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A commentary on

Methamphetamine abuse impairs motor cortical plasticity and function

by Huang, X., Chen, Y.Y., Shen, Y., Cao, X., Li, A., Liu, Q., et al. (2017). Mol. Psychiatry 22,
1274–1281. doi: 10.1038/mp.2017.143

Psychiatric diseases demonstrate plasticity deficits in the brain. Animal studies have investigated
the topic extensively. For instance, brain slice experiments with hippocampus/cortex preparations
revealed plasticity changes in synaptic transmission of certain pathways, in a line with the learning
and memory impairments in certain psychiatric diseases (Duman et al., 2016). Addiction is
associated with synaptic transmission changes in mesolimbic and mesocortical pathways, with
alterations of synaptic plasticity reported (Lüscher and Malenka, 2011). With an arsenal of animal
reports on addiction evoked brain plasticity, surprisingly there were few studies translating such
findings onto human subjects (Etkin, 2016). In a recent study published on the journal of
Molecular Psychiatry, Huang et al. heroically investigated the cortical functional changes following
methamphetamine abuse both in animal model and human addicts (Huang et al., 2017).

The authors firstly set up the animal model of methamphetamine self-administration and
examined the synaptic plasticity on brain slices. The results showed that motor cortical, and
dorsal-lateral rather than dorsal-medial striatal pathways exhibited impaired plasticity induction.
Interestingly, molecular expression of GluN3A-containing NMDA receptors seems to be attributed
for the altered plasticity. This is in a line with the previous finding that insertion of GluN3A-
containing NMDA receptors at midbrain dopamine neurons resulted in anti-hebbian like plasticity
(Mameli et al., 2011), given the fact that these NMDA receptors are less calcium permeable than
canonical NMDA receptors.

To correlate the animal findings with human cortical plasticity, the authors employed a
surrogate of synaptic plasticity in human—the plasticity of transcranial magnetic stimulation
(TMS)-induced motor evoked potential (MEPs) (Huang et al., 2005), to dissect the potential
impacts of methamphetamine on motor cortex. Notably, the Long-term potentiation (LTP) or
Long-Term depression (LTD)-like changes of MEPs were both impaired in methamphetamine
abusers, indicating that the cortical plasticity is impaired in human addicts. Interestingly, the
plasticity deficits were in parallel with motor learning impairments, both in animal and human
subjects (Figure 1).

Motor cortex is commonly a neglected region in addiction field. However, neuroimaging
findings demonstrated that craving evoked by drug-associated cues involved motor and sensory
regions (Yalachkov et al., 2010). In addition, animal studies detected drug cue-associated c-Fos
expression in dorsal striatum (Willuhn and Steiner, 2006). Most importantly, the compulsive drug
taking behavior could share certain neural pathways as obsessive compulsive disorder (OCD),
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FIGURE 1 | The translational perspective and working scheme of Huang et al.

paper.

therefore motor-striatal pathway might represent a new target
in drug addiction (Everitt and Robbins, 2005). Indeed, exercise
therapy is proved with efficacy in addiction rehabilitation, both in
animal studies and human patients (Sanchez et al., 2015). Future
studies are required to further elucidate if targeting motor cortex
could bring benefits in addiction rehabilitation. Interesting, in
addition to methamphetamine addiction, heroin addicts also
exhibited cortical plasticity deficits (Shen et al., 2017).

Cortical plasticity is affected by a number of factors,
such as genetic susceptibility to activity-dependent plasticity,
trophic factor expression, neurotransmitters (Li Voti et al.,
2011). Besides its applications on treatment of addiction or
psychiatric diseases (Shen et al., 2016; Diana et al., 2017),
TMS provides the unique chance to translate previous animal

findings onto human subjects, the results of which could be
taken for disease state diagnosis or prognosis for therapeutic
treatments. In the future, TMS dependent measurements of
EEG signals could provide functional cortex mapping non-
invasively, but with much higher temporal resolution than brain
imaging (e.g., fMRI; Miniussi and Thut, 2010). This will largely
expand our understanding in addiction related brain functional
changes, and to develop potential treatment against substance
abuse.

Cortical plasticity impairment, however, is not limited
to addiction. Previous studies reported that schizophrenia
(Fitzgerald et al., 2004; Zhou et al., 2017), depression (Duman
et al., 2016), and Alzheimer’s disease (Di Lorenzo et al., 2016)
patients also exhibited cortical function changes and plasticity
deficits. This suggested that cortical functioning or ability of
cortical modulation were blunted in these diseases. It is highly
plausible that certain type of molecules (e.g., GluN3A) are
involved in development and progression of these diseases
(Pérez-Otaño et al., 2016); it is also possible that there are
different factors altered in these diseases, though converged into
the commonality of plasticity deficits. In addition, the circulating
BDNF or neurotransmitter levels could be similar across different
cortical areas, due to the diffusion with cerebrospinal fluid,
resulting in changes of both motor cortex and other cortical
areas simultaneously. These possibilities are worth of future
investigation.
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