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The nuclear lamina is an intermediate filament network that provides a structural framework for the cell nucleus. Changes in
lamina structure are found during changes in cell fate such as cell division or cell death and are associated with human diseases.
An unbiased method that quantifies changes in lamina shape can provide information on cells undergoing changes in cellular
functions. We have developed an image processing methodology that finds and quantifies the 3D structure of the nuclear lamina.
We show that measurements on such images can be used for cell classification and provide information concerning protein spatial
localization in this structure. To demonstrate the efficacy of this method, we compared the lamina of unmanipulated human
mesenchymal stem cells (hMSCs) at passage 4 to cells activated for apoptosis. A statistically significant classification was found
between the two populations.

1. Introduction

Quantitative molecular imaging is a relatively recent research
field, which is composed of two distinct domains. In one
domain, the spatial resolution has a lower bound around 1
millimeter and typical methodologies are fMRI, PET, and
SPECT. In the other domain, the spatial resolution is at the
true molecular level and is typically described in nanometers.
Typical imaging modalities include light microscopy, AFM,
and electron microscopy. It is in this second domain that we
are working.

For those research questions where large numbers of
image samples have to be processed in order to produce
significant results, for example, in cell biology and medical
diagnostics, light microscopy is usually the method of choice.
Although the “bulk visualization” of biomolecules is not
new—consider the measurements of DNA content made

by Casperssen in the 1930s [1]—modern probe/marker
technology has made it possible to make visible specific
DNA sequences such as telomeric DNA and proteins such
as actin and lamin A. But with this possibility to produce
images at the true molecular level, the challenges increase.
We no longer image volumes but rather points (gene
probes), lines (actin fibers), and surfaces (nuclear lamina).
While the processing of points in three-dimensional (3D)
images is relatively well understood in both microscopy
and astronomy, the 3D processing of lines and surfaces
presents significant challenges as weak signals can destroy
connectivity in lines and topology in surfaces. In this
paper, we present a methodology to process one type of
surface, the nuclear lamina, which is made visible through
molecular imaging. The tools that we present, however,
are appropriate for use in a variety of molecular imaging
problems.
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In all eukaryotic cells, the nuclear envelope (NE) forms
a boundary between the nucleus and the cytoplasm and
thereby physically separates nuclear from cytoplasmic activi-
ties. The NE consists of an outer nuclear membrane (ONM)
fused through nuclear pore complexes with an inner nuclear
membrane (INM), which is underlined by the nuclear lamina
[2]. The nuclear lamina, which is on the order of 30–100 nm
thick [3], is primarily composed of B-lamin proteins and
the lamin A/C-types. The lamin B proteins are constitutively
expressed and essential for the organism; lamin B knock-
down mice are nonviable and die at birth [4]. The lamin
A/C gene is developmentally regulated and mutations in
the lamin A gene cause a broad spectrum of hereditable
human diseases which are collectively called laminopathies
(reviewed in [5]). The nuclear lamina provides a structural
framework for the cell nucleus and high resolution imag-
ing techniques reveal its structure. The nuclear lamina is
composed of a fibrous network of lamin filaments together
with membrane-associated proteins and was first identified
in vertebrates by electron microscopy [6]. It was recently
resolved using cryo-electron tomography [7]. The nuclear
lamina is a highly dynamic structure and changes in nuclear
lamina structure are associated with many cellular processes
such as cell division, cell differentiation, cell senescence and
apoptosis (reviewed in [8]). In addition, lamin proteins
are involved in the regulation of nuclear functions such
as transcription, replication, and DNA repair and they can
directly bind both euchromatic and heterochromatic regions
[9–11]. Cells expressing mutations in the lamin gene exhibit
a deformed nuclear shape which is associated with changes
in transcriptome, DNA damage and DNA methylation [12].
It has, therefore, been proposed that the nuclear lamina can
affect the spatial positioning of nuclear structures which
subsequently affect nuclear functions. How the nuclear
lamina changes its shape, however, is still not clear. By
studying the 3D structure of the lamina, we can, therefore,
expect to see the spoors of changes in cellular processes.

The lamin proteins are direct targets of cell-death-
activated caspases [13]. Upon activation of apoptosis, the
lamin proteins are cleaved by the apoptosis-activated cas-
pases and followed by DNA fragmentation, the hallmark
of apoptosis [13]. Previous studies indicate that, during
activation of caspase-8 in hMSCs, changes in lamina spatial
organization, including invagination of the lamina into the
nuclear sphere and the formation of intranuclear lamina
structures, can be visualized before cleavage of lamin B by
caspase-3 and breakdown of the nuclear lamina [14].

The intranuclear lamina structures can be recognized in
vertical, optical sections of cells as shown in Figure 1. It is
not yet clear how these intranuclear structures are formed
or what their functions are but there is a spatiotemporal
correlation with the occurrence of telomere aggregates [11].
While yeast does not contain lamins, telomere aggregates
have been observed and are associated with gene silencing
[15]. It is possible, therefore, that lamina intranuclear
structures play a regulatory role in nuclear function.

To comprehensively study the spatial changes in nuclear
lamina in cellular processes, unbiased quantitative descrip-
tion of the lamina structure should be applied. So far, a

quantitative description of this structure has not yet been
provided. We have developed an imaging method that
segments the nuclear lamina resulting in a quantitative
description of this structure using two key steps, segmen-
tation and measurement, from which unbiased quantitative
spatial information obtained from the lamina structure can
be generated and statistically evaluated.

To demonstrate the biological relevance of this method,
we have extracted lamina features from un-manipulated and
caspase-8 activated cell populations and used these as a basis
for classification. Based on these lamina features, a linear
separation was found between the two-cell populations.
Altogether our results demonstrate that changes in lamina
structure are measurable and can be used as a tool to objec-
tively distinguish healthy from unhealthy cells. Moreover the
method can be used to understand how the shape of the
nuclear lamina relates to its biological function. We suggest
that biophysical features of the nuclear lamina can be used as
a research tool to associate changes in lamina structure with
cellular processes.

2. Materials and Methods

2.1. Simulation Studies. The techniques used in this quanti-
tative analysis have been developed over a number of years
and reported in a number of publications. In particular, sim-
ulation studies have been performed on 3D image restoration
[16, 17], the measurement of curvature [18, 19] and the
segmentation of objects in the presence of noise [20]. For the
work described here, additional simulation studies involved
the accurate measurement of the curvature associated with
the thin lamina membrane. Space considerations do not
permit discussing the details of these experiments but the
details of this extensive work can be found in [21].

2.2. Biological Material. To visualize the nuclear lamina in
living cells, we expressed the green fluorescent protein (GFP)
fused to the lamin A gene in human mesenchymal stem
cells (hMSCs) using a lentivirus expression system [14].
Upon transduction, the lentiviral DNA, containing lamina-
GFP, is stably integrated into the host genome allowing
repeated imaging during long-term culture. As only one
or two copies are integrated into the host genome, high
overexpression of the transgene is generally precluded. To
avoid transgene overexpression artifacts, cells with high
fluorescence intensity were excluded from these studies.

Human MSCs were isolated from bone marrow samples
obtained as described in [22]. Cells were propagated in vitro
as described in [14]. The lentiviral vectors used in this work
are the so-called self-inactivating (SIN) vectors [23]. The
fusion genes FKC8 (inducible caspase-8) and lamin A-EGFP
were described previously [14, 24]. The viral production
and the hMSCs virus transduction procedures were carried
out as described previously [14]. After transduction cells
were cultured for additional passages without any selection
pressure and without losing the transduced genes. The
protein expression pattern observed after 8-9 passages was
similar to the expression pattern of the endogenous proteins
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as verified with immunocytochemistry. Activation of the
inducible caspase-8, FKC8, in the hMSCs was carried out
with 100 nM AP20187 (ARIAD), as described in [14].

2.3. Immunofluorescence. Immunofluorescence of cells seed-
ed on glass plates and fixed prior to antibody incubation
was carried out as previously described [14]. The mouse-
antihuman lamin A antibody (1 : 1000; Santa Cruz) was used
to detect lamin A protein.

2.4. Microscopy and Image Processing. Image stacks (Δz =
122 nm) were collected from living cells using a confocal
microscope and lamina spatial structure was defined after
3D reconstructions (Figure 1). The nuclear lamina, in cells at
passage 4, showed a smooth ellipsoid-like shape (Figure 1, PS
4). After caspase-8 activation, however, the lamina structure
was distorted (Figure 1, Caspase-8 activated). These images
were further used for the development of a quantitative
description of the nuclear lamina.

Images were recorded with a Leica TCS SP2 confocal
microscope using an oil-immersion objective with a mag-
nification of M = 63× and a numerical aperture of NA
= 1.32. In this imaging system the point spread function
(psf) is anisotropic for the axial and lateral directions. This
means that the amount of spatial blurring will differ between
these orthogonal directions and, due to the differing Nyquist
criteria, the voxel size can differ in each direction without
loss of information. The voxel sizes were 162.8 nm in the
axial direction and in the lateral direction 52.6 nm for the
passage 4 cells and 69.3 nm for the caspase-8 activated cells.
The differences in voxel size in the lateral direction for the cell
types reflect different scanning settings. The measurements
that we use were normalized to be independent of these
voxel sizes. The three-dimensional images are processed
in DipImage, a software package developed at the Delft
University of Technology (http://www.diplib.org/), running
under the MatLab environment (The MathWorks, Natick,
Massachusetts).

As the lamina thickness is quite small < 20% of the
wavelength of emission light (λ ≈ 500 nm), the laminar
image is blurred by the point spread function (psf) of
a confocal imaging system [25]. This blurring however,
does not mask the spatial changes that occur in lamina
morphology (Figure 1). For a quantitative description of the
lamina structure, two key steps were applied: segmentation
and measurement.

2.5. Segmentation. Segmenting the lamina means finding
the thin membrane that is so evident in Figure 1. The
segmentation step is used to determine which of the three-
dimensional voxels are associated with the nuclear lamina.
The first step requires the creation of isotropic images
from the recorded anisotropic images. Isotropic images are
required because the measurements are voxel based so equal
voxel sizes are, in general, required if the measurements
are to be independent of cell orientation. The two types of
anisotropic behavior in these images are (1) the difference
between axial and lateral voxel size and (2) the difference in

the amount of axial and lateral blurring. Both of these effects
are inherent in confocal microscopy. Methods to eliminate
both of these anisotropies are presented here.

In the first step images were resampled such that the
voxels have equal lengths in all directions. The lateral voxel
sizes (x and y directions) are approximately 60 nm and the
axial size (z direction) has to be resampled from 160 nm to
60 nm. This was accomplished by linear interpolation of pixel
values [26].

The next step was correction for the anisotropy of
the blurring induced by the anisotropic psf of a confocal
microscope. We assumed a diffraction-limited, aberration-
free objective lens. Because of the circular symmetry of the
three-dimensional psf in the lateral plane, it can be described
by an axial coordinate z and a radial coordinate r. With a
minimum square error fit, a Gaussian function can be shown
to be an excellent model for this 3D psf with two width
parameters σr (lateral) and σz (axial) [27].

Because we require isotropic images, the amount of
blurring must be equal in each direction r and z. As σr < σz,
the image has to be blurred in the radial direction with a
Gaussian of size

σ2
r,blur = σ2

z − σ2
r (1)

as variances are additive in a Gaussian function. Using the
values from our Gaussian fit to the psf this leads to σr =
62 nm, σz = 190 nm and thus σr,blur = 180 nm.

Slices from the resampled and blurred, now-isotropic
images are shown in Figures 2(a) and 2(b). At this point and
in subsequent processing the images intensities are in a real
number (floating point) representation and are no longer
treated as integer values.

The key to segmentation is a variation on the theme of
“unsharp masking” [28]. In unsharp masking we emphasize
edges by subtracting a smoothed version of an image from
the original image. The unsharp masking method works as
follows

For the 3D image i(x, y, z) we compute:

iunsharp-masking
(
x, y, z

)

= iisotropic
(
x, y, z

)− (α · iblur
(
x, y, z

)
+ β

)
,

(2)

where α and β are constants. The voxels associated with
the lamina are now found by thresholding the unsharp-
masked image. This means that we are using a form of
local thresholding to determine the lamina voxels and the
determination of α and β is described below

imask
(
x, y, z

) =
⎧
⎨

⎩

1, iunsharp-masking
(
x, y, z

) ≥ 0,

0, iunsharp-masking
(
x, y, z

)
< 0.

(3)

The assignment of imask for the case when iunsharp-masking = 0
is not critical as we are using a real number representation.
Since the local threshold depends on the signal-to-noise ratio
(SNR) in the neighborhood of a voxel, the lower intensity
parts of the lamina are more difficult to segment. The SNR
can, in fact, be caused by a number of sources: dark current,

http://www.diplib.org/
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Figure 1: Confocal images of lamin A-GFP in hMSCs. The hMSCs at passage 3 were transduced with the lamin A-EGFP lentiviral vector and
after 3 days 1/2 of the cells were cotransduced with FKC8 lentivirus vector. For caspase-8 activation, cells were treated with 100 nM AP20187
for 4 hours. Confocal Z-stacks (z = 122 nm) were taken from living cells. The x-y images of 35× 35μm2 show a maximum projection, and
the sequential x-z image sections show equal intervals along the y-axis. Top images are of a typical passage 4 cell (PS 4), and bottom images
are of a typical caspase-8 activated (FKC8) cell.

photomultiplier tube noise, electronics noise and photon
noise. As discussed in the literature [29, 30] and as our
experiments deal with small, weakly-emitting structures, the
dominant source of noise in our images is photon (Poisson)

noise and the SNR is proportional to
√
〈i(x, y, z)〉 where

〈i(x, y, z)〉 is the average intensity associated with the Poisson
process that led to that intensity value.

The image iblur in (2) is a Gaussian-smoothed version of
iisotropic:

iblur
(
x, y, z

) = GσL,σA

(
x, y, z

)⊗ iisotropic
(
x, y, z

)

= GσL

(
x, y

)⊗
(
GσA(z)⊗ iisotropic

(
x, y, z

))

= GσL(r)⊗
(
GσA(z)⊗ iisotropic

(
x, y, z

))
.

(4)

Importantly, (4) indicates that we make use of the sepa-
rability of the Gaussian in the lateral and axial directions
and the fact that the Gaussian is circularly symmetric in
the lateral plane. The values of the parameters σL and σA
are determined as follows. The lateral smoothing parameter
(σL) is based upon the lateral extent of the lens psf. The
total lateral psf extent, using the Abbe half-width criteria
of 0.5λ/NA, is given by (λ = 509 nm)/(NA = 1.32) =
385 nm. Our sampling density in the lateral direction is about

60 nm/voxel. We use σL = 1 voxel = 60 nm ≈ 1/6 of the
psf lateral extent so as to provide smoothing of the image
without excessive blurring of the thin lamina image. We
note that the additional smoothing realized by this step is
marginal compared to the smoothing that has taken place
above, where σr,blur = 180 nm. This particular step, in fact,
increases the effective total filter σ in the lateral direction
from 180 nm to 190 nm. (See (1).) Combining the two filter
steps in one step would certainly increase the computational
speed. We describe this, however, as two steps in order to
indicate where the various contributions that require filtering
originate.

The axial smoothing parameter (σA) is similarly chosen.
The total axial psf extent [31] is given by 4λ/NA2 = 4 ·
509 nm/(1.322) = 1169 nm. We use σA = 15 voxels with
an axial resampled density of 60 nm which gives an extent
of 900 nm ≈ 3/4 of the psf axial extent. The stability of
our segmentation result for changes in σA is illustrated in
Figure 3. A 15% change in σA has no significant effect on the
result. This also holds for σL (data not shown).

This mask now depends on the two parameters (α,β)
in (2). The intensity differences across the lamina do not
allow a global threshold, so a local thresholding technique
is used. As shown in Figure 4, the image ithreshold(x, y, z) =
α · iblur(x, y, z) + β has higher values of intensity for the
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Figure 2: Result of lamina image processing for cells at passage 4: (a,b) anisotropy is caused by spatial sampling and an anisotropic objective
lens and (c) lamina segmentation. Top: x-y slice; Bottom: x-z slice. (a–c) image from a living cell, lamin A is visualized with a GFP fusion;
(d) an image from a fixed cell, lamin A is detected with antibody staining.
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Figure 3: Segmentation results for the nonspherical lamina for
varying values of the axial smoothing parameter ranging from σA =
13 to σA = 17. The segmentation is essentially constant over this
15% variation. The value σA = 15 is used in this work.

background than iisotropic(x, y, z) and lower values inside
the cell than iisotropic(x, y, z). This can be accomplished by
choosing 0 < α < 1 and β > 0. At those positions where
we made the transition from inside to outside the lamina,
we require that iunsharp-masking = 0. Solving for the value of
intensity Ic where this transition occurs gives Ic = β/(1− α).

We began by setting Ic at a somewhat lower value than the
average of max[iblur] and min[iblur]. The reason is that, for
Poisson noise, the noise level at higher intensities is higher on
an absolute scale than at low intensities. We choose, therefore,
for Ic = max[iblur]/3. In order for the unsharp mask to
accurately follow the shape of iisotropic as seen in Figure 4, we
set α = 0.9. This choice means that β = max[iblur]/30. The
resulting unsharp-masking image, defined in (2) and used in
(3), is also shown in Figure 4. Again, the segmentation results
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Figure 4: An illustration of the unsharp-masking procedure where
a section is scanned along one line and the isotropic, threshold, and
unsharp-masking “images” are calculated for this single scan line.
The procedure is actually performed in three dimensions.

are not overly sensitive to our chosen values α and β, data not
shown.

Thresholding schemes in 2D images produce contours
and in 3D they produce surfaces. In both cases gaps can
appear in what should be the closed contour or surface. The
holes that may appear can essentially be eliminated by using
a morphological closing [28]. A closing is a dilation followed
by an erosion on the mask image computed in (3). Care must
be taken in choosing the size of the closing, the structuring
element, as it must be sufficiently large to close the holes
but small enough to leave the intranuclear space open. We
used a digital approximation to a sphere of radius 2.7 voxels
(162 nm), which contains 81 voxels. The structuring element
is isotropic because the image is isotropic even though the psf
is not. Segmentation results are shown in Figure 2(c).

All of the 49 cells used in this study, that is 100%,
produced successful segmentation results that were suitable
for further processing. In comparison, when the nuclear
lamina was marked with antibodies against lamin A on fixed
cells, only 30 out of 42 cells (71%) produced segmentation
results that were suitable for further processing. An example
of an unusable segmentation result from a fixed cell is
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shown in Figure 2(d). These results show that the lamina
segmentation method can be applied also on cells, where the
lamina is visualized with immunolabeling. However due to
the significant number of unusable segmentation results it is
more laborious. Further, the use of fixed cells does not afford
the flexibility associated with live cell studies. In the study
we used segmentation results that were obtained from living
cells.

2.6. Measurement. For a quantitative description of nuclear
lamina shape, three features were measured from the
segmented images: the average normalized intensity, skew-
ness of the intensity distribution, and normalized average
absolute Gaussian curvature. These features were initially
suggested by visual inspection of the nuclear lamina. Here we
converted features visualization into mathematical descrip-
tors.

The intensity-based measures begin with the intensities
of those voxels that are located in the lamina mask produced
by the segmentation procedure described above. The mean
(μ) and standard deviation (σ) of this set of intensities were
collected and outliers—values that are more than 4σ from
μ—were clipped to either μ − 4σ or μ + 4σ . The intensities
were then normalized to the interval (0, 1) using

inorm = i−min(i)
max(i)−min(i)

. (5)

The average normalized intensity of the laminar voxels is
computed as follows:

iaverage =
∑

mask inorm∑
mask

. (6)

The skewness of the intensity of the laminar voxels is
computed as follows:

iskewness =
∑

mask

((
inorm − iaverage

)
/σi
)3

∑
mask

, (7)

where iaverage is defined in (6) and σi is the standard deviation
of the normalized intensity distribution. Both iaverage and σi
can be calculated from a histogram of the intensity values
associated with (5). The denominator of (6) and (7) is
the number of voxels associated with the lamina and it
guarantees that this measure is independent of voxel size.

The curvature measure is defined by the voxel mask
resulting from segmentation, and it describes the rate at
which the direction of a path changes along the lamina
surface (Figure 5). The concepts “rate” and “direction” both
require the use of a derivative so calculation of curvature
involves both first and second derivatives. We use the
two principal curvatures (κ1 and κ2) [32] and these two
curvatures are combined to yield the Gaussian curvature
K = κ1 · κ2 at every point on the laminar surface. These
curvatures provide a mathematical description of the way the
surface bends.

Calculation of the curvature of a (laminar) surface in a
three-dimensional space is straightforward and is described

g

s1
s2

P

Figure 5: The surface has at every point P, a gradient g normal to
the surface and two, orthogonal, surface vectors, s1 and s2. The two
vectors are orthogonal to g and to one another.

below. At any point P on the lamina surface there is a gradient
vector g that is normal to the surface and two additional
surface vectors, s1 and s2, that (1) lie on the surface, (2)
are orthogonal to the normal vector and (3) orthogonal to
one another. This can be illustrated by a “monkey saddle”
(See http://en.wikipedia.org/wiki/Monkey saddle/) as shown
in Figure 5.

Each choice of s1 corresponds to a path going through P
and a curvature of that path at P, κ(P). As we rotate s1 around
g, κ1 and κ2 are the maximum and minimum curvatures that
go through the point P. A positive curvature corresponds to
a convex bending, a negative curvature to a concave bending,
and a zero curvature to no bending. The product of these
two curvatures is the Gaussian curvature. These calculations
have to be performed properly and procedures are described
in [32, chapters 16 and 17] and in [33].

Two parameters must be chosen to ensure that the
curvature-associated derivatives are correctly calculated: the
size σg for a Gaussian derivative filter used to implement the
derivatives and the size σw of an averaging window for the
gradient structure tensor (GST) [18, 34]. It is important that
the measurement results are stable for small deviations in σg
and σw. This stability of the results means that the curvatures
can be meaningfully compared between different images. We
have determined that, given the size of our voxels, σg = 3
voxels (≈180 nm) and σw = 7 voxels (≈420 nm) lead to
stable results, data not shown. These values for σg and σw are
consistent with the values reported in [18, 33].

The normalized, average, absolute Gaussian curvature is
then computed as

KnaaGc = ACH

(∑
mask|K|∑

mask

)

. (8)

The term within the parentheses is the average, absolute
Gaussian curvature. Its dimensions are length−2. The nor-
malization term, ACH, is the area of the convex hull that
encompasses the laminar surface. The convex hull of the
mask is taken in order to neglect the internal structure and
to find a closed object with dimensions comparable to the
dimensions of the mask. A two dimensional example of this
can be seen in Figure 2(c). The convex hull term ensures that
the curvature measure is independent of voxel size.

http://en.wikipedia.org/wiki/Monkey_saddle
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2.7. Data Analysis. We use simple, linear classifiers based
upon the Fisher linear discriminant [35] to show that these
measurements are sufficient to distinguish between passage 4
and caspase-8 activated cells. The Fisher discriminant allows
determination of the decision lines shown in Figure 7 and
subsequent classification resulting in the confusion matrix
presented in Table 1. These statistical and classification
procedures are embodied in PRTools, a software package
for MatLab developed at the Delft University of Technology
(http://www.prtools.org/).

3. Results

3.1. Spatial Localization. The intensity and curvature mea-
sures were used to give a local spatial distribution of intensity
(6) and curvature (8) in the lamina structure of a specific
hMSC. To produce the image of a typical cell shown in
Figure 6, the summed and normalized values for intensity
or curvature over an entire 3D lamina were projected onto
a single cross section per cell.

For the normal cells used in this study, high intensity,
which indicates accumulation of lamin A, is found at the
left and right edge of two-dimensional slices of the three-
dimensional (nonspherical) nucleus (Figures 6(a), 6(c),
and 6(f)). The high curvature regions do not, however,
show spatial correlation with the intensity as demonstrated
by the 2D histogram and the low correlation coefficient
ρ = 0.265 (Figures 6(a), 6(b), 6(e), 6(c), and 6(f)). This
histogram was computed by plotting the intensity versus
curvature for each voxel in the lamina and the correlation
coefficient was extracted from this histogram. The number
of voxels involved in calculating this correlation coefficient
was 4,607,349.

Since the structure of the nuclear lamina is dramatically
changed during apoptosis activation [11, 12], we have
compared the spatial and structural changes of the nuclear
lamina in un-manipulated cells to those that were activated
with the inducible caspase-8 (FKC8). Activation of hMSCs
with FKC8 leads to cell death which is characterized by
cleavage of caspase-3, lamin B and lamin A proteins and
DNA fragmentation, as detected by the TUNNEL assay [12].

Here we found that in FKC8-activated cells, the distri-
bution of lamin A-GFP differs, as compared to the untreated
cells. After FKC8 treatment high intensity and high curvature
were found at the upper and lower surfaces of the nucleus
indicating redistribution and local accumulation of lamin
A proteins. (Figure 6(f) shows a typical caspase-8 activated
cell.) The intensity and curvature correlation found after
caspase-8 activation was ρ = −0.057 indicating that these
two features were essentially uncorrelated. The number of
voxels involved in calculating this correlation coefficient was
2,226,379.

In these two-cells, which are typical of the cells that
we analyzed in this study, the high intensity regions are
surrounded by high curvature values. In the FKC8-activated
cells, however, additional high-curvature regions, which are
not associated with local accumulation of lamin A, are
also detected. These results suggest that bending of the

nuclear lamina can result from local accumulation of lamin
proteins but additional factors, such as lamina-associated
proteins, can also affect the bending of this structure. (The
relationship between bending and curvature is described in
[33, 36].)

3.2. Cell Classification. In order to systematically analyze
the changes in lamina organization, we measured lamina
features from un-manipulated (control) cells at passage 4 and
compared them to caspase-8 activated cells. We chose the
caspase-8 activated cells to model our quantitative lamina
description method as changes in lamina organization are
one of the initial characteristics found during activation of
caspase-8 [14].

The values of mean intensity, skewness and mean
curvature were measured for every cell, plotted in 2D scatter
graphs (Figure 7), and subsequently used in classification
tests. “Classical” statistical classification procedures were
used to distinguish between the two populations. More
recent techniques, such as support vector machines (SVM),
were not warranted for this application given our sample
size, number of features, and the data simplicity. Figure 7
illustrates the results of a linear classifier where cells on
one side of the line are classified as belonging to one of
the populations and cells on the other side of the line are
classified as belong to the other. The data indicate that cells at
passage 4 can be distinguished from caspase-8 activated cells
on the basis of every two-feature combination.

The significance of the classification is demonstrated in
a confusion matrix that indicates the frequency with which
cell type i is (mis)identified as cell type j (Table 1). Using
the confidence limits for the binomial distribution [37],
these results are statistically significant (compared to the
one-sided, null hypothesis that classifications are made at
random) with pcontrol ≤ 1.4×10−5 and pFKC8 ≤ 1.3×10−2.

We also tested whether a quadratic classifier or the use
of all three features in the classification, instead of just
two, might lead to an improved performance. As shown in
Table 1, no significant improvement over the two-feature,
linear classifier was found.

4. Discussion

We have developed an unbiased method to describe the
nuclear lamina with mathematical descriptors. We show
that the three features that we have chosen are sufficient
to provide excellent discrimination between passage-4, un-
manipulated cells and caspase-8 activated cells. This means
that these features, combined in a measurement tool, can be
used to follow changes in nuclear lamina morphology as a
cell progresses from healthy to cell death. With this tool it
should be possible to infer the viability status of the cell from
the shape of its nuclear lamina.

The preprocessing, segmentation and measurement pro-
cedures involve the determination of values, sometimes
referred to as “magic numbers”, for the six parameters
(σL, σA,α,β, σg , σw). The values we have used are, to a
certain extent, determined by physical parameters such as

http://www.prtools.org/
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Figure 6: Local, spatial distribution of measurements in a single, 2D (x, z) slice of a lamina for a representative cell at passage 4 and for
another representative cell after caspase-8 (FKC8) activation. (a) and (d): Intensity values with a linear scale; (b) and (e): Curvature values
with a logarithmic scale; (c) and (f): The 2D histogram shows values of intensity and curvature pairs for each and every voxel of the 3D
lamina structure.

Table 1: Confusion matrix for classification of the two-cell populations using two-feature classifications and three-feature classifications.
The two-feature classifier uses normalized curvature and average normalized intensity (Figure 7(a)) with a linear classifier and a quadratic
classifier. The three-feature classifier uses normalized curvature, average normalized intensity and skewness with a linear classifier and a
quadratic classifier. The percentage classification is given together with the standard error of its estimate (μ± σ).

Biological sample

Passage 4 cells FKC8 cells

N = 28, 100% N = 21, 100%

Statistical classification (2 features)

Linear classifier

passage 4 27, 96%± 4% 3, 14%± 8%

FKC8 1, 4%± 4% 18, 86%± 8%

Quadratic classifier

passage 4 26, 93%± 5% 3, 14%± 8%

FKC8 2, 7%± 5% 18, 86%± 8%

Statistical classification (3 features)

Linear classifier

passage 4 27, 96%± 4% 5, 24%± 9%

FKC8 1, 4%± 4% 16, 76%± 9%

Quadratic classifier

passage 4 25, 89%± 6% 1, 5%± 5%

FKC8 3, 11%± 6% 20, 95%± 5%
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Figure 7: Scatter plots and linear classification lines of passage 4
(PS 4) versus caspase-8 activated cells are shown for each two-
feature combination. The number of cells per datasets is: NPS4 = 28,
Ncaspase-8 activated = 25. Passage 4 cells (WT PS4) are shown with (∗)
and caspase-8 cells (+CC8) with (�).

λ, NA, psf, SNR, and sampling distance. We have examined
the sensitivity of our measurements to variations in these
parameters and, as described in the methods section, small
variations (≈15%) in these parameter values do not produce
significant changes in the results. The parameter values,
however, are also problem-dependent and selected for the
specific biological model that is being studied and the
biological probes and markers that are being used. That
is to say, we have determined values that work well with
a nuclear lamina probe. Other subcellular compartments
might require adjustments.

As indicated by the high percentage of usable segmen-
tation results, the method we developed is suitable for
living cells, where the nuclear lamina is visualized with a
fluorescent protein. In addition, the segmentation is adjusted
for the elliptical nuclear shape found in hMSCs. It will be
important to test this method on other cells, which will allow
broadening the application domain. Parameters that describe
the nuclear shape may require adjustments [38].

Previous studies by Rohde et al. [39] described an
algorithmic tool that elegantly represents the 2D contour of
the cell nucleus. Schermelleh et al. have shown how three-
dimensional, structured illumination microscopy (3D-SIM)
could provide images with detailed spatial information about
the lamina network [40]. Neither study, however, provided
a quantitative description of the nuclear lamina. To our
knowledge we are the first to provide such a description and
its subsequent application.

Importantly we have introduced a visualization tool that
provides spatial information concerning the nuclear lamina
and shows where in the lamina structure morphological
changes occur when cells undergo apoptosis. This tool can
be used to understand how the distribution of the lamina
proteins defines this structure. We have recently shown that
specific nuclear elements change their spatial localization
with respect to the nuclear space and nuclear lamina [11, 41].
This tool, when combined with additional nuclear probes
for chromatin regions or lamina-binding proteins, should be
useful in localizing the association of specific nuclear probes
with the lamina. As this study is carried out in living cells
it can provide additional information as to how the lamina
is involved in spatial and temporal regulation of nuclear
function.

Cell death is an essential biological process for eliminat-
ing unwanted cells during development, growth, differen-
tiation, and maintenance of tissue homeostasis. Failure to
eliminate such unwanted cells may contribute to the devel-
opment of pathologies. The capacity to evade (apoptotic)
cell death has been defined as one of the hallmarks of cancer
[42]. As a change in lamina morphology is the initial event
that can be observed after activation of apoptosis [13, 14],
there is a rationale to extract quantitative features of lamina
morphology and to use these features to identify cells in
a population that is undergoing apoptosis. Here we have
developed an imaging methodology to quantify structural
information, in this case the intensity and curvature of the
nuclear lamina. We have demonstrated that this method
allows one to accurately distinguish apoptotic cells from
normal cells. Previously we have shown that the unbiased
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support vector machine-learning techniques can also be
applied to classify between untreated and capsase-8 activated
cells using images of the nuclear lamina [43]. The SVM
method, although unbiased, does not provide a quantitative
description of this structure.

Recent developments in stem-cell research for applica-
tion in regenerative medicine, in particular induced pluripo-
tent stem cells (iPS), require unbiased methods for stem
cell characterization. Unbiased methods, such as the one
presented here, can be important in characterizing and
sorting stem cells during in vitro propagation and prior to
transplantation. In addition, it has been recently suggested
that observing cells at early stages of apoptosis can be used
to evaluate treatment efficacy or even to predict tumor
responsiveness to treatment [44]. An image analysis tool that
automatically identifies cells that are targeted for apoptosis
can therefore be of potential use in the clinic. Here we
have applied this new method on hMSCs, as the nuclear
shape of healthy cells at early passage number is relatively
uniform [41] even in a heterogeneous cell population such
as hMSCs. As distorted nuclear shape during apoptosis has
been observed in other cell types, it will be particularly
interesting to apply this tool in vivo in order to mark different
apoptotic cells and to evaluate the rate of cell apoptosis.

Finally, as changes in lamina structure are found in
additional biological processes, such as cells undergoing
senescence or cells carrying mutations in lamina genes [5],
the image analysis methodology described here might also be
used to evaluate how changes in lamina structure are related
to other changes in cell fate.
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