms navigate a high-dimensional landscape of feasible solutions 

seeking the optimal one. Furthermore, stiffness is induced by the nonlinearity of the PDE 

constraint in the form of the residual (13). This combination can lead to slow convergence or 

even divergence. Aiming to mollify this problem, we linearly subdivide the synthetic data us 

into some number of steps, in this case ten. The gradient descent approach at step i uses 

ui = i
10uc. The initial guess for the nodal values of Fg at step i ≠ 0, i.e., the nodal tensor 

unknowns χi, was the inferred Fg from the previous step such that χi0 = χi−1final. The initial 

guess for χ at Step 1 was chosen to be the diagonalized deformation gradient tensor 

constructed from the displacement 1
10uc, i.e. the target displacement at Step 1. Specifically, 

we project diagonal components of the deformation gradient tensor to the nodes by solving 

an L2 projection problem:

∫
Ω

Ξ10 : χ10 − diag(F) dV = 0, (22)

with Ξ10 being the variations on χ10. We define the volume averaged L2 error for the final 

inferred Fg at the tenth step as:

‖e(F g)‖2 ≔ 1
V ∫

Ω
∣ F10

g − F g ∣F2 dV
1 ∕ 2

, (23)

where ∣ ∙ ∣F denotes the Frobenius norm and F g
 is the field from Eq. (21). With the inferred 

F10
g , we then evaluate the displacement by solving the forward elasticity problem, and 

evaluate its volume averaged L2-error by

‖e(u)‖2 ≔ 1
V ∫

Ω
∣ u − u ∣2 dV

1 ∕ 2

. (24)

Gradient descent updates were driven by the Adam optimizer with default parameters [27]. 

For steps 1–9, 10,000 epochs were used with learning rate decay in epoch k given by 

ηk =
ηk − 1

1 + (5 × 10−8)k
 and η0 = 10−4. To ensure convergence on the final step, 100,000 epochs 

were used with learning rate decay given by ηk =
ηk − 1

1 + (2 × 10−9)k
 and η0 = 10−3.

Fig. 2 shows det F g
 inferred by gradient descent from synthetic data at different level of 

noise. Also shown in Table 1, gradient descent with the Adam optimizer allows inference of 

an Fg field with volume-averaged L2-error that is three orders of magnitude lower (fifth 

column) than the L∞-norm of the applied Fg for synthetic data generation, and even with 

noise fraction p = .02 remains an order of magnitude lower. However, the inferred Fg field 

appears less smooth when obtained from the noisy data. We also have included the volume-
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averaged L2-error in the forward displacement (fourth column) computed by applying the 

gradient descent-inferred Fg field. For synthetic data without noise, the volume-averaged L2-

error is three orders of magnitude lower than the L∞-norm of u and one order of magnitude 

lower for noise with p = .02. Gradient descent calculations were carried out with the 

mechanoChem code,2 a general-purpose library for finite element and isogeometric solution 

of coupled problems in biophysics and materials physics. mechanoChem draws from the 

deal.ii library [3,4].

3.3.2. Inverse solution by adjoint-based gradient optimization—As discussed in 

§3.2 adjoint-based gradient optimization involves the forward solution of the PDE constraint 

R(d, χ) = 0 at each step of the algorithm–see Eq. (17). As also expressed there, this forward 

solution is driven by the inferred nodal growth tensor field χ at each iteration. This forward 

problem is numerically stiff due to the nonlinearity, near-incompressibility and complex 

geometry of the brain. While the adjoint solution step to determine gradients typically poses 

no difficulty, divergence of the forward solution will cause the termination of the overall 

algorithm. Therefore, we now linearly subdivide the inferred χ into 100 steps in driving the 

forward solution. The initial guess for χ was again chosen to be the diagonalized 

deformation gradient tensor constructed from us.

Fig. 2 and Table 1 also include the results obtained by adjoint-based gradient optimization. 

Using noise-free data, the volume-averaged L2-error in the inferred Fg is higher than that 

obtained by the gradient descent approach, but the volume-averaged L2-error in the forward 

displacement solution obtained as an inherent part of the adjoint-based gradient optimization 

approach is about one order of magnitude lower than the corresponding error obtained by 

gradient descent. The superiority of the adjoint-based approach is more apparent in the 

presence of noise, improving to an order of magnitude lower volume-averaged L2-error for u 
and Fg over the gradient descent approach for p = .02. Additionally, the inferred Fg field is 

smoother than that obtained by gradient descent. The adjoint-based approach is, in general, 

more computationally expensive since it needs one evaluation of the adjoint solution per 

step. Nevertheless, given these performance metrics, we choose to exclusively use the 

adjoint-based gradient optimization approach with the real MRI data from the fetal brain 

atlas, because of the inevitability of noise therein. Adjoint-based gradient optimization was 

carried out using the L-BFGS-B optimization algorithm from the SciPy package [43] and the 

dolfin-adjoint software library [29].

We emphasize that the above numerical implementations of the inverse problem was made 

possible by the theory of evolving reference configurations. The traditional approach of a 

single reference configuration with F(t) = Fe(t)Fg(t) does not converge for times beyond 

week 23.

4. MRI segmentation and FE model generation

We obtained data on brain geometries from a spatiotemporal magnetic resonance imaging 

(MRI) atlas of the fetal brain developed for the study of early brain growth [19]. Based on 

2https://github.com/mechanoChem
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MRIs of 81 normal fetuses scanned between gestational weeks 19 and 39, Gholipour et al. 

created a four-dimensional atlas of brain development during the second half of gestation 

and covering weeks 21 through 37 [18]. Six to eight scans were used for the reconstruction 

of each week’s atlas. The automatic atlas generation includes repeated motion correction, 

super-resolution volume reconstruction, brain mask segmentation, rigid alignment to the 

atlas space and intensity homogenization [19]. The resulting atlas clearly illustrates the 

temporally and spatially heterogeneous growth during early in utero brain development, 

including numerous instances of folding and creasing. In a first step, the present work 

focuses on weeks 21 through 25 during which the first major elastic bifurcation occurs, and 

from which the central sulcus (CS) emerges [22]. For each gestational week, we created a 

finite element model of the brain from the respective MR images using the ScanIP software 

environment of Simpleware (Synopsys, Mountain View CA), see Fig. 3. In a semi-automatic 

segmentation procedure, we delineated the cortex, subcortex and lateral ventricles based on 

grayscale contrast and created a three-dimensional reconstruction of these structures [45]. 

The software converted these segmentations into a volumetric model consisting of 

tetrahedral elements. We prescribed a minimum and maximum element edge length of 

2.0mm and 2.5mm, respectively, and obtained meshes with a total number of 68,849 

elements for the model of week 21, 78,385 elements for week 22, 83,000 elements for week 

23, 97,138 elements for week 24 and 172,289 elements for week 25. The number of 

elements and nodes of each subregion are summarized in Table 2. Based on our 

segmentations, we observe that the total brain volume, i.e. cortex and subcortex, increases by 

130% and ventricular volume increases by 17% between weeks 21 and 25. Specifically, 

cortical volume changes from 17155 mm3 at week 21, to 20651 mm3 at week 22, 20468 

mm3 at week 23, 26099 mm3 at week 24 and 35232 mm3 at week 25; subcortical volume 

increases from 23,834 mm3 at week 21, to 29159 mm3 at week 22, 33056 mm3 at week 23, 

41360 mm3 at week 24 and 58646 mm3 at week 25; and ventricular volume changes from 

5079 mm3 at week 21, to 5176 mm3 at week 22, 4011 mm3 at week 23, 4527 mm3 at week 

24 and 5946 mm3 at week 25. The rostral-caudal brain length increases by 29.5% between 

weeks 21 (59.86 mm) and 25 (77.54 mm); the width of the brain increases by 26.4% 

between weeks 21 (49.31 mm) and 25 (62.33 mm); and the height of the brain increases by 

33.8% between weeks 21 (39.19 mm) and 25 (52.44 mm).

5. MRI registration framework

The continuous morphological changes of the fetal brain during in utero development are 

inherently contained in the fetal brain atlas described previously. To determine the 

incremental brain deformations driven by growth between consecutive gestational weeks, we 

use a previously developed registration method that determines the nonrigid spatial 

transformation between two MR images by maximizing the congruence of image intensities. 

Specifically, we built on the work of Pawar et al. [32] who optimized their algorithm for 

large deformations and topological changes between medical images. The source image I1 

(f(x, t)) and the target image I2 (x) are both embedded in hierarchical truncated B-spline 

objects with the spatial transformation function (f(x, t) given by [32]
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f(x, t) = ∑
m = 1

Nb
Pm(t)ϕm(x), (25)

where Pm(t) are the control points associated with the trivariate basis functions ϕm(x), and 

Nb represents the total number of basis functions. As part of the registration process, the 

transformation function f(x, t) is incrementally varied until dissimilarities between source 

and target image are minimal. To that end, we followed the proposed energy functional 

E(f(x, t)) proposed by Pawar et al. which accounts for intensity differences and penalizes 

non-smoothness of the deformation field [32]. The minimization of the energy functional is 

achieved by posing it as an L2 gradient flow, thus simplifying the optimization problem to a 

partial differential equation. The energy functional takes the following form [32]

E(f(x, t)) = ∫
Ω

g(x, t)(I2(x) − I1(f(x, t)))2dΩ

+ λ1∫
Ω

‖f, u(x, t)‖2
2 + ‖f, v(x, t)‖2

2 + ‖f, w(x, t)‖2
2 dΩ

+ λ2∫
Ω

‖f, u(x, t)‖2
2‖f, v(x, t)‖2

2 − (〈f, u(x, t), f, v(x, t)〉)2

+ ‖f, v(x, t)‖2
2‖f, w(x, t)‖2

2 − (〈f, v(x, t), f, w(x, t)〉)2

+ ‖f, u(x, t)‖2
2‖f, w(x, t)‖2

2 − (〈f, u(x, t), f, w(x, t)〉)2 dΩ,

(26)

where the first term measures the sum of squared differences of the intensity between the 

iteratively updated source and target images, ⟨u, v⟩ is the dot product and λ1 and λ2 are 

regularization parameters that penalize non-smoothness and inconsistent area change of each 

face of the 3D control grid elements during deformation. The terms f,u(x, t), f,v(x, t) and 

f,w(x, t) are the first derivatives of f(x, t) with respect to coordinates {u, v, w}, and g(x, t) is 

given by

g(x, t) = 1

γ + ∂I1(f(x, t))
∂u

2
+ ∂I1(f(x, t))

∂v
2

+ ∂I1(f(x, t))
∂w

2 ,
(27)

where γ is a small number to prevent division by zero. The gradient flow form for 

minimization of E is:

dPm(t)
dt = − δEm(f(x, t)) . (28)

Control points are updated using the Forward Euler method and by introducing a pseudo 

timestep ϵ. The control points Pm(t) are iteratively computed for time point s + 1 based on 

the solution of the previous timestep s as follows

P s + 1 = P s − ϵδEs(f(x, t)) . (29)
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δEs(f(x, t)) is the derivative of the energy functional with respect to parametric domain x, see 

Ref [32]. for a detailed derivation. The optimization loop ends when the change in intensity 

difference falls below a given tolerance. We direct the reader to Ref [32]. for a detailed 

derivation of the registration framework. Also of interest is Ref [14]. where the authors used 

minimization of the elastic strain energy in their image registration of morphogenetic 

changes in fetal brains. In the work presented here, we embed our images in an initial three-

dimensional grid of size 32 × 32 × 32 control points, set maximum number of refinement 

steps to 3, regularization parameters λ1 and λ2 to 0.0001 and 0.0001, respectively, and 

chose a timestep size of 1×10−5.

We used the registration framework to determine the four deformation fields between weeks 

21 and 22, weeks 22 and 23, weeks 23 and and weeks 24 and 25. For each pair, we selected 

the first week as the source image and the second week as the target image. It took 22 

iterations for the first two steps of 21–22 and 22–23 weeks, 24 iterations for 23–24 weeks 

and 57 iterations for 24–25 weeks to obtain the optimal transformation map with an average 

similarity ratio of 81.95%. This increase in iterations reflects the evolving morphological 

complexity of the progressive developmental steps. Local spline refinement increased the 

number of active degrees of freedom on average by a factor of 5.3; additional convergence 

properties are summarized in Table 3.

6. Growth-induced full-field brain deformations

Following the registration step, we extracted the displacement vector of each control point in 

our grid. In Fig. 4 we show the undeformed and deformed grids on a coronal and axial slice 

for all four registration steps. The effect of the regularization terms is clearly reflected in the 

smoothness of the deformation field throughout the brain. Simultaneously, the week-wise 

registration steps allow identification of the major folding event, i.e. the formation of the 

central sulcus, at week 24. Increased grid density leads to a higher spatial resolution of the 

three-dimensional deformation field and improves the detection of local growth phenomena.

Fig. 5 shows registration results for changes between weeks 24 and in three representative 

slices, the coronal, axial and sagittal views, respectively. The magnified images reveal the 

grid deformation and identify local growth patterns that produce highly heterogeneous 

deformation fields. Two challenges are encountered in the steps of MR image registration 

and computation of growth-induced deformation:

Newly formed brain regions limit the registration framework:

The registration framework faces significant challenges when new substructures emerge 

between two distinct scans. In general, the registration framework assumes that all material 

points are preserved and simply undergo a potentially large deformation. During fetal brain 

development, novel brain structures emerge between discrete weekly atlases. The generation 

of new material points leads to non-uniformities and incompatibilities in the displacement 

field which we have not yet addressed in the present work. Effectively, registration is not 

being performed on the same brain in two different configurations, but on two brains with 

different structures. Since our registration framework minimizes pixel intensity differences, 

the appearance of novel structures, can lead to divergence of our registration step and 
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produce a severely distorted displacement field. Therefore, our approach provides reliable 

displacement data in the case of morphogenetic growth which manifests in the form of pure 

volumetric expansion. In this case, material points preserve their intensity value in MR 

images and simply displace. When new material emerges and influences the intensity 

distribution, the registration framework is observed to artificially distort the grid. Therefore, 

we are limited to one-week intervals over which the emergence of new substructures is 

minimal.

Heterogeneous Growth Field:

In order to prepare data for the inverse problem, we use the nodal displacement vectors in 

our FE meshes for weeks 21 through 24 to determine the reference configurations. 

Specifically, we use trilinear interpolation in the registration data to obtain the full-field 

displacement data for every node in each mesh based on the registration results from that 

particular week. Fig. 6 shows the respective results as displacement vectors that are color-

coded by magnitude. Earlier weeks (21 to 23) are characterized by rather homogeneous 

small displacements across the cortex. Later weeks (23 to 25) exhibit increasingly 

heterogeneous displacements which is characteristic for localization of growth due to the 

formation of the central sulcus, and the subsequent formation of folds within each lobe. The 

rapid proliferation and migration of neurons during this period of development [12] leads to 

an acceleration of brain growth. Neuronal migration is largely complete by week 26 [44], 

but their placement has an influence on subsequent growth and folding. The observed 

growth patterns are also indicative that brain development is significantly more complex 

than purely uniform, morphological growth but must adhere to genetically encoded cell 

migration patterns that result in the highly reproducible brain topology observed within any 

species. The top row of Fig. 6 shows the displacement field of the outer cortical surface; the 

bottom row shows the displacement field of the ventricular surface. We measured a 

maximum displacement of 5.79 mm in the temporal lobe between weeks 24 and 25. We 

observe mean displacements of the outer cortical surface of 0.45±0.27 mm between weeks 

21 and 22, 0.88±0.42 mm between weeks 22 and 23, 1.91±0.74 mm between weeks 23 and 

24 and 3.03±1.06 mm between weeks 24 and 25. Mean displacements of the ventricular 

surface are 0.19±0.13 mm between weeks 21 and 22, 0.28±0.19 mm between weeks 22 and 

23, 0.8±0.51 mm between weeks 23 and 24 and 1.49±0.7 mm between weeks 24 and 25. 

Overall, we find that growth is highly symmetric during this early stage of brain 

development and posit that individual differences between hemispheres are the result of 

averaging data from multiple brains when the atlas was constructed [19].

In earlier work, Rajagopalan and co-workers had performed image registration on fetal 

brains over weeks 20–28 to report the scalar volume changes [34] as well as the “principal 

growth direction” [35] and the spatiotemporal variation of these quantities. The same 

information could have been extracted from the results presented in Figs. 4-6. Instead, we 

seek to further account for the constraint of the physics of morphoelastic growth. As we 

show in Section 7, this further delineates the inelastic growth deformation tensor, Fg and 

separates it from the elastic part of the deformation gradient tensor, Fe. This consideration of 

the laws of morphoelastic growth differentiates the current work from that of Rajagopalan 

and co-workers [34,35].
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6.1. Gaussian filtering—While filtering techniques typically are applied to raw MRI 

data to generate the images in Fig. 3a, noise is reintroduced by the registration algorithm. 

The displacement field reported in Figs. 5-6 is therefore in need of smoothing before its use 

in the numerical techniques of inverse modelling, since the forward and inverse problems 

require computation of deformation gradients. Further Gaussian filtering helps improve 

convergence of the corresponding numerical solvers (as shown in Table 4). We applied 

Gaussian filtering to the post-registration displacement field, noting however, that the 

standard discrete Gaussian filter cannot be applied in a straightforward manner to 

unstructured meshes that must be used for the irregular geometry of the brain. Consider the 

continuous Gaussian filter over the infinite domain:

u(x0) = ∫ℝ3G(x0, x)ureg(x)dV

= ∫Ω
G(x0, x)ureg(x)dV ,

where G(x0, x) = 1

2πσ2 3e− ‖x‖2

2σ2  is the three-dimensional Gaussian distribution, σ is the 

standard deviation and ureg is the displacement field after registration. Since ∫Ω GdV < 1 we 

scale the filtered displacement at each node to obtain:

u(x0) =
∫ℝ3G(x0, x)dV
∫ΩG(x0, x)dV ∫

Ω
G(x0, x)ureg(x)dV

= 1
∫ΩG(x0, x)dV ∫

Ω
G(x0, x)ureg(x)dV .

(30)

7. Inference of the fetal brain’s growth deformation tensor

The displacement field data for weeks τ to τ + 1 obtained after registration and filtering, as 

detailed in Sections 4-6, is uτ. The corresponding nodal values on various meshes are dτ. As 

explained at the end of Section 3.3.2, we used adjoint-based gradient optimization guided by 

the lower volume-averaged L2-errors obtained relative to optimization by gradient descent. 

The following subsections discuss the meshes used, further interpolation of data between dτ

and dτ + 1 to aid convergence, initialization of χ (nodal values of Fg) and numerical 

performance. Results are presented as tables and figures for the volume-averaged L2-errors, 

Eq. (24), with u = uτ and figures for the inferred fields of Fg.

7.1. Meshes

The MRI data at weeks 21 and 23 yield the corresponding reference configurations, Ω21 and 

Ω23, on which tetrahedral meshes were constructed with 27,306 and 32,385 elements, 

respectively. Reference configurations Ω22 and Ω24 were then generated by deforming Ω21 

and Ω23, respectively, using the displacement fields u21 and u23 obtained by MRI registration 

for week 21–22 and week 23–24. These displacement fields applied to the meshes on Ω21 

and Ω23 also yield the meshes on Ω22 and Ω24. All these meshes appear in Fig. 7.

Wang et al. Page 16

Brain Multiphys. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.2. Data interpolation to aid convergence

The displacement field data, u23, between weeks 23 and 24, results in large distortions that 

appear in the deformation gradient, F 23. Since this field also drives, and confers these 

distortions on, the iterates of the inferred F23
g , it makes the forward solution for u23 

numerically stiff and prone to divergence in the adjoint-based gradient optimization. We 

therefore carried out a linear interpolation and redefined the displacement on Ω23 to be 

u23 = 1
2u23 to an interpolated reference configuration Ω23.5. In a continuation of this 

interpolation, we also defined u23.5 = 1
2u23 on Ω23.5 to Ω24. In a further magnification of this 

large morphoelastic growth, u24 between weeks 24 and 25 leads to even greater distortions 

and more severe divergence of the forward solution for u24 during adjoint-based gradient 

optimization. We therefore defined eight intermediate displacement fields 

u24, u24.125, …u24.875 = 1
8u24 and the corresponding interpolated reference configurations 

Ω24.125, … Ω24.875. These interpolated geometries fit with the concept of evolving reference 

configurations discussed in Section 2.1. Given these interpolated displacement fields, we 

aimed to infer the growth deformation tensor, Fτ
g, between reference configurations Ωτ and 

Ωτ+Δτ defined as above.

The initial guess at each configuration Fτ0
g  was chosen to be diagonal and assembled from 

the corresponding components of the deformation gradient tensor F τ = 1 + ∂uτ ∕ ∂Xτ or 

F τ = 1 + ∂uτ ∕ ∂Xτ (if displacement interpolation to intermediate reference configurations 

was used). The nodal values, χτ0 were then obtained by solving the L2-projection:

∫
Ω

Ξ : χτ0 − diag F τ dV = 0 if uτ has not been defined,

∫
Ω

Ξ : χτ0 − diag F τ dV = 0 if uτ has been defined,
(31)

with Ξ being the variations on χτ0.

7.3. Convergence

Our approach to the inverse problem involves iterations on the adjoint equation to update χτ, 

which is then interpolated for Fτ
g. Each solution of the adjoint equation is followed by a 

forward solution for uτ. In order to mollify numerical stiffness and ease the direct solver’s 

path to convergence, we linearly subdivided χτ into 100 steps in driving the forward 

solution. The convergence threshold was set to requiring that the loss (see Eq. 17) be smaller 

than 2 × 10−2 of ‖uτ‖∞, and that the relative change in loss between successive adjoint 

solution steps falls below 10−3. This threshold typically required 2000 adjoint iterations to 

achieve and cost about 900 CPU-hours on the XSEDE cluster Comet. A sample convergence 

plot is shown in Fig. 8. Linearly extrapolating the loss curve, we see that it would take at 

minimum an additional 1000 iterations to see the loss drop by another order of magnitude, 
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but given the convex shape of this curve, it would likely require many more. Given the 

computational cost that this would incur, we have not pursued a further decrease of the 

relative change in loss by an order of magnitude to ~ 10−4.

7.4. Results

We obtained the inverse solutions on data without filtering and with Gaussian filtering using 

zero mean and standard deviation σ = 0. 5 mm. Table 4 includes results for these cases3 

Filtering leads to a lower volume-averaged L2-error between the MRI data and the forward 

displacement solution driven by the inverted growth deformation gradient field for all cases. 

However, filtering reduces ‖uτ‖∞ to a degree, especially because surface effects truncate the 

integrals where the raw displacement is expected to be greatest.

Fig. 9 shows the final forward displacement field solution, uτ, obtained during the adjoint-

based gradient optimization using data without filtering. The top and bottom rows in Fig. 9, 

show the inferred displacement field uτ on the cortical and ventricular surfaces and are 

counterparts to Fig. 6 which showed the displacement data fields after registration. This 

comparison provides a visual understanding of how close the inferred Fτ
g is to the unknown, 

true F τ
g
, using the displacement fields as surrogates. The second and third rows show the 

forward displacement fields corresponding to the interpolated uτ fields. Note that in each 

case, these are incremental fields, for which reason, interpolation into more steps over 23–24 

and 24–25 weeks results in smaller magnitudes uτ. As a result, over 24–25 weeks, in 

particular, it appears that the forward displacement solution has lower magnitude than the 

MRI displacement data by registration. The corresponding relative error between the MRI 

displacement data by registration and the inferred displacement field, erel = (u − uℎ) ∕ ∣ u ∣, is 

shown in Fig. 10. Higher errors appear in locations of high curvature, e.g. near ventricles 

and are otherwise homogeneously spread out over the frontal, parietal, and occipital lobes. 

Table 4 shows, for each stage (by week or at interpolated instants) of the inference, the 

maximum displacement ‖u‖∞ and volume-averaged L2-norm of the error, as defined in Eq. 

(24). Note that ‖e(u)‖2 ≤ 2 × 10−2‖u‖∞ at each stage. Furthermore, on summing ∥e(u)∥ over 

the eight steps interpolating between weeks 24 and 25 and using the triangle inequality, it 

follows that the total volume-averaged L2-error in the forward displacement field from the 

inference relative to the MRI displacement data is bounded from above by 4.3 × 10−2.

The main goal of this study is the inference of Fτ
g fields at the time instants, τ, from adjoint-

based gradient optimization. Following inference and before plotting in the figures that 

follow, these fields were smoothed by Gaussian blurring (Eq. 30 with σ = 0.5) in order to 

minimize artifacts introduced by mesh topology. Fig. 11 shows the volume change induced 

by growth alone—i.e., discounting elastic deformation—via detFτ
g on three representative 

slices: the coronal, axial and sagittal planes, respectively. Recall that Fτ
g is the volume 

change induced at each stage τ by cell division and growth following migration. Fig. 11 

therefore offers, to our knowledge, the first data-driven inference of these cell dynamics that 

3Fig. 13 in the Appendix shows the detFg field with an additional level of filtering using σ = 1 mm.
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are the cause of morphoelastic brain growth, and ultimately of its folding. We draw attention 

to the radial distribution of growth, seen best in the axial, coronal and sagittal sections and 

increasing from lower values near the ventricles to higher in the cortex. This distribution is 

the first data-driven confirmation of the assumption underlying the morphoelastic theory of 

brain folding: that growth is radially distributed, increasing along the ventricular-cortical 

direction. The interpolation of morphoelastic growth displacements over eight steps between 

24 and 25 weeks, combined with the treatment using evolving reference configurations, 

renders the inferred detF24
g , …detF24.875

g  smaller than detF21
g , …detF23.5

g . The same pattern of 

radially distributed growth, increasing from ventricles to the cortical surface, is seen for the 

eight steps between 24 and 25 weeks when plotted over a narrower range on the right in Fig. 

11. Also, the volume-averaged detFg in the cortex is larger than in the subcortex in all cases, 

except for growth between 22 and weeks (see Table 5). This strain mismatch between the 

layers is additional quantitative validation of the kinematic assumption commonly used in 

morphoelastic growth theories and that drives the emergence of folding, wrinkling and 

creasing.

While it is suggestive to gain a measure of the total growth over to 25 weeks by multiplying 

detF24
g × detF24.125

g ⋯ × detF24.875
g , this is not mathematically correct according to the 

treatment of evolving reference configurations. That is, there is no notion of a quantity, say 

F 24 − 25
g = F24.875

g F24.75
g ⋯F24

g  representing pure growth kinematics between 24 and 25 

weeks. However, the product of determinants detF24.875
g × detF24.75

g × ⋯ × detF24
g  furnishes 

an approximate value of the total growth-driven volume change. From the consistent 

appearance of detFτ
g in the frontal and temporal lobes over the eight steps, this approximate 

measure suggests that the growth volume change ratio between weeks 24 and 25 approaches 

the range 1.48 to 2.14 in these regions.

Through Fig. 11 it also emerges that growth, whose localization is dependent on cell 

dynamics that is complete by week 26 [44] is indeed focused in the frontal, parietal and 

occipital lobes, and the cerebellum. Our inverse solutions in Fig. 11 suggest that there may 

be some regions where detFg ≲ 1, implying local contraction, possibly driven by the 

migration of cells away from the corresponding neighborhoods. However detFg ≳ 1 over 

most of the brain.

Fig. 12 shows the normal and maximum tangential components of the growth tensor plotted 

on the corresponding reference configurations for each incremental step. We observe that 

tangential growth is significantly larger than normal growth which is in line with cortical 

expansion during early growth followed by cortical thickening during later stages. Moreover, 

we observe that tangential growth is highest where the central sulcus forms (week 22–23) 

and in locations of secondary folding in the frontal and parietal lobes (week 24–25). 

Additionally, there are slightly elevated normal growth components in these respective 

locations for week 22–23 and week 24–25 which indicate out of plane deformations of the 

cortical surface due to folding. These results bear comparison with the results of 

Rajagopalan and co-workers who separately reported the scalar volume changes [34] and 

principal growth directions [35] resulting directly from the displacement rather than 
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constrained by the laws of morphoelastic growth as we have presented here. This finding of 

greater growth in the local tangential plane of the cortex than in the perpendicular direction 

under the constraint of morphoelastic growth is the first data-driven confirmation of this 

mechanism to our knowledge.

Finally, we applied Gaussian filtering with zero means and standard deviations σ = 1 mm on 

u24. The effect on the inferred Fτ
g fields from Gaussian filtering of the MRI displacement 

data (introduced at the beginning of this section) is presented in the Appendix as Fig. 13. 

Larger filters smooth out the displacement fields obtained from MRI data, and also 

contribute to a more uniform distribution of detFτ
g.

As explained in Section 7.2, the total deformation gradient tensor F τ was used as the initial 

guess for the growth deformation tensor, Fτ0
g . Note that the studies of [34,35] reported the 

scalar volume changes and “principal growth directions” from a differently obtained, but 

essentially the same quantity as F τ. We report the inferred Fτ
g constrained by the laws of 

morphoelastic growth in Section 7. Nevertheless, it is worth comparing the inferred Fτ
g with 

F τ, which we present in the Appendix as shown in Fig. 14. On comparing with Fig. 11 it is 

clear that detF < detFg, especially in regions of high growth. It follows that detFe = detF/

detFg < 1 in these regions: Local morphoelastic growth leads to elastic compression as 

indicated by our inverse modelling studies.

8. Conclusions

The morphoelastic theory of growth has formed the basis of a large body of computational 

work on brain development. However, to the best of our knowledge, it has not been used 

previously to make inferences on the nature of morphogenesis over the course of 

development. Other data-driven approaches have deduced spatiotemporal variations in the 

surface growth of fetal brains over weeks 27–37 when the majority of gyrification and 

sulcification events occur [14]. However, in the aforementioned work, elasticity was used to 

the extent of minimizing the strain energy for image registration. Our communication takes a 

step in this direction by building on fetal brain atlases. For it, we have gathered a diversity of 

methods: MR imaging, segmentation and registration to obtain raw data on the evolving 

displacement fields that can be regarded as the mapping underlying the geometric changes in 

the brain over many weeks of development, and inverse modelling to infer the growth tensor 

via optimization techniques. Notably, the registration techniques that yield displacement data 

themselves use inverse modelling and L2 gradient flow-based optimization. The 

optimization methods that we explored for inferring the growth tensor included gradient 

descent of a physics-constrained loss function, and separately, adjoint-based gradient 

optimization, also with the same physics constraint—the satisfaction of the PDEs of 

morphoelastic growth in weak form. Also notable among our methods is the casting of 

morphoelastic growth in the framework of evolving reference configurations. Without this 

version of the morphoelastic growth theory, the problem would become numerically 

intractable due to the extremely large changes in morphology even over just weeks 21–25 of 

fetal development.
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We note that the results of the inference consistently show that cell dynamics distributes 

growth radially, increasing from the ventricles to the cortical surface. While the central 

sulcus begins to form prominently over weeks 24–25, we anticipate that the persistence of 

this radial distribution leads to the multiscale folding, wrinkling and creasing, whose 

simulation has been the main goal of previous forward computations of brain morphogenesis

—albeit without the strongly data-driven approach that we have adopted here. Our results 

are broadly in agreement with the premise of Ref. [14] that the growth is larger approaching 

the cortex, especially in the frontal, parietal and occipital lobes, and in the cerebellum (Fig. 

11), with some asymmetry between the hemispheres (Fig. 12). This qualitative agreement 

extends to the findings in Ref [34]., which also show greater growth in roughly the same 

regions of the brain. Fig. 12 shows the growth components normal to the cortex and the 

maximum tangential component in the plane of the cortex. Notably, tangential growth is 

dominant at this early stage of growth as is broadly understood. The latter findings, while 

preliminary, are relevant to an understanding of the role of tangential growth and bear 

comparison with the principal growth direction reported in Ref. [35]. We reemphasize, 

however, that unlike the studies of Refs. [14,34,35], which are based on the observed 

deformation of the developing brain, ours further subject these deformations to the laws of 

morphoelastic growth to infer the inelastic, driving growth tensor, Fg. To our knowledge this 

is the first confirmation of the dominance of in-plane cortical growth over thickening during 

early development under the constraint of the laws of morphoelastic growth.

The present work serves as a demonstration that the combination of brain atlas data and 

methods of image segmentation, registration, and finally physics-constrained inverse 

modelling can provide greater insight to the developmental process. Following this 

demonstration of a “proof-of-concept”, we intend to carry the study forward through to later 

stages of development and track the growth tensor as details of primary, secondary, and 

tertiary gyrification form. Indeed, this is the ultimate goal of the current effort, and will be 

followed by a stage of linking the macroscopic growth tensor to neuron distribution, the 

outgrowth of axons and dendrites, and ultimately to pathologies of malformation. We hope 

to investigate whether, having inferred that growth is concentrated in the frontal, parietal and 

occipital lobes and the cerebellum, we can extend our techniques to also connecting this 

growth distribution to the layered distribution of neurons in these cortical regions. This will 

require high resolution images to resolve smaller fluctuations in growth and other techniques 

to visualize neuron distributions, and the combination of these data with inference 

techniques.

In applying these approaches to subsequent stages of development, we anticipate that finer 

meshes will be needed to resolve the emerging gyri and sulci. The inverse solutions by 

adjoint-based gradient optimization will require more iterations to attain convergence. 

Together, these aspects will lead to greater computational expense of our methods. The 

image registration techniques also will need to be updated in order to delineate 

morphological features that form between the weekly time instants. These aspects will be 

addressed in a future communication.

The brain atlas data that forms the basis of our work [18] uses averaging of the geometry 

obtained from six to eight MRIs at each week of gestation. This approach ensures that only 
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the more repeatable morphological features drive the inference, and also helps with 

eliminating some of the noise by averaging. However, it does raise the question of whether 

the resulting geometries satisfy the physics of morphoelastic growth discussed in Section 2. 

In general, this will not be true, given the nonlinearity of the boundary value problem, and 

the constitutive response. Having demonstrated the basic viability of our data-driven 

approaches, we will investigate the extent to which the averaging induces a loss of physical 

fidelity by also working with data from individual scans in future communications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance:

The points of significance of our work are:

• A data-driven approach to deducing the local volume changes accompanying 

early development of the fetal human brain from MRI registration.

• The combination of direct and adjoint methods while constraining the 

optimization by the physics of morphoelastic growth.

• Reproduction of the three-dimensional growth during the early development 

of the fetal brain with controllable error.

• To our knowledge, the first data-driven confirmation underlying the 

morphoelastic theory that early growth is dominated by in-plane cortical 

expansion rather than thickness increase.

• To our knowledge, the first data-driven confirmation underlying the 

morphoelastic theory that early growth is radially distributed, increasing along 

the ventricular-cortical direction.
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Fig. 1. 
Classical morphoelastic growth presumes that the entire path of growth and morphogenesis 

can be described kinematically with the initial state of the brain as the reference 

configuration. In the case of fetal brain development and the emergence of new material, we 

posit that this assumption proves problematic and propose a theory of evolving reference 

configurations. Specifically, we split the growth path into multiple individual steps defined 

by their own reference configuration Ωτ, kinematics and strain energy density functions 

defined on them.
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Fig. 2. 
We generated synthetic displacement fields on the fetal brain mesh at 21 weeks in order to 

test the accuracy of our two optimization algorithms. We show the solution of the inverse 

problem in the form of the inferred det Fg fields using the gradient descent and the adjoint-

based optimization approach. Top rows show the three dimensional view and the bottom 

rows shows the coronal view for three levels of superposed noise p.
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Fig. 3. 
Brain anatomy, MR image segmentation, and finite element model generation. (a) The brain 

consists of frontal lobe, temporal lobe, parietal lobe, occipital lobe, and the cerebellum. The 

cerebrum can be separated into cortical gray matter and subcortical white matter layers, as 

well as the fluid filled lateral ventricles. We use (b) structural MRIs from gestational weeks 

21 through 25 and create 3D reconstructions based on a semi-automatic segmentation 

process (c). In (b) We delineate the cortex, subcortex and ventricles based on their grayscale 

thresholding and manual correction. (d-e) show coronal and axial slices of the segmentation, 

respectively. The fully (f) three-dimensional reconstructions are converted into (g) 

volumetric finite element models that consist of tetrahedral elements.
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Fig. 4. 
The registration framework iteratively updates the positions of control points that belong to 

the spline object embedded in each week’s MRI data. Here, we plot the undeformed and 

deformed grids in representative coronal and axial slices for the registrations between weeks 

21 and 22, weeks 22 and 23, weeks 23 and 24 and weeks 24 and 25. From the MRI images 

we observe the overall volume increase of the brain during the 5 week period. The two grids 

per image show the increasingly heterogeneous displacement field with rather uniform 

morphogenetic growth between weeks 21 and 23 and more localized displacement patterns 

in individual lobes between weeks 23 and 25.
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Fig. 5. 
Coronal, axial and sagittal views of the registration results for week 24 to 25. We notice 

increasingly heterogeneous displacement patterns due to localized growth in distinct 

subregions of the brain. The registration framework delivers highly smooth displacements of 

the control points- to the extent that some local phenomena might be eliminated due to over-

regularization of the spline object. As a consequence of this smoothing, the emergence of 

new substructure between two scans will lead to artificial grid distortions. Overall, the 

registration delivers a reliable displacement field representative of the temporally and 

spatially varying growth patterns [12].
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Fig. 6. 
Full-field displacement data between week 21 and 22, week 22 and 23, week 23 and 24 and 

week 24 and 25. We observe a homogeneous displacement field between weeks 21 and 23 

and increasingly heterogeneous displacement patterns between week 23 and 25. Specifically, 

we notice that the emergence of the central sulcus leads to localization of growth patterns 

that are attributed to the onset of secondary buckling in individual lobes and increased 

folding of the cortical surface. A maximum displacement of 1.24 mm was observed from 

week 21 to 22, 2.29 mm was observed from week 22 to 23, 3.65 mm was observed from 

week 23 to 24 and 5.79 mm from week 24 to 25.
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Fig. 7. 
We generated tetrahedral meshes based on the segmentation at each gestational week 21 

through 24 in support of our proposed theory of evolving reference configurations. At 24 

weeks, the central sulcus begins to emerge and the temporal lobe expands noticeably.
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Fig. 8. 
Convergence plot for week 21 to week 22 with and without Gaussian filtering. With the 

convergence criteria used, we notice that it would require at minimum 1000 more iterations 

to obtain an additional order of magnitude decrease in the loss.
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Fig. 9. 
Inferred displacement fields between weeks 21–22, weeks 22–23, weeks 23–24 and weeks 

24–25 using our adjoint-based optimization approach and shown here for the cortical and 

ventricular surface. Changes between weeks 23–24 and weeks 24–25 are broken into 2 and 8 

substeps, respectively. Magnitude and orientation of the displacement vectors show 

remarkable agreement with the registration results shown in Fig. 6.
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Fig. 10. 
Relative error vectors representing the relative difference between the registration-based 

displacement fields and the inferred displacement fields. Maximum relative error is smaller 

than 1.5 and is primarily observed in locations of high curvature, e.g. near ventricles. 

Generally, we observe a homogeneous distribution of the magnitude and orientation across 

all weeks. Arrow size is amplified by factor 10 for visualization purposes..
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Fig. 11. 
We calculate the determinant of the inferred growth deformation tensor detFg for weeks 21–

22, 22–23, 23–24, and 24–25 and show them here on the 3D geometry, as well as in 

representative axial, coronal and sagittal slices. The determinant ranges from 0.65 to 1.35 for 

weeks 21–24 and range from 0.9 to 1.1 for week 24–25 indicating both localized shrinking 

and expansion behavior. While growth between weeks 21–24 is mostly homogeneous, a 

closer look at changes between weeks 24 and 25 reveals localized growth fields in the 

frontal and temporal lobes. The growth fields are mostly symmetric with respect to both 

hemispheres, but differ between individual weeks suggesting a characteristic chronological 

order to brain development throughout gestation.
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Fig. 12. 
We project the growth tensor Fg onto two distinct directions associated with the surface of 

the brain: the surface normal and a tangent vector. The tangent vector used here provides the 

maximum tangential projection of Fg onto the brain surface. We show both projections for 

each incremental step of our inversion process and observe that normal growth is much more 

homogeneous than tangential growth. Strikingly, tangential growth turns out to be much 

larger than normal growth which supports the notion of in-plane cortical expansion rather 

than cortical thickening, especially during early fetal brain development.
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Fig. 13. 
Gaussian filtering with increasing standard deviation σ leads to noticeable smoothing of the 

determinant of the inferred growth deformation tensor detFg, shown here for the example of 

changes between week 24 and 25 broken down into two steps.
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Fig. 14. 
We show the determinant of the total deformation tensor F for weeks 21–22, 22–23, 23–24, 

and 24–25 and show them here on the 3D geometry, as well as in representative axial, 

coronal and sagittal slices.
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Table 4

Results summary. The values of standard deviation σ correspond to Gaussian filtering of the registration data. 

“N/A” denotes no filters applied. From the triangle inequality, the total volume-averaged L2-error in the 

forward displacement field from the inference relative to the MRI displacement data is bounded from above by 

4.3 × 10−2 for either value of σ.

week σ mm ‖u‖∞ mm ‖e(u)‖2 mm

21–22 N/A 1.820 × 100 1.523 × 10−2

0.5 1.593 × 100 1.177 × 10−2

22–23 N/A 1.425 × 100 1.453 × 10−2

0.5 1.307 × 100 1.162 × 10−2

23-23.5 N/A 1.451 × 100 2.098 × 10−2

0.5 1.283 × 100 1.773 × 10−2

23.5–24 N/A 1.451 × 100 2.154 × 10−2

0.5 1.283 × 100 1.770 × 10−2

24-24.125 N/A 6.279 × 10−1 6.739 × 10−3

0.5 5.454 × 10−1 5.373 × 10−3

24.125-24.25 N/A 6.279 × 10−1 6.818 × 10−3

0.5 5.454 × 10−1 5.429 × 10−3

24.25-24.375 N/A 6.279 × 10−1 6.635 × 10−3

0.5 5.454 × 10−1 5.502 × 10−3

24.375-24.5 N/A 6.279 × 10−1 6.776 × 10−3

0.5 5.454 × 10−1 5.336 × 10−3

24.5–24.625 N/A 6.279 × 10−1 6.914 × 10−3

0.5 5.454 × 10−1 5.331 × 10−3

24.625-24.75 N/A 6.279 × 10−1 6.488 × 10−3

0.5 5.454 × 10−1 5.349 × 10−3

24.75-24.875 N/A 6.279 × 10−1 6.396 × 10−3

0.5 5.454 × 10−1 5.162 × 10−3

24.875-25 N/A 6.279 × 10−1 6.298 × 10−3

0.5 5.454 × 10−1 5.078 × 10−3
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Table 5

The volume-averaged Fτ
g, denoted as detFτ

g in the cortex is larger than in the sub-cortex in all cases except for 

weeks 22–23.

week σ
mm

Cortex Sub-cortex

det Fτ
g max det Fτ

g det Fτ
g max det Fτ

g

21–22 N/A 1.080 1.419 1.042 1.459

0.5 1.058 1.239 1.036 1.371

22–23 0 1.031 1.413 1.041 1.398

0.5 1.033 1.240 1.035 1.279

23-23.5 0 1.071 1.321 1.048 1.337

0.5 1.057 1.346 1.044 1.252

23.5–24 N/A 1.071 1.367 1.048 1.364

0.5 1.057 1.379 1.044 1.244

24-24.125 N/A 1.021 1.190 1.013 1.140

0.5 1.016 1.146 1.012 1.089

24.125-24.25 N/A 1.021 1.211 1.013 1.152

0.5 1.016 1.165 1.012 1.096

24.25-24.375 0 1.021 1.227 1.013 1.153

0.5 1.016 1.176 1.012 1.095

24.375-24.5 0 1.021 1.229 1.013 1.136

0.5 1.016 1.180 1.012 1.103

24.5–24.625 N/A 1.021 1.236 1.013 1.337

0.5 1.0160 1.184 1.012 1.135

24.625-24.75 0 1.021 1.233 1.013 1.162

0.5 1.016 1.185 1.012 1.166

24.75-24.875 N/A 1.021 1.226 1.013 1.178

0.5 1.016 1.183 1.012 1.177

24.875-25 N/A 1.021 1.205 1.013 1.207

0.5 1.016 1.184 1.012 1.194
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