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Objectives. The assessment of oxidative stress (OS) in serum relapsing-remitting multiple sclerosis patients treated with II-line
immunomodulatory therapy (fingolimod, natalizumab) compared to newly diagnosed patients (de novo group) treated with
interferon (IFN) beta and controls. The relationship between OS parameters and gender, age, disease duration, Expanded
Disability Status Scale, annualized relapse rate, MRI lesions in patients treated with II-line. Materials and Methods. One
hundred and twenty-one patients with RRMS were enrolled in the study. Patients were divided into groups: de novo group, IFN,
fingolimod (FG), natalizumab (NT), and controls. Lipid hydroperoxides (LHP), malondialdehyde (MDA), lipofuscin (LPS), and
total oxidative status (TOS) were determined. Results. LHP, MDA, and TOS were lower in NT and FG groups compared to the
de novo group. Levels of OS were different between NT and FG patients and the IFN group. Women treated with FG and NT
had lower MDA, LPH, and TOS than women who were not treated while in men only LPH was lowered. Positive correlations
were found between MDA, LHP, TOS, and ARR in the NT group. Conclusion. The II-line immunomodulatory treatment
decreased OS particularly among women. No difference in OS levels was observed between II-line therapy and IFN beta.

1. Introduction

Multiple sclerosis (MS) is a multifactorial disease of the
central nervous system (CNS) characterized by inflamma-
tion and demyelination [1]. It is connected with neuroin-
flammation, demyelination, and axonal loss [1]. The
etiopathology remains unclear. Genetic and environmental
factors are suspected to play a role in the pathogenesis,
and recently, attention has been also paid to oxidative
stress (OS) as one of the main factors responsible for
demyelination [2–4]. The imbalance between OS agents

and antioxidants leads to OS activating the inflammatory
process [5, 6].

Hyperactivity OS enzyme is responsible for the produc-
tion of free radicals [7, 8]. These, in turn, attack the various
classes of biomolecules (proteins, lipids, carbohydrates,
DNA, and RNA), leading to the damage at the level of mito-
chondria and ion channels, which activates apoptotic path-
ways [9, 10]. In addition, the energy balance of neurons is
disturbed and consequently contributes to neurodegenera-
tion [11–13]. Therefore, understanding the relationship
between OS and the course of multiple sclerosis is so crucial.
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Multiple sclerosis may occur in several forms, that is,
relapsing-remitting (RRMS), secondary progressive (SPMS),
and primary progressive (PPMS). Currently, MS treatment is
based on immunomodulatory therapy. The I-line of treatment
includes interferon (IFN) beta, glatiramer acetate, dimethyl
fumarate, and teriflunomide, whereas the II-line includes fin-
golimod (FG), natalizumab (NT), and alemtuzumab.

The most widely used I-line drugs are interferon (IFN)
beta and glatiramer acetate. Their effectiveness is comparable
in the treatment of the RRMS [14]. The more aggressive
forms of RRMS are treated with II-line drugs, mainly FG
and NT.

Due to the fact that the effectiveness of therapy is still lim-
ited, new therapeutic strategies are constantly under investi-
gation [15, 16]. It seems that the beneficial effect on the
inflammatory processes is insufficient. The participation of
redox processes in the pathogenesis of MS has been recently
highlighted [17]. The parameters of OS are investigated for
their impact on the course of the disease. Biomarkers of OS
may be used for the assessment of the prognosis of exacerba-
tion or the treatment response [18].

It is believed that new immunomodulatory drugs may
have an influence on OS level in patients with MS [18]. In
particular, NT and FG are poorly understood in this respect.
The study on OS biomarkers in the immunomodulatory
therapy has been an important element of further research
on MS. This is a new issue that has not been explored yet.

2. Objectives

We assessed OS parameters in the blood serum of RRMS
patients in the Clinic of Neurology in Zabrze, Poland. The
parameters were assessed in patients treated with II-line
immunomodulatory therapy compared to newly diagnosed
RRMS patients (de novo group), RRMS patients treated with
IFN beta, and healthy subjects. We assessed the relationship
between OS parameters and gender, age, disease duration,
degree of disability in the Expanded Disability Status Scale
(EDSS), ARR, and MRI Gd+ lesions.

3. Materials and Methods

One hundred and twenty-one patients diagnosed with RRMS
according to the McDonald criteria of 2010 were enrolled
in the study. In addition, the study involved 41 volunteers
(controls) that did not suffer from MS.

The inclusion criteria (study group) are the following:

(i) RRMS patients diagnosed according to the 2010
McDonald criteria. The immunomodulatory
treatment with interferon β-1a, interferon β-1b,
glatiramer acetate, fingolimod, and natalizumab

(ii) 10ml of venous blood

(iii) Age≥ 18 years

(iv) Female or male

(v) Written informed consent for participation in
the study

(vi) Patient free from relapse

(vii) Blood samples were not taken immediately after
drug administration.

The exclusion criterion (study group) is the following:

(i) Lack of consent to participate in the study.

The inclusion criteria (control group) are the following:

(i) Generally healthy people (diagnosis of MS was
excluded; treatment of hypertension was not a
contraindication)

(ii) Nonsmokers.

The exclusion criteria (control group) are the following:

(i) Smokers

(ii) Lack of consent to participate in the study.

Patients were divided into the following groups, according
to the type of immunomodulatory therapy:

(1) De novo group—patients newly diagnosed with
RRMS without immunomodulatory therapy (24
patients)

(2) IFN—RRMS patients treated with IFN beta-1a (30μg
i.m. weekly or 44 ug s.c. 3 times per week) or
interferon beta-1b (250μg every second day s.c.) (32
patients)

(3) FG—RRMS patients treated with FG (0.5mg/daily
p.o.) (39 patients)

(4) NT—RRMS patients treated with NT (300mg once a
month IV) (26 patients)

(5) Control—a control group of nonsmoking healthy
volunteers (41 persons).

A sample of 10ml venous blood were obtained and
placed in chilled tubes with 1mg/ml EDTA-K3 as anticoagu-
lant. After centrifugation of blood samples, the obtained
serum was frozen at −80°C. The following OS parameters
were determined:

(i) concentration of lipid hydroperoxides (LHP),

(ii) malondialdehyde (MDA),

(iii) lipofuscin (LPS),

(iv) total oxidative status (TOS).

The determination of the level of the parameters was con-
ducted using standard methods.

The concentration of LHP in serum was determined by
the method of Sodergren et al. Xylene xangan was used.
The procedure was based on the oxidation of iron (II) ions
to iron (III) ions in acidic medium. Then, iron (III) ions with
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xylene orange form a colorful complex, up to a blue-purple
coloration. The reading was made with a 560nm filter using
the Perkin Elmer VICTOR-X3 reader. The concentration
was read from the calibration curve prepared with the aid
of appropriate H2O2 concentrations. Values are expressed
in μmol/l [19].

The MDA concentration was determined in serum using
the MDA reaction with thiobarbituric acid according to
Ohkawa. For reading, the LS45 spectrometer from Perkin
Elmer was used at 515nm (absorbance) and 552nm
(emission) spectrophotometer. Spectrofluorometric reading,
unlike spectrophotometry (at 532nm), is more specific, and
it does not interfere with hemoglobin; no bile duct interfer-
ence is observed. The method was modified by adding
sodium sulphate and BHT, which further increased the spec-
ificity of the method. MDA concentrations were read from
the standard curve using standard 1,1,3,3-tetraethoxypro-
pane and expressed in micromoles per liter of serum
(μmol/l) [20].

Serum LPS concentration was determined according to
the method of Tsuchida et al. Ethanol-ether mixtures 3 : 1
(v/v) were added to the serum, shaken, and centrifuged.
The fluorescence intensity was determined using a Perkin
Elmer LS45 spectrophotometer at 345nm (absorbance) and
430nm (emission) wavelengths in a dissolved solid.

The values are expressed in relative lipid extract fluo-
rescence (RF), where the value of 100 RF corresponds to
the fluorescence of the solution of 0.1μg/ml quinidine sul-
phate in 0.1N sulfuric acid. LPS concentrations are shown
in RF [21].

The TOS assay is based on the oxidation of iron (II) ions
to iron (III) ions in acidic medium. Then, iron (III) ions
with xylene orange form a colorful complex, up to a blue-
purple coloration.

The absorbance readings were made with a 560nm filter
on the PerkinElmer VICTOR-X3.

The concentration was calculated from the calibration
curve using H2O2 as the standard.

Values are expressed in μmol/l [22].
Demographic data, clinical disease onset, disease dura-

tion, clinical form of MS, the type of treatment, ARR, the
degree of disability in the EDSS scale, and lesions on MRI
were obtained from medical databases and the Department
of Neurology. The results were stored in the database pre-
pared specifically for this purpose in Microsoft Excel.

STATISTICA 9.1 was used for the statistical analysis.
p < 0 05 was considered statistically significant. Variables
were estimated for the normality of the distribution by the
Shapiro-Wilk test. Demographic characteristics and all the
results were expressed as the number (N), arithmetic mean,
standard deviation, median, interquartile range, and percent-
age (%).

Homogeneity of continuous variables between groups
was analyzed using the parametric ANOVA test (for
normally distributed variables) or the nonparametric test
Kruskal-Wallis ANOVA (for variables whose distribution
was not normal).

Post hoc analysis using Tukey’s test with the Bonferroni
correction was conducted in the case of statistically

significant differences. The Student t-test and the nonpara-
metric Mann–Whitney U test were used to compare the
two groups. The homogeneity of the study groups in
terms of qualitative variables was analyzed by Pearson
chi-square test. The numbers were compared between
groups using multiway tables and the chi-square test.
The relationship between attributes was evaluated by the
linear Pearson correlation.

The study was approved by the Bioethics Committee of
the Medical University of Silesia in Katowice, Poland. This
study was conducted in accordance with the Helsinki criteria
for patient trials. The approval number of The Bioethical
Commission was KNW/0022/KB1/37/16 of 19th April 2016.

4. Results

A group of patients with RRMS and the control group proved
to be homogeneous in terms of gender and age. Women
accounted for 66.94% of patients and 78.05% of the control
(Table 1).

Table 2 presents a detailed characteristics of the study
groups, considering the clinical and radiological indicators
assessing the degree of disease activity such as disease dura-
tion, EDSS, ARR, Gd+MRI lesions, and T2 MRI lesions.
Study groups did not differ from these data. The newly diag-
nosed patients (de novo group) were the oldest group, and
the NT group was the youngest. The number of female
patients was higher compared to the male patients (Table 2).

Table 3 shows the analysis of FG and NT groups before
and during the II-line treatment. Some patients from the
FG group (35.90%) had been previously treated with IFN
1a, 46.15% with IFN 1b and 17.95% with glatiramer acetate
whereas in the NT group - 40%, 45% and 50%, respectively.
Table 3 also presents time of I-line treatment (years) and
the comparison of the study groups, considering clinical
and radiological indicators assessing the degree of disease
activity before treatment of II-line (EDSS, ARR, Gd+MRI
lesions, T2 MRI lesions). The time of I-line treatment for
the FG group was 2± 2 years and for the NT group 2± 2.5
years, and the time of II-line treatment 2.14± 1.39 and
2.09± 1.27 years, respectively.

The treatment effects are presented as the percentage of
patients free from relapse (FG group 71.43% versus NT
group 87.5%), free of clinical disease progression at the end
of the observation (FG group 28.57% versus NT group
33.33%), and radiological disease progression at the end of
the observation (FG group 93.75% versus NT group
95.83%). The number of T2 MRI lesions was represented

Table 1: General characteristics of the study groups divided intoMS
patients (RRMS) and healthy people (control).

Group RRMS Control p

N 121 41 0.157

Age (years) 37.5± 14 36± 21 0.588

Gender (% of females) 66.94 78.05 0.181

RRMS: relapsing-remitting multiple sclerosis; statistical significance for
p < 0 05.
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as N number (FG group 20.25± 1.86 versus NT group
18.50± 4.90). The results did not differ significantly
between the two groups (Table 3).

4.1. The Analysis of Selected OS Parameters in Groups
According to the Type of Treatment (Table 4). Patients with

RRMS were divided into four groups. The fifth group was
the control group.

All groups were compared with respect to the selected
parameters of OS in serum. The study groups showed the dif-
ference in the concentrations of LHP, MDA, LPS and TOS.
The post hoc analysis was conducted for FG and NT groups
only for statistically significant P-value.

Significantly lower concentrations of LHP, MDA and
TOS were observed in NT and FG groups compared to the
de novo group. In addition, a lower concentration of LPS
was observed in the NT group compared to the de novo
group. Both NT and FG groups were not different from the
IFN group in terms of OS parameters. Significantly higher
MDA concentrations were noted in the groups treated with
II-line immunomodulatory therapy as compared to the con-
trol group. The IFN group also had significantly lower all
parameters of OS compared to the de novo group, but they
were higher in the IFN group compared to the control group.
It should be stressed that in the FG and NT groups only the
MDA concentration was higher than that in the control.
Other parameters were not different from the control group.

4.2. The Analysis of the Groups by Gender (Women) (Table 5).
Women were selected from all of the groups. The post hoc
analysis revealed that all women treated with II-line drugs
had lower levels of OS parameters such as MDA, LPH, and
TOS compared to women who had not been previously
treated. Women in the IFN group had lower levels of
MDA, LHP, and TOS compared to women diagnosed de
novo, but MDA and LHP levels were higher in the IFN group
compared to healthy women. However, in the FG and NT
groups, this difference was not observed.

4.3. The Analysis of the Groups by Gender (Men) (Table 6).
Then, men were selected from all of the groups. The post
hoc analysis revealed that all the men treated with II-line
drugs had a lower level of LHP than men who had not
been previously treated. In men, OS parameters from the
IFN group were not different from the OS parameters in
the de novo group. Healthy men had lower most of these
parameters compared to men diagnosed de novo and the
IFN group.

Table 2: The demographic and clinical characteristics of the study group.

Group De novo RRMS INF FG NT Control

N 24 32 39 26 41

Age (years) 43.05± 12.73 40.50± 9.45 36.49± 11.67 33.96± 8.45 39.46± 12.30
Gender (% of females) 66.67 71.88 56.41 76.92 78.05

Disease duration (years) NA 4.39± 4.51 6.66± 4.27 5.96± 3.35 NA

EDSS (score) 2.52± 1.65 1.98± 0.86 3.08± 1.10 3.08± 1.14 NA

ARR (N) 0.84± 0.83 0.25± 0.44 0.37± 0.64 0.12± 0.33 NA

Gd+MRI lesions (N) 0.76± 0.83 0.43± 1.13 0.09± 0.39 0.12± 0.61 NA

T2 MRI lesions (N) 19.05± 3.99 18.53± 4.38 20.25± 1.86 18.50± 4.90 NA

De novo RRMS: patients with a newly diagnosed relapsing-remitting multiple sclerosis; RRMS INF: RRMS patients treated with interferon beta; FG: RRMS
patients treated with fingolimod; NT: RRMS patients treated with natalizumab; EDSS: Expanded Disability Status Scale; ARR: annualized relapse rate;
NA: nonapplicable.

Table 3

(a) The detailed clinical characteristics of RRMS patients prior to
inclusion in the II-line treatment

Group FG NT

Time of I-line treatment (years) 2± 2 2± 2.5
Type of treatment in I-line:

INF beta-1a (%) 35.9 40

INF beta-1b (%) 46.15 45

OG (%) 17.95 15

EDSS (pkt) 3.5± 1 3.5± 1
ARR (N) 2.02± 0.77 2.31± 0.73
Gd +MRI lesions (N) 2± 4 3± 3
T2 MRI lesions (N) 18.39± 5.70 14.56± 8.19

(b) The detailed clinical characteristics of RRMS patients after
inclusion in the II-line treatment

Group FG NT p

Time of II-line treatment (years)
2.14
± 1.39

2.09
± 1.27 0.841

% of patients without relapses 71.43 87.50 0.143

% of patients without clinical
progression

28.57 33.33 0.721

% of patients without radiological
progression

93.75 95.83 0.732

T2 MRI lesions (N)
20.25
± 1.86

18.50
± 4.90 0.380

RRMS INF: RRMS patients treated with interferon beta; FG: RRMS patients
treated with fingolimod; NT: RRMS patients treated with natalizumab;
OG: RRMS patients treated with octan glatiramer; EDSS: Expanded
Disability Status Scale; ARR: annualized relapse rate; statistical significance
for p < 0 05.
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4.4. The Analysis of the Most Important Correlations for
RRMS Patients Treated with II–Line (Table 7). Moderately
positive correlations were found in the NT group between
the concentrations of MDA, LHP, TOS, and ARR. No other
significant correlation was found.

In the IFN group, only a positive correlation was
found between Gd+MRI lesions and LHP and MDA and
TOS concentrations.

5. Discussion

The contribution of OS to MS is very complex and linked to
many mechanisms (Figure 1). Currently, it is believed that
MS is a biphasic disease [2]. Initially, inflammatory processes
dominate, and the process is associated with polymorphonu-
clear leukocyte (PMN) migration into the brain tissue [23]
and stimulates the adhesion of monocytes to the vascular
endothelium [24–26]. The extravasation of leukocytes into
the CNS [27–29] generates cytokine-induced synaptic hyper-
excitability [30, 31] and ultimately leads to chronic neuroin-
flammation [8]. These processes induce OS and initiate
inflammatory processes by persistent hyperactivation of oxi-
dative enzymes [8], activation of nuclear factor kappa beta
(NF-κβ) [32], and loss of the blood-brain barrier integrity
[27–29]. It seems that the key element may be an imbalance
between oxidative and antioxidative processes in MS
patients. This can be expressed through the imbalance
between the concentration of compounds such as lipid

peroxidation levels (MDA, LHP), carbonyl protein content,
DNA damage, GSH, SOD, GST [23], CAT activities,
vitamins C and E, nonprotein thiol content [33], and tran-
scription factor Nrf2 which is responsible for important
antioxidant pathway [18]. The brain tissue is susceptible
to the action of radicals [6, 34] due to the limited antioxi-
dant capacity [6, 34]. Lipid peroxidation results in oxidized
phospholipids (Ox-PL) [24, 35], energy failure [18], and
consequently oligodendrocyte apoptosis and astrocyte dys-
function. All these processes generate demyelination and
neurodegeneration [36–39]. This problem, however, is
beyond the scope of the present paper. The main problem
is related to the explanation of the relationship between
peripheral OS markers and OS in the CNS. Our paper
attempted to investigate this problem with a particular
regard to II-line (FG, NT) drugs.

This study showed an impact on OS parameters in MS
patients treated with II-line immunomodulatory therapy.
Better understanding of the effects of II-line drugs may help
explain the mechanism of OS in the pathogenesis of MS. It is
possible that this direction of research may allow in the
future to introduce new therapies based on the oxidative/
antioxidant system. What is more, there may be some
possibility of using new markers to evaluate treatment
response [18].

Unfortunately, there are some limitations to these
markers, due to the fact that the level of OS may depend on
many factors such as age, gender, activity level, diet, smoking,

Table 4

(a) The comparison of the parameters of oxidative stress in serum in the study groups

Group De novo RRMS INF FG NT Control p

N 24 33 39 26 41

LHP (μmol/l) 24.64± 40.64 3.37± 16.32 3.07± 7.72 3.99± 7.05 0.84± 0.62 0.000

MDA (μmol/l) 6.31± 3.18 3.11± 3.83 3.39± 1.75 3.63± 2.15 2.56± 0.51 0.000

TOS (μmol/l) 39.11± 64.51 5.35± 35.47 8.48± 11.59 6.87± 15.4 2.39± 1.08 0.000

LPS (RF) 950.47 869.3± 293.9 808.52± 247.59 745.71± 260.59 764± 167.77 0.021

(b) Post hoc analysis in the study groups

Parameter LHP MDA TOS LPS
Group FG NT FG NT FG NT FG NT

De novo RRMS p = 0 000 p = 0 004 p = 0 000 p = 0 000 p = 0 000 p = 0 000 NS p = 0 015
INF NS NS NS NS NS NS NS NS

Control p = 0 03 p = 0 007 NS NS NS NS NS NS

(c) Post hoc analysis in the study groups

Parameter LHP MDA TOS LPS
Group INF Control INF Control INF Control INF Control

De novo RRMS p = 0 000 p = 0 000 p = 0 027 p = 0 000 p = 0 003 p = 0 000 NS p = 0 010
Control p = 0 001 x P = 0 000 x P = 0 002 x NS x

De novo RRMS: patients with a new diagnosed relapsing-remitting multiple sclerosis; RRMS INF: RRMS patients treated with interferon beta; FG: RRMS
patients treated with fingolimod; NT: RRMS patients treated with natalizumab; LHP: lipid hydroxyperoxides; MDA: malondialdehyde; TOS: total oxidative
status; LPS: lipofuscin; NA: nonapplicable; statistical significance for p < 0 05.
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Table 6

(a) The comparison of the selected parameters of oxidative stress in serum in men

Group De novo RRMS INF FG NT Control p

N 8 9 17 6 9

LHP (μmol/l) 20.59± 13.87 18.57± 25.81 4.10± 3.72 9.29± 7.28 0.70± 0.51 0.001

MDA (μmol/l) 5.73± 1.92 5.12± 3.43 3.64± 0.99 4.60± 1.79 2.43± 0.24 0.003

TOS (μmol/l) 32.99± 21.51 31.24± 41.71 8.92± 7.05 21.48± 18.95 2.27± 0.98 0.002

(b) Post hoc analysis for men

Parameter LHP
Group FG NT

De novo RRMS p = 0 043 NS

INF NS NS

Control NS NS

(c) Post hoc analysis for men

Parameter LHP MDA TOS
Group INF Control INF Control INF Control

De novo RRMS NS p = 0 025 NS p = 0 007 NS p = 0 046
Control p = 0 049 x P = 0 037 x NS x

De novo RRMS: patients with a newly diagnosed relapsing-remitting multiple sclerosis; RRMS INF: RRMS patients treated with interferon beta; FG: RRMS
patients treated with fingolimod; NT: RRMS patients treated with natalizumab; LHP: lipid hydroxyperoxides; NA: nonapplicable; statistical significance for
p < 0 05.

Table 5

(a) The comparison of the selected parameters of oxidative stress in serum in women

Group De novo RRMS INF FG NT Control p

N 16 23 22 20 32

LHP (μmol/l) 35.65± 28.07 12.62± 16.86 8.02± 11.09 7.11± 11.04 0.86± 0.48 0.000

MDA (μmol/l) 6.33± 2.57 4.36± 2.52 4.02± 1.94 4.10± 2.07 2.61± 0.44 0.000

TOS (μmol/l) 21.86± 30.08 21.86± 30.08 18.04± 27.84 14.58± 17.53 2.46± 0.71 0.000

(b) Post hoc analysis for women

Parameter LHP MDA TOS
Group FG NT FG NT FG NT

De novo RRMS p = 0 000 p = 0 000 p = 0 000 p = 0 000 p = 0 000 p = 0 000
INF NS NS NS NS NS NS

Control NS NS NS NS NS NS

(c) Post hoc analysis for women

Parameter LHP MDA TOS
Group INF Control INF Control INF Control

De novo RRMS p = 0 000 p = 0 000 p = 0 022 p = 0 000 p = 0 001 p = 0 000
Control p = 0 039 x P = 0 013 x NS x

De novo RRMS: patients with a newly diagnosed relapsing-remitting multiple sclerosis; RRMS INF: RRMS patients treated with interferon beta; FG: RRMS
patients treated with fingolimod; NT: RRMS patients treated with natalizumab; LHP: lipid hydroxyperoxides; MDA: malondialdehyde; TOS: total oxidative
status; NA: nonapplicable; statistical significance for p < 0 05.
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and exposure to toxic substances. Our study took into
account the gender and age of patients with MS and the
control group.

Both in NT and FG groups, a reduction was observed in
the level of parameters such as TOS, LHP, and MDA com-
pared to the newly diagnosed patients. Similar results were
also obtained in the IFN and the control group.

Some study suggested that FG might even change MDA
levels in the hippocampus in the rat model of autism [40].
The effect of reducing the MDA level by FG was showed in
the other study where its effect on reducing torsion/detorsion
induced testicular injury. FG, by activating the S1P receptors,

reduced the level of MDA activity, concentration of interleu-
kin-1β, and myeloperoxidase activity [41]. The results of
these studies could not be interpreted intermittently because
the mechanism of action of FG is complex and may depend
on the type of tissue and the cells on which the drug was
active. Fingolimod modulates the activity of sphingosine-1-
phosphate receptors (S1PR1), thereby inhibiting T lympho-
cyte migration from the central nervous system [42] lymph
nodes, and thus acts on the first step ofMS—neuroinflamma-
tory. Serdar et al. presented the beneficial effects of FG in
neonatal oxygen-induced brain injury and the contribution
of FG in the protection of oligodendrocytes. The authors
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Figure 1: Possible significance of oxidative stress in the pathomechanism of multiple sclerosis. CNS: central nervous system; ROS: reactive
oxygen species; RNS: reactive nitrogen species; OS: oxidative stress; ICAM: intercellular adhesion molecule.

Table 7: The most important correlations of the selected parameters of oxidative stress in serum for RRMS patients treated with II-line drugs.

Parameter Age (years) Disease duration (years) ARR EDSS Gd+MRI lesions (N) Group

TOS NS NS NS NS NS

FGMDA NS NS NS NS NS

LHP NS NS NS NS NS

TOS NS NS R = 0 479 NS NS

NTMDA NS NS R = 0 412 NS NS

LHP NS NS R = 0 622 NS NS

TOS NS NS NS NS R = 0 434
IFNMDA NS NS NS NS R = 0 382

LHP NS NS NS NS R = 0 452
FG: RRMS patients treated with fingolimod; NT: RRMS patients treated with natalizumab; EDSS: Expanded Disability Status Scale; ARR: annualized relapse
rate; LHP: lipid hydroxyperoxides; MDA: malondialdehyde; TOS: total oxidative status; NA: nonapplicable; R: Pearson linear correlation coefficient.
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suggest that modulation of peripheral lymphocyte trafficking
may be less relevant [43].

Researchers suggested a multidirectional and very com-
plex mechanism of FG action, also listing immunosuppres-
sion and antitumor activity [44, 45].

Early studies suggested that FG can induce apotheosis of
cells as well as protect cells fromOS. One study demonstrated
that FG could induce apoptosis of tumor cells, lymphocytes,
and atypical neutrophils by rapid translocation of heat shock
protein 27 to the cell surface. The authors of that study
suggested that FG acted through the necrosome signalling
complex and the OS machinery [46]. Similar findings which
showed that FG could induce reactive oxygen species (ROS)
accumulation are reported in other studies where cells lack-
ing the stress-activated MAP kinase SPC1/Sty1 exhibited
higher sensitivity to FG and higher ROS levels [47]. On the
other hand, Santos-Gallego et al. hypothesized that activation
of the sphingosine-1-phosphate (S1P) receptor with FG
inhibited apoptosis [48]. Also FG might have a protective
effect on the PC12 cells exposed to hydrogen peroxide [49].

Studies on FG in other diseases showed its positive effect
in acute stroke [49, 50], and FG might improve prognosis in
intracerebral haemorrhage in rodents [51], which could be
beneficial to the CNS.

In our study, lipid peroxidation (LPH) in patients treated
with II-line was more severe compared to controls, and in the
IFN group all examined parameters were higher than those
in the control group. However, the level of the selected OS
parameters in patients treated with IFN beta and II-line
drugs was not different.

The data on the impact of IFN beta on the reduction of
OS are still unclear. It is supposed that IFN beta treatment
in combination with other agents or antioxidants could
decrease the level of oxidative parameters. For instance, the
treatment with IFN beta and glatiramer was reported to have
reduced tumor necrosis factor alpha (TNF-α); however, it did
not affect other ROS/reactive nitrogen species (RNS) [52].
Another study revealed that nitric oxide levels and its reactive
derivatives (NOx) were higher in the IFN beta group com-
pared to the FG and NT groups and healthy controls [53].

It is difficult to assess the participation of IFN beta in
oxidative processes. The suppression of OS by IFN beta
cannot be ruled out as compared to patients treated with
II-line therapy.

Patients treated with NT had a lower TOS and lower lipid
peroxidation levels than untreated patients. Several authors
suggested the impact of the monoclonal antibody on the
whole OS level in MS patients [54–56]. Some conducted
studies related to a reduction in carbonylated protein levels,
myeloperoxidase levels, and myeloperoxidase/neutrophil
granulocyte ratio [55, 56]. Generally, studies on the relation-
ship between NT and the lipid peroxidation are not sufficient.

Scientific studies confirmed that certain genotypes of
detoxification enzymes such as NQO1 and the GSTP gene
possibly showed a better clinical outcome after NT therapy
[57]. One of the studies indicated the participation of melato-
nin in the reduction of OS in patients treated with NT [58].

In one of the studies, 22MS patients were treated with
NT. It was observed that NT prompted a decrease in

oxidative-damage biomarker levels after 14 months and
induced nuclear translocation of nuclear factor (erythroid-
derived 2)-like 2 (Nrf2) which was responsible for the activa-
tion of the antioxidant pathway [55].

The level of LPS was higher in patients treated with NT
compared to healthy controls in our results. Konig et al.
suggested that antioxidants could reduce the level of accumu-
lation of LPS in the mitochondria of senescent cells [59]. It
might be a new target in the treatment of MS. It is possible
that antioxidants added to NT therapy may help to improve
its effect.

Generally, patients with RRMS had higher lipid oxidation
(MDA, LHP) and TOS compared to the control group.
Therefore, MS may be associated with higher peripheral OS
in RRMS patients. Interestingly, similar findings were
reported in other studies [23].

Tasset et al. pointed out the limitations of the studies
related to peripheral samples. The authors listed such limita-
tions as patient-specific features, the nature of the sample
(tissue, cerebrospinal fluid, plasma, or erythrocytes), and dif-
ferences in the study situation (experimental models and
clinical studies with different characteristics). In this study,
they observed an increased level of TOS, 8-OHdG, and car-
bonylated proteins in MS patients qualified for the treatment
with NT. On the other hand, the samples were taken before
administration of the drug (no information about the previ-
ous treatment) [23].

However, it can be seen that patients treated with II-line
have more advanced disease than patients treated with I-line.
In our results, the levels of MDA and TOS in the FG and the
NT groups were not different from the control group, which
may suggest a potential influence of these drugs on OS.

On the other hand, our study was limited to a small num-
ber of patients and the control group. Therefore, it was diffi-
cult to properly evaluate the effects of FG, NT, and IFN on
OS in the MS patients.

The present results concerning OS level in RRMS
patients in relation to gender, age, disease duration, EDSS,
ARR, and Gd (+) MRI lesions are consistent with some
reports of other authors.

In RRMS women treated with FG, NT, and IFN, most of
the OS parameters were lowered compared to the RRMS
women with the newly diagnosed disease, whereas in men
only LHP was reduced in the FG group. These results are
not representative enough due to the fact that the group of
women was larger compared to the male group. The compar-
ison between women and men with MS did not reveal differ-
ences (data not shown). It is known that women are more
likely to have MS, which may be related to genetic predispo-
sition [60, 61]. Most of the studies were related to the exper-
imental sex-specific MS model, which makes it difficult to
transfer these results to humans.

Mifflin et al. demonstrated that male mice with EAE
given daily access to running wheels had significantly less
OS compared to females with EAE. This may suggest that
there are sex-specific effects on disease-related outcomes
connected with exercise [62]. In contrast, Dimitrijevic et al.
conducted a study on the level of OS parameters depending
on the gender in rats with experimental autoimmune
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encephalomyelitis (EAE). In their study, in the beginning, the
researchers observed an increase in xanthine oxidase (XO)
activity in the spinal cord and inducible nitric oxide synthase
(iNOS) mRNA expression, irrespective of the gender of the
rats. Moreover, it was associated with an increase in MDA
level in the spinal cord. With EAE development, superoxide
dismutase (SOD) activity decreased, while O2 concentration,
XO activity, and iNOS mRNA expression increased only in
the spinal cord of male rats which exhibited more severe
neurological symptoms compared to the female rats [63].

The data on the level of OS and gender of MS patients are
insufficient to make it clear which gender predisposes to
greater exposure to oxidative processes.

The level of OS in patients treated with NT and FG was
not associated with new lesions on MRI. This correlation
was found only for the IFN group.

In the AFFIRM study, NT was associated with a 76%
reduction in new T1-hypointense lesions (the development
of black holes) at 2 years (p < 001 versus placebo). More
patients treated with NT (63%) did not present with new
T1-hypointense lesions compared with those given placebo
(27%). Patients treated with NT had fewer black holes, which
suggested that the accumulation of axonal loss might be
reduced [64, 65].

As the study showed, FG reduced brain volume loss
(BVL) and promoted no evidence of disease activity
(NEDA-4) in MS patients [66]. A reduction in BVL rates
was observed irrespective of the levels of inflammatory lesion
activity seen on MRI [67]. Our study did not evaluate BVL. It
was impossible to clearly evaluate the relationship between
treatment and OS on an MRI image.

No correlations between the selected OS parameters and
age, disease duration, or EDSS were observed in the RRMS
group treated with FG and NT.

These data are—at least in part—in agreement with other
results [68]. Tasset et al. have identified oxidative/antioxidant
disorders mainly expressed as GSH redox imbalance in
erythrocytes in RRMS patients. Those authors also suggested
that OS precedes the inflammatory response during relapse
in MS patients [23]. Thus, OS parameters could become bio-
markers of relapse [18]. However, it is difficult to clearly
assess their impact on the EDSS scale. Our study did not
allow to confirm this hypothesis because blood samples were
collected at the time free from relapse.

However, one study showed an increase in OS parame-
ters (IL-10, TNF-α, IFN-γ, advanced oxidation products,
and NOx levels) along with an increase in the EDSS [52].
That study did not consider the type of treatment. Other
studies conducted on patients with II-line therapy (FG, NT)
did not show an increase in OS parameters such as ceramides
and the EDSS scale [69]. The short-chain ceramides stim-
ulated oxygen species production and led to neuronal
death [70, 71].

Our results did not reveal EDSS differences in EDSS< 2,
2–4, and >4 groups (results not shown) and OS. In this divi-
sion, however, the type of treatment was not included. No
differences were observed in the whole MS group. Only
patients with RRMS were included. It seems that RRMS, sec-
ondary progressive MS, and primary progressive MS patients

and the control group should be compared in order to bet-
ter assess the severity of the disease and OS. For example,
Lam et al. observed that plasma concentrations of F2-
isoprostanes and prostaglandin F2alpha (PGF2α) decreased
and were related to the increased EDSS in patients with the
progressive disease [72]. That study involved patients with
the progressive disease where the processes of neurodegen-
eration predominated over inflammatory processes.

In our study, no correlation was found between the
duration of the disease and the oxidative stress parameters of
patients in I-line and II-line patients. One recent study dem-
onstrated that NOx decreased with MS duration, which was
significant for patients treated with II-line drugs [53]. This
study, however, was conducted on a small group of patients.

6. Conclusion

In our study, patients undergoing immunomodulatory treat-
ment presented generally lower OS parameters than the
untreated patients. There is a chance that the new biomarkers
may be used in the future to evaluate treatment response. The
major limitation of using peripheral samples is connected
with the fact that we do not know exactly how the OS param-
eters in serum reflect the processes occurring in the CNS
during MS. Previously conducted studies were—at least in
part—in agreement with our results, especially due to the fact
that patients with MS have a disturbed oxidative system
which results in higher OS parameters. It appears that OS
parameters in serum of patients with MS did not correlate
with the disease severity. It is possible that understanding
the contribution of OS in MS will enable the implementation
of new therapies based on the oxidative/antioxidative system.
The study revealed only some differences in the oxidative
system of patients treated with IFN and patients treated with
II-line drugs. These differences included higher lipid perox-
idation parameters in patients treated with IFN compared
to the control group. Additionally, our study attempted to
clarify whether II-line drugs may influence the level of OS
in MS patients.
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