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Abstract

Behavioral flexibility requires the prefrontal cortex and striatum, but it is unclear if these structures play similar or distinct
roles in adapting to novel circumstances. Here, we investigate neuronal ensembles in the medial frontal cortex (MFC) and the
dorsomedial striatum (DMS) during one form of behavioral flexibility: learning a new temporal interval. We studied
corticostriatal neuronal activity as rodents trained to respond after a 12-s fixed interval (FI12) learned to respond at a shorter
3-s fixed interval (FI3). On FI12 trials, we found that a key form of temporal processing—time-related ramping
activity—decreased in the MFC but did not change in the DMS as animals learned to respond at a shorter interval. However,
while MFC and DMS ramping was stable with successive days of two-interval performance, temporal decoding by DMS
ensembles improved on FI3 trials. Finally, when comparing FI12 versus FI3 trials, we found that more DMS neurons than MFC
neurons exhibited differential interval-related activity early in two-interval performance. These data suggest that the MFC
and DMS play distinct roles during temporal learning and provide insight into corticostriatal circuits.
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Introduction
Behavioral flexibility requires learning to adapt to uncertainty.
Two forebrain structures critical for flexibility are the prefrontal
cortex and striatum (Fuster 2008; Kehagia et al. 2010). Prefrontal
cortical neurons densely innervate the striatum (Gabbott et al.
2005; Wall et al. 2013) and disruptions of either structure pro-
foundly impact the learning of new goals, rules, and strategies
(Ragozzino 2007; Hart et al. 2018). Dysfunctional corticostriatal
circuits and connectivity are implicated in a range of psychi-
atric and neurological disorders (Deutch 1993; Shepherd 2013).

However, the relative contributions of prefrontal and striatal
networks to behavioral flexibility are unclear, and clarifying their
respective roles may provide novel approaches to identifying new
biomarkers or treatments for human brain diseases.

One task that provides an ideal window into behavioral
flexibility is interval timing, which requires participants to
estimate an interval of several seconds via a motor response.
Across species, interval timing requires the prefrontal cortex
and striatum (Matell and Meck 2004; Coull et al. 2011; Merchant
and de Lafuente 2014; Mello et al. 2015; Emmons et al. 2016, 2017;

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/


2 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

Dallérac et al. 2017). Work from our group and others has shown
that both prefrontal and striatal neurons encode temporal
information via “time-related ramping” activity—or monotonic
changes in firing rate over a temporal interval (Donnelly et al.
2015; Narayanan 2016; Bakhurin et al. 2017; Emmons et al. 2017;
Kim et al. 2018; Wang et al. 2018). Our past work suggested that
ramping activity in neurons of the medial frontal cortex (MFC)
and the dorsomedial striatum (DMS) is very similar, with one-
third of neurons in each area exhibiting such activity (Emmons
et al. 2017). We have also found that MFC inactivation attenuates
DMS ramping (Emmons et al. 2017, 2019) and that corticostriatal
stimulation is sufficient to recover decreases in DMS ramping
caused by MFC inactivation (Emmons et al. 2019). These data
suggest that DMS ramping is closely linked to MFC ramping and
suggest the hypothesis that MFC and DMS ensembles respond
similarly as animals learn new temporal intervals. By contrast,
recordings from primate lateral prefrontal cortex and caudate
indicate that striatal ensembles encode stimulus-response
associations earlier than prefrontal ensembles, leading to the
hypothesis that prefrontal and striatal ensembles play distinct
roles during learning (Pasupathy and Miller 2005; Histed et al.
2009; Antzoulatos and Miller 2011).

We tested if MFC and DMS ensembles played similar or dis-
tinct roles during temporal learning. We recorded MFC and DMS
activity in rodents as they learned to respond to a new temporal
interval. Animals trained in the temporal context of one 12-s
interval learned a new temporal context where two intervals—
either 12 s or 3 s—could be presented. We report three main
results. First, for 12-s intervals, MFC ramping decreased in the
context of two-interval sessions compared to one-interval ses-
sions, whereas DMS ramping did not change. Second, while
MFC and DMS ramping was stable over subsequent days of
two-interval performance, DMS ensembles improved temporal
decoding for 3-s intervals. Finally, comparing activity on 12-s
versus 3-s intervals revealed that DMS neurons were more likely
to have different activity patterns compared to MFC neurons,
particularly on the first day of two-interval performance. These
data suggest that the MFC and DMS play distinct roles during
temporal learning.

Materials and Methods
Rodents

All procedures were approved by the University of Iowa IACUC,
and all methods were performed in accordance with the relevant
guidelines and regulations (protocol #7072039). Seven male Long-
Evans rats were trained on the 12-s fixed-interval timing task
(FI12) (Emmons et al. 2016, 2017). In this task, rats press the lever
in anticipation of the end of the interval. We have used fixed-
interval timing to study corticostriatal circuits in detail in rodents
(Narayanan et al. 2012; Parker et al. 2014; Parker, Ruggiero, et al.
2015; Emmons et al. 2016, 2017; Kim et al. 2017; Parker et al.
2017; Emmons et al. 2019, 2019) and in humans (Parker, Chen,
et al. 2015; Kelley et al. 2018). Rats were motivated by water-
restriction maintained at 85–90% of their free access weight.
Food was freely available. In brief, the rats were autoshaped to
press a lever for water reward using a fixed-ratio task before
being trained on the 12-s fixed-interval timing task (FI12). Tri-
als began with the presentation of a house light, and the first
response made after 12 s resulted in the delivery of a water
reward, a concurrent click, and termination of the house light
(Fig. 1A). Responses made before the interval ended were not
reinforced. Trials were separated by a randomly chosen 6-, 8-,

10-, or 12-s intertrial interval. After animals behaved consis-
tently, the MFC and DMS were each implanted with recording
electrodes (Fig. 1B; see below). Animals were then acclimatized
to the recording procedures and recordings were made during
behavior in the one-interval task (FI12 trials only; Day 0). The
following day, an additional 3-s interval (FI3) was added to the
task and cued by a light distinct from the one used to indicate
FI12. In general, sessions were 60 min. Critically, task stimuli on
FI12 trials were identical between one-interval and two-interval
sessions. FI12 and FI3 trials were randomly intermixed. Behavior
and simultaneous neuronal activity in the MFC and DMS were
recorded over the following 3 days of two-interval performance
(FI12/FI3 trials on Day 1, Day 2, and Day 3). Data from subsequent
two-interval recording sessions in 5/7 rodents were included in
prior manuscripts (Emmons et al. 2016, 2017).

Surgical and Histological Procedures

Animals were anesthetized using ketamine (100 mg/kg IP) and
xylazine (10 mg/kg IP), and a surgical level of anesthesia was
maintained using ketamine supplements (10 mg/kg IP). Cran-
iotomies were drilled above the left MFC and left DMS and 4
holes were drilled for skull screws, which were connected to
electrode recording arrays via a separate ground wire. Microelec-
trode arrays were composed of 4 × 4 50-μm stainless steel wires
(250 μm between wires and rows). These arrays were positioned
in the MFC (coordinates from bregma: AP +3.2, ML ±1.2, DV -3.6 @
12◦ in the anterior plane) and the DMS (coordinates from bregma:
AP +0.0, ML ±4.2, DV -3.6 @ 12◦ in the posterior or lateral plane)
while recording neuronal activity to verify that implantation was
in correct brain area. The craniotomy was sealed with cyanoacry-
late (“SloZap,” Pacer Technologies, Rancho Cucamonga, CA), and
the reaction was accelerated by “ZipKicker” (Pacer Technologies)
and methyl methacrylate (AM Systems, Port Angeles, WA). Rats
recovered for 1 week before being acclimatized to behavioral and
recording procedures.

Following these experiments, the rats were anesthetized and
sacrificed by injection with 100 mg/kg sodium pentobarbital and
transcardially perfused with 4% formalin. Brains were postfixed
in a solution of 4% formalin and 20% sucrose before being hor-
izontally sectioned on a freezing microtome. Brain slices were
mounted on Superfrost Plus microscope slides and stained for
cell bodies using either DAPI or Cresyl violet. Histological recon-
struction was completed using postmortem analysis of electrode
placement by slide-scanning fluorescent microscopy (Olympus,
Center Valley, PA).

Neurophysiological Recordings and Neuronal Analyses

Neuronal ensemble recordings were made using a multielectrode
recording system (Plexon, Dallas, TX). In each animal, one elec-
trode without single units was reserved for local referencing,
yielding 15 electrodes per animal. Offline Sorter (Plexon) was
used to analyze the signals after the experiments and to remove
artifacts. Spike activity was analyzed for all cells that fired at
rates above 0.1 Hz. Principal component analysis (PCA) and wave-
form shape were used for spike sorting. Single units were defined
as those 1) having a consistent waveform shape, 2) being a sepa-
rable cluster in PCA space, and 3) having a consistent refractory
period of at least 2 ms in interspike interval histograms. As in our
past work, putative cortical interneurons were excluded at initial
spike-sorting because they were difficult to definitively identify
(Narayanan and Laubach 2009; Emmons et al. 2017). Putative DMS
medium spiny neurons (MSNs) were further separated from stri-
atal interneurons based on waveform peak-to-trough ratio and
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Figure 1. Fixed-interval timing tasks and recording locations. (A) On Day 0,

rodents performed fixed-interval timing tasks in which a reward was given for

the first lever press after a 12-s interval (FI12). Interval start was cued by a house

light, motivation was a liquid reward, and presses before interval end were not

reinforced. On Day 1, there was a new temporal context with the addition of a

second, shorter 3-s interval (FI3) cued by a distinct light. FI3 trials were randomly

intermixed with FI12 trials. Recordings were performed for 3 days of two-interval

performance (Days 1–3). (B) Animals were implanted with multielectrode record-

ing arrays targeting the MFC and DMS; horizontal sections with approximate AP

coordinates shown. (C) MSNs within the DMS were identified based on waveform

shape.

the half-peak width (Fig. 1C; Berke, 2011). All neuronal analyses
focused on putative pyramidal neurons and MSNs. Counts of
recorded neurons are in Table 1, note that the same electrodes
are recorded from across days.

Table 1. Neurons recorded in each animal

Number of neurons

Animal MFC STR Totals

Day 0 1 7 9
2 7 9
3 15 14
4 11 8
5 3 4
6 6 8
7 10 15

Day 1 1 5 5
2 7 9
3 8 9
4 5 2
5 3 5
6 6 8
7 13 20

Day 2 1 7 4
2 6 7
3 7 8
4 6 3
5 4 3
6 6 8
7 11 21

Day 3 1 10 6
2 6 11
3 11 13
4 9 4
5 4 8
6 10 11
7 14 27

Two-interval total 158 192 350
All sessions total 217 259 476

Statistics

All data and statistical approaches were reviewed by the Bio-
statistics, Epidemiology, and Research Design (BERD) Core at the
Institute for Clinical and Translational Sciences at the Univer-
sity of Iowa. We used generalized linear-mixed effects models
(GLMM; fitglme.m in MATLAB, Natick, MA) where the outcome
variable was response time. For FI12 trials, the predictor variable
was temporal context (i.e., one-interval sessions on Day 0 when
FI12 trials were presented alone, or two-interval sessions on Days
1–3 when FI3 trials were presented along with FI12 trials). For
two-interval performance, response time on FI12 or FI3 trials
was the outcome variable, and Day (Days 1–3) was the predictor
variable. Animal-specific variance was included as a random
effect; this explicitly accounts for variability between individual
animals. For two-interval trials, single-trial analyses were used
to find start times and coefficients of variation for FI3 and FI12
trials (Church et al. 1994). Finally, because we cannot definitively
track neurons between days, all statistical analyses assumed that
each population of neurons was statistically independent.

Analyses of neuronal activity and basic firing properties were
carried out using NeuroExplorer (Nex Technologies, Littleton,
MA) and custom routines for MATLAB, as described in detail pre-
viously (Parker et al. 2014; Emmons et al. 2017, 2019). Peri-event
rasters and peri-event time histograms (PETHs) were constructed
around houselight and lever press. As in our past work, neuronal
ensemble modulations were quantified via PCA, a data-driven
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set of orthogonal basis vectors that captures patterns of activity
in multivariate neuronal ensembles (Chapin and Nicolelis 1999;
Narayanan and Laubach 2009). PCA was calculated from average
PETHs computed from kernel-density estimates (ksdensity.m; FI3:
bandwidth 0.2; FI12: bandwidth 0.5) and normalized by Z-score.
Notably, single neurons can either ramp up or down, and our past
work has not identified reliable differences between these popu-
lations (Parker et al. 2014; Parker, Ruggiero, et al. 2015; Narayanan
2016; Emmons et al. 2017; Kim et al. 2017). Consequently, we used
absolute values of PC1 scores (indicated by |score|) to compare
ramping strength across areas and days as in our past work
(Parker et al. 2014, 2017; Emmons et al. 2017; Kim et al. 2017).
For time-related ramping, we used GLMMs where PC1 |score|
was used as an outcome variable; predictor variables were brain
area (MFC vs. DMS) and either temporal context (FI12 on Day 0
vs. FI12/3 sessions on Days 1–3) or day of two-interval perfor-
mance (Days 1–3). Animal-specific variance was included as a
random effect; as with behavioral data, this explicitly accounts
for variability between individual rodents. Post hoc testing was
performed via estimated marginal means (emmeans in R) with
Tukey’s method for family-wise comparisons after linear-mixed
effects modeling (lmer in R).

We also used GLMMs to analyze neuronal modulations.
We calculated trial-by-trial GLMMs for all trials and neurons
where the outcome was firing rate binned at 0.1 s, the
predictors were area (MFC or DMS) or Day 0 or Day 1, and
random effects were responses and neurons. Our past work
has demonstrated that GLMMs account for the contribution of
lever-press response-related activity to time-related ramping;
this analysis appropriately considers variance across neurons
and animals (Narayanan and Laubach 2009; Emmons et al. 2017,
2019). To examine interval-related modulation for all trials and
neurons, we used an equation where the outcome was firing
rate, the predictors were interval (FI3 or FI12), area, or day, and
random effects were lever-press responses and neurons. Poisson
distributions were used for all firing-rate models.

We used a naïve Bayesian classifier to examine neuronal
ensemble decoding, as we have in our past work (Emmons et al.
2017; Kim et al. 2017). We calculated kernel density estimates
(bandwidth: 1.2) of trial-by-trial firing rates from MFC and DMS
neurons. To prevent edge effects that might bias classifier per-
formance, we included data from 6 s prior to trial start and
6 s after interval end. We used leave-one-out cross-validation to
predict objective time from firing rate within a trial. We evaluated
classifier performance by computing the R2 of objective time and
predicted time only for bins during the interval. With perfect
classification, the R2 would approach 1. Classifier performance
was compared to ensembles with time-shuffled firing rates.
For each area and interval, the performance was quantified via
GLMMs of R2 versus each day.

Results
We studied behavioral flexibility in the MFC and DMS by intro-
ducing a new 3-s fixed interval (FI3) to rats after they had been
trained on a task with 12-s fixed intervals (FI12; Fig. 1A). On Day 0,
animals were presented only with one FI12 interval, but on Days
1, 2, and 3, animals were presented with a new temporal context
in which either FI12 or FI3 intervals could be presented. For FI12
trials, response times were significantly longer on Day 0 with
only one interval (FI12; 10.14 ± 0.09 s; mean ± SEM) compared
to Days 1–3 when the temporal context included two intervals
(FI12 or FI3 could be presented, FI12 response times: Day 1:
9.61 ± 0.12 s, Day 2: 9.96 ± 0.13 s, Day 3: 9.31 ± 0.12 s; main effect of

context on response time; one-way ANOVA of GLMM: F(7022) = 18.3,
P = 0.00002; Fig. 2A). FI12 response times grew shorter over sub-
sequent days of two-interval performance (main effect of Days
1–3 on FI12 response time: one-way ANOVA of GLMM: F(4796) = 7.0,
P = 0.0009; FI12 trials only; Fig. 2A). On these days, we also found
that FI3 response times shortened over subsequent days of two-
interval performance (Day 1: 6.05 ± 0.18 s, Day 2: 5.38 ± 0.15 s,
Day 3: 5.01 ± 0.14 s; main effect of Days 1–3 on FI3 response
time; one-way ANOVA of GLMMs: F(1741) = 8.4, P = 0.0002; FI3 trials
only; Fig. 2B). On the very first day of two-interval performance
(Day 1), there was a main effect of FI12 versus FI3 on response
time (two-way ANOVA of GLMM: F(2072) = 78.8, P = 2e−18) but no
reliable effect of trial order within-session on response time (two-
way ANOVA of GLMM: F(2072) = 0.9, P = 0.34) and no reliable higher
interactions (F(2072) = 1.4, P = 0.23). This analysis suggested that
on Day 1, response times did not consistently change over the
session for either the FI3 or FI12 trial type.

We analyzed fixed-interval behavior using single-trial anal-
ysis, which was developed for peak-interval timing but can be
useful to analyze start times during fixed-interval tasks (Church
et al. 1994; Emmons et al. 2019). On Day 1, single-trial analysis
revealed that animals had earlier start times on FI3 trials com-
pared to FI12 trials (two-way ANOVA of GLMMs of interval and
day on start times; main effect of interval: F(43) = 10.4, P = 0.002;
Fig. 2C; note that one animal on Day 1 did not have enough FI3
trials for analysis). There was no effect of day or interaction. One
indication that timing processes are scalar is that the coefficient
of variation (CV—the ratio of the standard deviation of temporal
estimates to the mean) is relatively constant at different intervals
(Gibbon et al. 1984; Rakitin et al. 1998). Accordingly, we found that
during fixed-interval performance, start-time CVs were similar
on FI3 and FI12 trials across Days 0–3 (two-way ANOVA of GLMMs
of interval and day on CV: main effect of interval: F(43) = 0.2,
P = 0.62; Bayes Factor = 5.9; there were no higher effects of day
or interaction). These data suggest that start times during fixed-
interval timing could exhibit scalar properties (Gibbon et al. 1984)
and demonstrate that during FI12 and FI3 trials animals were
guiding their responses in time (Fig. 2D and E).

We recorded neuronal ensembles simultaneously in the MFC
and DMS as animals trained on a single interval learned to
respond at two intervals (Table 1). As in our past work, we found
that neurons in both brain regions exhibited time-dependent
ramping, that is, monotonic increases or decreases in firing rate
across the interval (Emmons et al., 2017; Fig. 3A and B). We turned
to PCA to compare time-dependent ramping activity as animals
learned to perform two-interval tasks (Chapin and Nicolelis 1999;
Narayanan and Laubach 2009; Emmons et al. 2017). Consistent
with our prior work, we found that principal component 1 (PC1)
exhibited time-related ramping (Fig. 3C; Emmons et al., 2017; Kim
et al., 2017; Parker et al., 2015b, Parker et al. 2014; Zhang et al.,
2019). Note that this past work has found no reliable differences
between neurons that ramp up or down; hence, we focused
on the absolute value of PC1 |score| as a measure of ramping
strength (Parker et al. 2014; Narayanan 2016; Emmons et al. 2017).

We compared PC1 |scores| across all areas and days (Days 0–3)
via GLMMs on FI12 trials only. Critically for our hypothesis, we
found a main effect of temporal context for PC1 |scores| on FI12
trials (one-interval vs. two-interval sessions, or Day 0 vs. Days
1–3; two-way ANOVA of GLMMs: F(472) = 12.2, P = 0.0005; FI12 trials
only) and area (MFC vs. DMS; F(472) = 4.5, P = 0.03), as well as an
interaction between context and area (F(472) = 6.5, P = 0.01; Fig. 3D
and E). Note that this analysis explicitly included animals as a
random effect, accounting for variance contributed by each ani-
mal. Post hoc testing revealed that MFC PC1 |scores| were stronger
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Figure 2. Response times reflect temporal context. Rats trained to respond at one 12-s interval on Day 0 were then trained on Days 1–3 in a new temporal context with

two intervals: 12 s (FI12) and 3 s (FI3). (A) Plot of all responses from all animals for FI12 trials only on Day 0 and Days 1–3; each animal is plotted in a different color. ∗
indicates a main effect of context (one vs. two intervals, or Day 0 vs. Days 1–3), # indicates a main effect of day (over Days 1–3) via GLMMs. White dots denote the median,

horizontal lines denote the mean and vertical lines span the interquartile range. (B) Plot of all responses from all animals for FI3 trials only on Days 1–3, # indicates a

main effect of day via GLMMs. (C) Plot of start times calculated from single-trial analysis for each animal on Days 0–3 for FI3 and FI12 trials; ∗ indicates a main effect

of interval via GLMMs. Normalized time-response histograms for (D) FI12 trials and for (E) FI3 trials from Day 0 (black) and Days 0–3 (shades of gray). Kernel-density

histograms for plotting only calculated at 0.1 s bins with a bandwidth of 1 then averaged and normalized across 7 animals. Data from 4799 FI12 responses and 1744 FI3

responses in 7 animals.

for one-interval compared to two-interval sessions for FI12 trials
(P = 0.001 Tukey’s post hoc; Fig. 3E). However, DMS PC1 |scores|
were similar in all sessions (P = 0.70 Tukey’s post hoc; Fig. 3F–
G). Critically, there was a main effect of context on PC1 even
when PCA was calculated on matched responses (one-interval
vs. two-interval sessions—two-way ANOVA of GLMMs only on
trials with responses between 11–13 s: F(472) = 11.4, P = 0.0008).
These data imply that differences in PC1 between one-interval
and two-interval sessions were not a function of differences in
response rate.

Interestingly, for one-interval sessions on Day 0, PC1 |scores|
were not different between MFC and DMS (P = 0.11 Tukey’s post
hoc). This observation was held for trial-by-trial analysis of firing
rate on FI12 trials, which revealed a highly significant interaction
between time-related ramping, temporal context, and brain area
(three-way ANOVA of GLMMs; F(4 045 080) = 226.8, P = 3e-51; Table 2).
Of note, these GLMMs accounted for a variance from each animal
and linked neuronal activity to behavior on a trial-by-trial level
(Emmons et al. 2017, 2019). Taken together, our data demonstrate

that time-related ramping in the MFC but not the DMS decreased
in two-interval sessions compared to one-interval sessions. Our
results suggest that MFC but not DMS ensembles are sensitive
to the temporal context (Jazayeri and Shadlen 2010; Antzoulatos
and Miller 2011; Shi et al. 2013).

Next, we compared PC1 |scores| on subsequent days of two-
interval performance for FI12 trials. For FI12 trials, PC1 |scores|
did not reliably change across Days 1–3 for either MFC or DMS
(Fig. 3D–G; two-way ANOVA of GLMMs; day: F(413) = 0.0, P = 0.94;
area: F(413) = 1.0, P = 0.31; interaction: F(413) = 0.2, P = 0.64). Further-
more, we examined PC1 |scores| on FI3 trials. As in our prior work,
PCA revealed highly similar components for FI3 relative to FI12
trials, and PC1 |scores| on FI3 trials also identified time-related
ramping (compare Fig. 4A to Fig. 3A; see Table 3 for percentage
of ramping neurons across days; Emmons et al. 2017). For FI3
trials, there were no significant changes in PC1 across Days 1–
3 for either area (two-way ANOVA of GLMMs: F(346) = 0.4, P = 0.52;
area: F(346) = 1.1, P = 0.30; interaction: F(346) = 0.6, P = 0.45; FI3 trials
only; Fig. 4B–E). Unlike our results for temporal context, these
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Figure 3. MFC ramping reflects temporal context, but DMS ramping does not. Peri-event rasters for single neurons in the (A) MFC (blue) and (B) DMS (green). Top panels:

each row represents a trial; each tick is an action potential; darker colors represent Day 0 (FI12) and lighter colors represent Day 1 (FI12/FI3); all data are from FI12 trials

only. (C) PCA revealed 3 main components; percentage of variance is indicated in parentheses. These principal components were calculated from all recordings (MFC

and DMS ensembles on Days 0–3). (D) PETHs for FI12 trials from MFC sorted by PC1; each row is Z-scored firing rate from each neuron over the 12-s interval. (E) PC1

|scores| for MFC for Day 0 (dark blue) and Days 1–3 (light blue). Each circle represents the PC1 |score| from a single neuron; white dots denote the median, horizontal

lines denote the mean, and thicker vertical lines span the interquartile range. ∗ indicates an interaction via a two-way ANOVA of GLMMs of PC1 |score| on context (Day

0 vs. Days 1–3) and area (MFC vs. DMS); # indicates P < 0.05 of Day 0 vs. Days 1–3 via post hoc testing for MFC. (F) PETHs and (G) PC1 |scores| from the DMS for Day 0 (dark

green) and Days 1–3 (light green). Data from 476 neurons in the MFC and DMS in 7 animals on FI12 trials only.

data demonstrate PC1 was remarkably stable across successive
days of two-interval performance.

We turned to decoding analyses based on machine learning
to capture more complex features of MFC and DMS ensembles
beyond time-related ramping (Gouvea et al. 2015; Paton

and Buonomano 2018). Specifically, we constructed neuron-
dimensional arrays of smoothed trial-by-trial firing rates over
the interval binned at 0.1 s (Fig. 5A). As in our past work, we
decoded time in the interval from ensemble firing rates using
naïve Bayesian classifiers. Classifier performance was assessed
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Figure 4. MFC and DMS ramping is stable across Days 1–3 of two-interval performance. (A) Principal components for FI3 trials; percentage of variance is indicated in

parentheses. These principal components were calculated from all recordings (MFC and DMS ensembles on Days 1–3). (B) PETHs for FI3 trials from MFC sorted by PC1.

(C) PC1 |scores| for MFC on Days 1–3 (light blue). (D) PETHs and (E) PC1 |scores| from the DMS on Days 1–3 (light green). Data from 350 neurons in the MFC and DMS in 7

animals on FI3 trials only.

Table 2. Firing rate on FI12 trials in different contexts: one-interval
versus two-interval sessions

Predictor F P

Times 109.3 1.4E-25
Area 6.4 0.01
Learning 2.9 0.09
Times : area 685.9 3.5E-151
Times : context 135.9 2.10E-31
Area : context 4.0 0.04
Times : area : context 226.8 3.0E-51

Note: Significant effects are shown in bold. Model: FiringRate∼Times ×
Area × Context+(1|Response)+(1|Neurons). Obs 4 045 080 Model R2 0.18.

by computing the variance explained (R2) of predicted versus
observed time (Emmons et al. 2017; Kim et al. 2017). For all
sessions, R2 was much less for time-shuffled ensembles—that

Table 3. Percentages of ramping neurons for each interval and day

Day 0 (%) Day 1 (%) Day 2 (%) Day 3 (%)

MFC—FI3 23 28 17
DMS—FI3 31 20 29
MFC—FI12 59 43 30 31
DMS—FI12 48 55 50 40
MFC—Both 15 15 11
DMS—Both 19 11 16

is, ensembles constructed from neuronal activity shuffled in
time (Fig. 5B–I; comparing shuffled vs. nonshuffled signrank R2:
P = 4 × 10−47; Cohen’s d = 1.37). We found that temporal decoding
had a main effect of day only for DMS ensembles on FI3 trials
(Fig. 5F–I; one-way ANOVA of GLMMs of day on R2: FI3 trials
only; F(81) = 6.1, P = 0.02). These results suggest temporal decoding
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Figure 5. DMS improves temporal decoding with subsequent two-interval perfor-

mance. (A) We trained decoders (naïve Bayesian classifiers) to predict time from

firing rate on a trial-by-trial basis. (B) Decoder performance for DMS ensembles

for FI12 trials and (C) for FI3 trials. Predicted time is on the y-axis and observed

time is on the x-axis with the relative probability represented in color and yellow

representing the highest relative probability. Decoded performance for the same

DMS ensembles with time-shuffled data for (D) FI12 trials and (E) FI3 trials. We

measured decoder performance by calculating the variance explained (R2) of

predicted versus observed time. R2 values plotted for Days 1–3 for MFC on (F) FI12

trials and for (G) FI3 trials, and for the DMS for (H) FI12 trials and for (I) FI3 trials. For

FI3 trials, R2 of DMS ensembles increased with subsequent days of two-interval

performance. Each circle represents a single decoded trial for each ensemble;

white dots denote the median, horizontal lines denote the mean, and vertical

lines span the interquartile range. # indicates a main effect of day in GLMMs.

Data from the same 350 MFC and DMS neurons across Days 1–3 in 7 animals as

in Fig. 4.

improved only for DMS ensembles on FI3 trials and are consistent
with prior studies that show striatal decoding can be more
reliable than cortical decoding (Bakhurin et al. 2017).

We directly compared neuronal activity in the MFC and DMS
on FI3 and FI12 trials. First, ramping neurons can have distinct
slopes of firing rate versus time on FI3 and FI12 trials (Fig. 6A–C;
Table 4). We ran GLMMs where firing-rate slope versus time was
the outcome variable, interval and day were predictor variables,

Table 4. Firing rate on FI3 versus FI12 trials in two-interval sessions

Predictor F P

Area 0.5 0.49
Day 0.6 0.45
Interval 3.9 0.05
Area : day 0.8 0.37
Area : interval 0.3 0.57
Day : interval 13.2 0.0003
Area : day : interval 6.4 0.01

Note: Significant effects are shown in bold. Model: FiringRate∼Area ×
day × interval + (1|Response) + (1|Neurons). Obs 3018772 Model R2 0.15.

and neuron-specific variance was a random effect. As with PC1,
we were interested in the slope magnitude rather than sign,
so we focused on absolute value (|slope|). Consistent with past
work by our group and others, ramping neuron |slopes| were
consistently steeper on FI3 than on FI12 trials for both the MFC
(Fig. 6C; two-way ANOVA of GLMMs of interval and day on MFC
|slope|; main effect of interval: F(139) = 4.5, P = 0.04) and for the DMS
(Fig. 6C; main effect of interval: F(210) = 6.9, P = 0.01; Xu et al. 2014;
Mello et al. 2015; Emmons et al. 2017; Wang et al. 2018). There was
no effect of day or higher interactions for either MFC or DMS.
Taken together, these data are consistent with drift-diffusion
models of interval timing, suggesting that drift rates increase
with shorter intervals (Simen et al. 2011).

Next, we searched for neurons in which firing rates were
affected by interval duration (Fig. 6D–E). Specifically, we used
GLMMs to identify neurons with an effect of interval on fir-
ing rate (P < 0.05). Interval-modulated neurons were more com-
mon in the DMS than the MFC on Day 1 of two-interval per-
formance (Fig. 6E; neurons with a main effect of interval on
firing rate in one-way GLMMs; MFC 10 of 47 versus DMS: 28 of
58; X2 = 8.20; P = 0.004). Interestingly, ∼ 50% of interval-modulated
neurons also had ramping activity in MFC (5 of 10) and DMS (15
of 28). Of note, the number of interval-modulated neurons was
not different between MFC and DMS on Days 2 and 3 (Fig. 6E).
Consistent with these analyses, trial-by-trial GLMMs revealed a
significant interaction between interval modulation, brain area,
and Days 1–3 (three-way ANOVA of GLMMs of area, day, and
interval on firing rate: F(3018772) = 6.4, P = 0.01; Table 4).

Of note, we found in GLMMs that there was no main effect of
response on firing rate (F(3018772) = 2.5, P = 0.11), and no interaction
with Days 1–3 (F(3018772) = 0.4, P = 0.51). Taken together, these data
indicate that while MFC ramping is sensitive to temporal context,
DMS neurons increased temporal decoding for FI3 trials and had
distinct interval-related modulations. These data provide insight
into corticostriatal dynamics during temporal learning.

Discussion
In this manuscript, we investigated whether MFC and DMS
played similar or distinct roles in temporal learning. We found
three novel distinctions between MFC and DMS during temporal
learning. First, MFC but not DMS ramping decreased as animals
that had been trained on a one-interval task learned to respond
to a new temporal context that included a shorter second
interval. Second, while MFC and DMS ramping was stable over
3 days of two-interval performance, DMS temporal decoding
improved on the new FI3 interval. Finally, interval-modulated
neurons were more common in the DMS early in two-interval
performance. Our data suggest that MFC ensembles are sensitive
to the context or “rules” of the task—that is, FI12 versus FI3/FI12,
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Figure 6. MFC and DMS activity is distinct on FI3 versus FI12 trials. (A) An exemplar ramping neuron from the MFC and (B) from the DMS; the slope of firing rate versus

time was steeper on FI3 versus FI12 trials. (C) |slopes| for MFC (blue) and DMS (green) neurons on Day 0, Day 1, Day 2, and Day 3 for FI3 and FI12 trials; for both MFC and

DMS, observed |slopes| were higher on FI3 trials; horizontal lines are means and vertical lines are interquartile ranges. ∗ indicates main effect of interval via two-way

ANOVA (day and interval) of GLMMs. (D) An exemplar neuron from the MFC and (E) from the DMS that fired differentially on FI3 versus FI12 trials. (F) The number of

neurons with a main effect of firing rate versus interval for the MFC and DMS; ∗ indicates P < 0.05 via a Chi-squared test. Data from the same 350 MFC and DMS neurons

across Days 1–3 in 7 animals as in Fig. 4 on FI12 and FI3 trials.

while the DMS optimizes behavior, particularly on FI3 trials.
These data provide insight into the respective roles of prefrontal
and striatal networks during temporal learning.

These results contradicted our hypothesis that MFC and DMS
time-related ramping would be similarly affected by the intro-
duction of a new temporal interval. Our hypothesis was based
on 5 lines of evidence: 1) the existence of strong projections
from the MFC to the DMS (Gabbott et al. 2005; Wall et al. 2013;
Han et al. 2017), 2) clear roles for both structures in interval
timing (Meck 2006; Coull et al. 2011; Emmons et al. 2017; De
Corte et al. 2019), 3) similarities in time-related ramping in the
MFC and DMS (Emmons et al. 2017), 4) the necessity of MFC
activity for DMS ramping (Emmons et al. 2017, 2019), and 5)
our recent demonstration that the stimulation of axons that
project from the MFC to the DMS is sufficient to recover time-
related ramping in the DMS (Emmons et al. 2019). Given these
data, it is notable that the MFC and DMS play distinct roles
during temporal learning, although this observation is concor-
dant with the vastly different connectivity and synaptic orga-
nization of these two structures (Shepherd 2003). Decreases in
MFC ramping after the introduction of a shorter interval sug-
gest that MFC ramping is sensitive to the temporal context of
the one-interval versus two-interval task, and they may reflect
Bayesian priors of temporal probabilities (Jazayeri and Shadlen
2010; Shi et al. 2013). Our data are consistent with the theory
that prefrontal ramping reflects learned “rules” (Wallis et al.
2001; Genovesio et al. 2005; Fuster 2008; Ruge et al. 2019), in
this case, the temporal contexts of the one versus two-interval
task. By contrast, striatal ensembles did not change on FI12
trials but improved temporal decoding on FI3 trials, suggesting a
view that striatal ramping is related to optimizing performance
(Pasupathy and Miller 2005).

Corticostriatal differences were anticipated based on a recent
comparison of neuronal ensembles during a temporal catego-
rization task that involved maze running (Kim et al. 2018). This
study indicated that ramping was more prevalent in the MFC
than the dorsal striatum. In this task, as the intervals became
longer, temporal decoding by the MFC was less effective than
that by the striatum. Although this task was more complex than
ours and a number of others (Donnelly et al. 2015; Narayanan
2016; Bakhurin et al. 2017; Wang et al. 2018), the strong temporal
encoding across corticostriatal ensembles is consistent with our
findings here.

Our findings are in line with drift-diffusion models of two-
interval tasks, as we find that time-related ramping scales with
the interval duration (Simen et al. 2011; Xu et al. 2014). Here we
find that MFC ramping is sensitive to temporal context whereas
DMS ramping is not, and that nonramping interval-related mod-
ulations and temporal predictions in the DMS change with two-
interval performance. These results suggest that time-related
ramping reflects distinct processes in MFC and DMS. Given that
MFC activity influences ramping in DMS (Emmons et al. 2017,
2019), DMS ramping activity might integrate aspects of MFC
ramping as well as nonramping activity.

Because time-related ramping activity in MFC and DMS
ensembles did not change during two-interval performance,
ramping activity may be remarkably stable in both brain regions
when the temporal context does not change. It is unclear how
ramping might change with extended periods of behavior over
several days or weeks (Barnes et al. 2005; Yin et al. 2005; Graybiel
2008). However, we did find that on FI3 trials, temporal decoding
in the DMS improved even though DMS ramping was stable. In
the DMS, patterns beyond ramping activity might change during
two-interval performance and contribute to improved temporal
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decoding (Paton and Buonomano 2018). The improvement in
temporal prediction despite unchanged ramping activity sup-
ports improved “population clock”-based temporal predictions
during FI3 trials (Karmarkar and Buonomano 2007; Laje and
Buonomano 2013). Finally, <15% of corticostriatal neurons can be
modulated by responses, and this modulation can interact with
ramping activity (Emmons et al. 2017). However, in the present
dataset, we found that response-related activity did not change
over subsequent days of two-interval performance, and that
there were main effects of context even when responses were
matched between Day 0 and Days 1–3. These data imply that the
shifts in MFC ramping and DMS temporal decoding could not be
fully accounted for by changes in responding.

We found that the DMS contained more neurons in which
there was a main effect of interval compared to the MFC on the
early days of two-interval performance. Notably, half of interval-
modulated neurons were not ramping. These data suggest
that patterns beyond time-related ramping encode information
about temporal intervals. On progressive days of two-interval
performance, interval-related activity between the MFC and DMS
equalized. Because our task design involved a second cue for
FI3 intervals, we cannot distinguish whether this activity was
related to working memory for temporal intervals, cue-related
processing, or other aspects of interval timing. Future work using
more advanced learning paradigms may clarify these patterns of
activity.

To our knowledge, our study is one of the first to record
from corticostriatal ensembles during temporal learning and
to suggest that components of corticostriatal ensembles play
distinct roles in temporal learning. The striatum has a well-
established role in learning other contexts including habit for-
mation, reversal learning, and instrumental learning (Yin and
Knowlton 2006; Kimchi and Laubach 2009; Graybiel and Grafton
2015). Striatal neuronal ensembles robustly encode time, and
this temporal encoding rapidly rescales as animals learn novel
intervals (Mello et al. 2015). While prefrontal ensembles are
also involved in learning (Baeg et al. 2007), direct comparisons
with striatal ensembles during learning are rare in rodents. One
exception is a recent study of prenatal alcohol exposure, which
showed that the orbitofrontal cortex disengages and the dorsal
striatum updates reward contingencies (Marquardt et al. 2020).
These findings parallel the changes in the MFC and DMS that we
report here. The observation that prenatal exposure to alcohol
leads to changes in cortical activity underscores the clinical
significance of this brain circuit.

During associative learning in primates, corticostriatal
ensembles are highly sensitive to learning, with striatal neurons
rapidly encoding new associations and the prefrontal cortex
learning more slowly (Pasupathy and Miller 2005). Primate
striatal neurons rapidly encoded stimulus-response associa-
tions, whereas primate prefrontal neurons encoded category
abstraction (Antzoulatos and Miller 2011). In line with these
results, we found that time-related ramping in prefrontal
regions decreased in two-interval versus one-interval sessions,
suggesting that these ensembles may be sensitive to temporal
categories or context. It is important to note that these primate
studies recorded from lateral prefrontal areas, which lack a clear
rodent analogue (Laubach et al. 2018), and that they employed
vastly different task conditions. Furthermore, more recent work
has shown that prefrontal ensembles can rapidly change during
learning (Schuck et al. 2015; Siniscalchi et al. 2016), and therefore,
the relative changes in corticostriatal ensembles may depend on
the details of each task. Prior work has consistently established
that corticostriatal neuronal ensembles are modulated during

interval-timing tasks (Matell et al. 2003; Bakhurin et al. 2017;
Emmons et al. 2017) and shown that single neurons in the
prefrontal cortex (Xu et al. 2014) or striatum (Portugal et al.
2011; Mello et al. 2015) can flexibly adapt to new temporal
contingencies. Our data are congruent with this work and
directly compare MFC and DMS, suggesting that MFC ramping
is sensitive to temporal context while DMS ensembles increase
temporal decoding on trials with a novel, shorter interval. Our
work provides insight into the dynamics of rodent corticostriatal
ensembles during an elementary temporal learning paradigm.

Our study has several limitations. First, we used fixed-interval
timing; peak-interval timing tasks might enable more precise
dissection of start and stop times (Buhusi and Meck 2005). Indeed,
the effects reported here may extend beyond timing processes
and could also be a result of temporal discrimination of FI3
trials, learning a new contingency on FI3 trials, or disrupting
an existing contingency on FI12 trials. In addition, we did not
counterbalance between cues for FI3 versus FI12 trials, which
would not affect comparisons of FI12 or FI3 trials over days
(Figs 3–5), but might affect comparisons between activity on FI12
and FI3 trials. However, animals’ response times on both FI12 and
FI3 trials were responsive to both temporal contexts over sub-
sequent days of two-interval performance. Despite stimuli and
training differences between FI3 and FI12 trials, both responses
and corticostriatal neuronal activity were affected by adding the
FI3 interval. Our neural findings strongly suggest dynamic roles
for corticostriatal ensembles during interval timing. Second, we
did not track individual neurons over days. We describe MFC
changes to temporal context and DMS changes over two-interval
performance at group-level analyses (i.e., PC1 and decoding) as
well as by trial-by-trial analyses of firing rate (Tables 2 and 4)—
thus, our data provide insight into flexibility among corticostri-
atal ensembles rather than at the single-neuron level. Third, our
techniques cannot identify the genetic or molecular identity of
recorded neurons. This detail would be of particular interest in
the case of the DMS, which contains D1 and D2 MSNs, which
play complementary roles in movement (Kreitzer 2009). Fourth,
we are unsure if the MFC and DMS neurons that we captured
were synaptically connected, because of the sparsity of cortical
projections and constraints of our recording techniques (Wall
et al. 2013). This limitation might be overcome in future work
by exploiting optogenetic tagging and retrograde viral tracing
to isolate corticostriatal projections (Otis et al. 2017). Studying
how MFC-DMS connectivity changes with learning might provide
further insight into corticostriatal circuits. Fifth, we were unable
to identify clear behavioral correlates of temporal learning during
the first two-interval session on Day 1. Behavioral transitions
can be faster adjusting to shorter intervals and slower adjust-
ing to longer intervals (Higa 1996, 1997; Higa and Tillou 2001).
Furthermore, adapting to new intervals may require multiple
adjustments (Meck et al. 1984). In addition, FI3 trials involve
a higher reward rate as more rewards are acquired on aver-
age per second. Our data cannot address these issues and are
instead focused on a single transition—from sessions with FI12
to sessions with FI12 and FI3 trials—but future work will be
required to explore how corticostriatal ramping adapts to longer
intervals and to distinct reward rates. Note that two of our main
points—that MFC ramping decreases on FI12 trials, and that DMS
temporal decoding increases on FI3 trials—were derived from
comparisons of similar trial types, and were not affected by dif-
ferences in training history, reward rate, and other features that
differ between FI12 and FI3 trials. Corticostriatal ensembles may
rapidly learn the new FI3 interval. The striatum is essential for
rapid adaptations (MacDonald et al. 2012), but capturing changes
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in MSN firing might require a different task design to capture
trial-by-trial neuronal dynamics during rapid learning (Kimchi
and Laubach 2009).

In summary, we investigated whether the MFC and DMS
played similar or distinct roles in temporal learning. We recorded
from corticostriatal ensembles in rodents that had been trained
to perform a single fixed-interval timing task while they learned
to incorporate a new interval. We discovered that for FI12 trials,
time-related ramping activity in the MFC decreased following
introduction of the shorter interval, whereas ramping activity in
the DMS was unchanged. For FI3 trials, we found that corticostri-
atal ramping activity did not change, yet DMS temporal decoding
improved. Finally, more DMS neurons fired differentially on each
interval compared to the MFC early in two-interval performance.
Taken together, our data provide novel evidence that the MFC and
DMS play distinct roles in temporal learning.
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