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Abstract
Increasing evidence has shown that hypoxia is closely related to the development, progression, and prognosis of clear cell
renal cell carcinoma (ccRCC). Nevertheless, reliable prognostic signatures based on hypoxia have not been well-established.
This study aimed to establish a hypoxia-related prognostic signature and construct an optimized nomogram for patients with
ccRCC.
We accessed hallmark gene sets of hypoxia, including 200 genes, and an original RNA seq dataset of ccRCC cases with integrated

clinical information obtained bymining the Cancer Genome Atlas database and the International Cancer Genome Consortium (ICGC)
database. Univariate Cox regression analysis and multivariate Cox proportional hazards regression were performed to identify
prognostic hub genes and further established prognostic model as well as visualized the nomogram. External validation of the
optimized nomogram was performed in independent cohorts from the ICGC database.
ANKZF1, ETS1, PLAUR, SERPINE1, FBP1, and PFKP were selected as prognostic hypoxia-related hub genes, and the

prognostic model effectively distinguishes high-risk and low-risk patients with ccRCC. The results of receiver operating characteristic
curve, risk plots, survival analysis, and independent analysis suggested that RiskScore was a useful tool and independent predictive
factor. A novel prognosis nomogram optimized via RiskScore showed its promising performance in both the Cancer Genome Atlas-
ccRCC cohort and an ICGC-ccRCC cohort.
Our study reveals that the differential expressions of hypoxia-related genes are associated with the overall survival of patients with

ccRCC. The prognostic model we established showed a good predictive and discerning ability in ccRCC patients. The novel
nomogram optimized via RiskScore exhibited a promising predictive ability. It may be able to serve as a visualized tool for guiding
clinical decisions and selecting effective individualized treatments.

Abbreviations: BP = biological process, ccRCC = clear cell renal cell carcinoma, DCA = decision curve analysis, DEGs =
differentially expressed genes, GEPIA = the Gene Expression Profiling Interactive Analysis, GO = Gene Ontology, HIF = hypoxia
inducible factor, ICGC = International Cancer Genome Consortium, IDI = integrated discrimination improvement, KEGG = Kyoto
Encyclopedia of Genes and Genomes, NRI = net reclassification index, OS = overall survival, PPI = protein–protein interaction, RCC
= renal cell carcinoma, ROC = receiver operating characteristic, TCGA = the Cancer Genome Atlas.
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1. Introduction

Renal cell carcinoma (RCC) is a common urological tumor, with
the sixth highest incidence amongmale cancer. It is estimated that
73,750 new cases and 14,830 deaths due to RCCwill occur in the
United States in 2020.[1] There are various histological subtypes
of RCC, among which clear cell renal cell carcinoma (ccRCC)
accounts for approximately 70%.[2] The etiology of RCC is still
unclear, although heredity, smoking, obesity, and hypertension
are recognized risk factors.[3–5] Patients with ccRCC lack
symptoms in the early stage, so it is usually found incidentally
on imaging. When typical symptoms such as hematuria,
lumbago, and abdominal mass take place, many patients are
diagnosed with metastatic carcinoma, whose 5-year overall
survival (OS) rate is dismal at 8% to 12%.[6] In addition, 20% to
30% localized ccRCC patients will progress to metastasis despite
nephrectomy.[7] Thus, there is an exigence for new molecular
markers to identify patients with a high risk of progress and poor
prognosis to alert clinicians.
Hypoxia is a characteristic of solid tumors that profoundly

affects the expression of many non-coding RNAs.[8,9] It is
reported that hypoxia directly contributes to many hallmarks of
cancer, including reprogramming metabolism, proliferation,
invasion and metastasis, apoptosis, and resistance to thera-
py.[10,11] Hypoxia inducible factor (HIF) is a protein complex,
composed of either HIF-1a or HIF-2a and HIF-1b/ARNT
subunits, that centrally regulates cellular oxygen detection and
adaptation.[12] Furthermore, HIF-1a activity is commonly
diminished by chromosomal deletion in ccRCCs, and increased
HIF-1 activity reduces tumor burden in xenograft tumor models.
Conversely, polymorphisms at the HIF-2a gene locus pre-dispose
to the development of ccRCCs, and HIF-2a promotes tumor
growth. Many studies have uncovered the critical roles of
hypoxia in the tumor microenvironment, including cell prolifer-
ation and differentiation and tumor angiogenesis and immune
infiltration. Hypoxia can activate the hypoxia-inducible factors
and then induce adaptive changes within a cancer cell, which
results in tumor progression and treatment resistance.[13]

Hypoxia and overexpression of HIF are associated with
prognosis in various cancers. For example, in 1 study a poor
disease outcome group had significantly higher HIF-1a expres-
sion in stage IIB–IIIB cervical cancer.[14] It is found that the HIF
family of proteins (either directly or combined with glucose
uptake and the glycolysis pathway) regulates many downstream
targets to contribute to the development and progression of
ccRCC.[15]

Some studies have reported that hypoxia-related genes may
affect the prognosis of typical cancer patients, such as gastric
cancer.[16] Furthermore, previous studies have explored the close
relations between the hypoxia and several cancers, including
glioblastoma, colorectal cancer, breast cancer, and hepatocellular
carcinoma.[17–21] Chen et al[22] identified a hypoxia-associated
long non-coding RNA signature and established a nomogram
predicting prognosis of ccRCC, which demonstrated the
potential of hypoxia factor in ccRCC. However, whether
hypoxia-related genes can be used as a prognostic indicator of
ccRCC and the molecular mechanism of these hypoxia-related
genes in ccRCC is still a mystery. In the past few years, the role of
hypoxic microenvironment in tumors has always been a hot
point, but there have been few reports on the relationship of
hypoxia genes and ccRCC. This study will explore the
relationship between hypoxia genes and the prognosis of ccRCC
2

by using bioinformatics analysis, hoping to lay the foundation for
further research on the molecular mechanism of hypoxia genes in
ccRCC.
Bioinformatics is a new inter-disciplinary subject combining

molecular biology and information technology. In recent years,
the use of big data for bioinformatics analysis is gradually being
applied to various tumor fields. Bioinformatics analysis can help
us focus on specific molecules from the expression data, such as
RNA-seq data, thereby helping to reveal the molecular
mechanism of disease.[23] In this study, we obtained and
processed RNA transcriptome data and clinical information of
ccRCC patients from the Cancer Genome Atlas (TCGA)
database and the International Cancer Genome Consortium
(ICGC) database. We then further established a hypoxia-related
multigene prognosis model and visualized an optimized nomo-
gram convenient for clinicians to use, which was verified using
ICGC data.
2. Methods

2.1. Data collection and processing

The hallmark gene sets of hypoxia, including 200 genes, were
downloaded from the Molecular Signatures Database (MSigDB
version 6.0; http://software.broadinstitute.org/gsea/msigdb/in
dex.jsp). The original RNA seq dataset and clinical information
of the ccRCC dataset were downloaded from the TCGA database
(https://www.cancer.gov/tcga) and ICGC database (https://icgc.
org/). For TCGA and ICGC cohort, we removed patients if their
clinical information and follow-up data were incomplete, only
patients with transcriptome data and complete clinical informa-
tion could meet the inclusion criteria. R software (version 4.0.0;
https://www.r-project.org/) was used to standardize and process
data.
2.2. Screening and visualization of hypoxia-related
differentially expressed genes

We used the “limma”R package to screen the RNA raw data and
excluded genes whose average count value was lower than 1. All
hypoxia genes whose jlog2 fold changej was above 1 and false
discovery rate was lower than 0.05 were defined as hypoxia-
related differentially expressed genes (DEGs). The “pheatmap”
algorithm was used to draw a volcano plot and a heatmap for the
hypoxia-related DEGs.
2.3. Functional enrichment and protein–protein interaction
network analysis

We evaluated the hypoxia-related DEGs according to their Gene
Ontology (GO), including analysis of cellular components,
molecular function, and biological process (BP) involvement, and
also based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis. Both enrichment analyses
were performed using “clusterProfiler,” “org.Hs.eg.db,”
“enrichplot,” “ggplot2”, and “GOplot” packages in R software.
P< .05 and false discovery rate<0.05 were considered statisti-
cally significant. Then, we used the string database (https://string-
db.org/) to construct the protein–protein interaction (PPI)
network of hypoxia-related DEGs (CombinedScore=0.40) and
imported the data into Cytoscape software (version 3.7.2; https://
cytoscape.org/) to visualize the interaction of the PPI network.

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://www.cancer.gov/tcga
https://icgc.org/
https://icgc.org/
https://www.r-project.org/
https://string-db.org/
https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/
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2.4. Construction of prognostic model

Among a total of 537 ccRCC patients, data related to 7 patients
were excluded from analysis because they were missing some
clinical information. Using the “survival” R package, we
performed univariate Cox regression analysis on all hypoxia-
related DEGs to narrow the candidate list to 16 hub hypoxia
genes related to ccRCC prognosis (P< .001). We also evaluated
the impact of these hypoxia genes on the survival time and
outcome of patients through multivariate Cox proportional
hazard regression. Next, we constructed a predictive model using
expression data of the 6 hub hypoxia genes. The risk score of each
patient was calculated according to the following equation:

Risk score b1 � ExpGene 1þ b2 � ExpGene 2þ b3 � ExpGene3þ b4
� ExpGene 4þ b5 � ExpGene 5þ b6 � ExpGene6;

where b represents a coefficient value that was identified based on
the impact of each gene, and Exp represents the expression level
of each hypoxia gene. The patients were divided into 2 subgroups
(low-risk and high-risk) using the median risk score as a
threshold. OS of the 2 groups was evaluated by the Kaplan-Meier
plot and log-Rank test using “survival” and “survminer”
Figure 1. The workflow of this study. GO = Gene Ontology, ICGC = Internation
Genomes, PPI = protein–protein interaction, ROC = receiver operating characte
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packages in R. The plots of the survival status of patients and
heatmap were drawn using the “pheatmap” package in R.
Additionally, we carried out receiver operating characteristic
(ROC) curve analysis using the “survivalROC” package to
evaluate the overall diagnostic performance of the proposed
model. Moreover, we performed univariate Cox regression
analysis and multivariate Cox proportional hazards regression
with the “survival” package to investigate whether the risk score
was an independent prognosis predictor of ccRCC. RiskScore,
age, gender, tumor subtype, pathological stage, and histological
grade were used as covariates.

2.5. Correlation between the expression of the 6 hypoxia-
related genes and survival time as well as clinical
characteristics of ccRCC patients

We obtained the relationship between the expression levels of
these 6 hypoxia-related genes and the survival time of ccRCC
patients based on the Gene Expression Profiling Interactive
Analysis database (GEPIA; http://gepia.cancer-pku.cn/). After
that, the analysis of the 6 genes combined with clinical
characteristics was performed.
al Cancer Genome Consortium, KEGG = Kyoto Encyclopedia of Genes and
ristic, TCGA = the Cancer Genome Atlas.

http://gepia.cancer-pku.cn/
http://www.md-journal.com


Table 1

Characteristics of patients from TCGA and ICGC databases.

Characteristic TCGA (%) ICGC (%)

AJCC stage
I 269 (50.1) 48 (52.7)
II 57 (10.6) 12 (13.2)
III 125 (23.3) 13 (14.3)
IV 83 (15.5) 9 (9.9)
Not available 3 (0.6) 9 (9.9)

Grade
I 14 (2.6) 13 (14.3)
II 230 (42.8) 48 (52.7)
III 207 (38.5) 15 (16.5)
IV 78 (14.5) 14 (15.4)
Not available 8 (1.5) 1 (1.1)

Sex
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2.6. The establishment and validation of nomogram

Age, gender, stage, grade, T, N, M, and RiskScore were used to
construct the nomogram, using the“rms” and “survival” packages
to ease the use of this new prognostic tool and allow quantitative
prognostic evaluation of patients. We refer to this optimized
nomogram as the new model and the corresponding nomogram
without the RiskScore variable as the old model. Then, C-index,
calibration curves, decision curve analysis (DCA), integrated
discrimination improvement (IDI), and net reclassification index
(NRI), which were used as indices to evaluate the advantages and
disadvantages of the new and old models, were calculated and
drawn to determine which model is better. After that, C-index and
calibration curves were calculated and drawn to assess the
consistencybetweenactual andpredicted survival betweenTCGA-
ccRCC and ICGC-ccRCC cohorts, respectively.
Male 346 (64.4) 52 (57.1)
Female 191 (35.6) 39 (42.9)

Age (mean± standard deviation) 60.59±12.14 60.47±10.03
Tumor samples 537 91
Normal tissue samples 72 45

AJCC=American Joint Committee on Cancer, ICGC= International Cancer Genome Consortium,
TCGA= the Cancer Genome Atlas.
3. Results

3.1. Differentially expressed hypoxia-related genes

In this study, we used several advanced algorithms to identify
hypoxia-related DEGs. Figure 1 shows the workflow of our
research. Finally, a total of 537 and 91 patients from the TCGA
(normal samples: 72) and ICGC databases (normal samples: 45),
respectively, were included in the next study. The characteristics
of ccRCC patients from TCGA and ICGC databases are shown in
Table 1. We identified 57 upregulated and 16 downregulated
hypoxia genes that were eligible for further screening via the
“limma” package in R. The identified hypoxia-related DEGs are
shown in heatmap and volcano plots in Figure 2A and B.

3.2. Enrichment analysis and construction of the PPI
network

Next, we performed GO and KEGG enrichment analysis. The GO
analysis results showed that hypoxia-relatedDEGs canbe enriched
Figure 2. The differentially expressed hypoxia genes in clear cell renal cell carci
volcano plots.
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in several basic BPs, including“response to hypoxia,”“response to
decreased oxygen levels,” “response to oxygen levels,” and
“monosaccharide metabolic process” (Fig. 3A). The KEGG
pathway analysis results showed that the identified hypoxia-
related DEGs were involved in the “HIF�1 signaling pathway,”
“Glycolysis/Gluconeogenesis,” “Ras signaling pathway,” and
“AMPK signaling pathway” (Fig. 3B). The PPI network, which
included hypoxia-related DEGs, consisted of 65 nodes and 254
edges, as shown in Figure 3C. The above results indicate that these
genes may play an important role in the occurrence and
development of ccRCC through these signaling pathways, and
there are abundant protein interactions between them.
noma (ccRCC). (A) Hypoxia-gene related heatmap. (B) Hypoxia-gene related



Figure 3. Enrichment analysis and protein–protein interaction (PPI) network. (A) GO analysis of differentially expressed hypoxia genes. (B) KEGG analysis of
differentially expressed hypoxia genes. (C) PPI network of differentially expressed hypoxia genes. Green circles: down-regulation; red circles: up-regulation. BP =
biological process, CC = cellular component, GO = Gene Ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, MF = molecular function.
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3.3. Identification of prognostic hypoxia-related genes

Based on the 73 important hypoxia-related DEGs, we conducted
univariateCox regression analysis to investigate theprognostic value
of these genes. The analysis revealed 16 candidate genes potentially
associatedwith ccRCCprognosis (Fig.4AandB;P< .001).Next,we
evaluated the association between these identified prognostic-
associated candidate genes and patient survival time and clinical
outcomes through multiple stepwise Cox regression. This analysis
revealed 6 hub hypoxia genes (ANKZF1, ETS1, FBP1, PFKP,
PLAUR, and SERPINE1) that showed potential as independent
predictors for ccRCC prognosis (Table 2).

3.4. Construction of hypoxia-based prognostic model

Next, we constructed a hypoxia-based model using the 6
identified hub genes. The following formula was calculated to
generate the RiskScore for each patient:

Risk score ¼ 0:054262 � ANKZF1 þ 0:00974 � ETS1ð Þ þ 0:048648
� PLAURþ 0:000519 � SERPINE1þ 0:00426 � PFKPð Þ þ 0:01052 � FBP1ð Þ
5

To further evaluate the predictive potential of the proposed
predictive model, we evaluated the survival outcome of patients
with ccRCC according to their calculated RiskScore (Fig. 5A).
We calculate the average value of the total RiskScore, and use
this value as the threshold to divide patients into high- and low-
risk groups. The RiskScore of the high-risk group is greater than
the average, while the low-risk group is the opposite. The results
showed that patients with high RiskScores had poor OS,
whereas patients with low RiskScores had longer OS.
Furthermore, a time-dependent ROC curve analysis revealed
that the AUC value, which predicted 3-year and 5-year OS, was
0.718 and 0.742, respectively (Fig. 5B), suggesting that the
proposed prognostic model had good ability to predict the long-
term outcome of ccRCC patients. Figure 5C shows the
expression heatmap, patient survival status, and risk scores
of the 6 hypoxia-related signatures in the low- and high-risk
patient subgroups. These results indicate that the hypoxia-
related model has a good prediction ability and distinguishing
ability.

http://www.md-journal.com


Figure 4. Univariate Cox regression analysis for identification of prognostic hypoxia genes. (A) Forest map of hypoxia genes related to ccRCC survival via univariate
Cox regression. (B) Boxplot of hypoxia genes associated with ccRCC survival. ccRCC = clear cell renal cell carcinoma, N = normal, T = tumor.
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3.5. Independent analysis of the hypoxia-related model

To explore whether the RiskScore is independent of other clinical
characteristics such as staging, we conducted an independence
test for this model. The prognostic values of different clinical
characteristics of ccRCC patients were also evaluated by
univariate Cox regression analysis, which revealed that age,
cancer grade, stage, TNM, and RiskScore were related to OS
(Fig. 6A, P< .05).Moreover, multiple regression analysis showed
that prognostic factors such as age and RiskScore could
independently predict OS (Fig. 6B, P< .001). Overall, the
RiskScore was a robust predictor that was independent of the
staging and grading of the patients. In addition, the RiskScore’s
accuracy (AUC=0.764) is better than the staging and grading
system in the multiindex ROC curve (Fig. 6C).

3.6. Verification of correlation between the expression of
the 6 hypoxia-related genes and survival time as well as
clinical characteristics of ccRCC patients

We investigated the correlation between the 6 hypoxia-related
genes and clinical characteristics, and the results revealed that
these genes were almost related to the patient’s staging and
grading (Fig. 7A–E). We also evaluated the correlation between
the expression of the 6 hypoxia-related genes and survival time
via GEPIA online tools, which revealed that the expression levels
of ANKZF1, ETS1, FBP1, PFKP, and PLAUR had a positive or
negative correlation with the ccRCC patient’s OS (Fig. 8A–E).
The above results indicated that the expression of these 6 genes
had a robust correlation with the prognosis of ccRCC patients
Table 2

Prognostic-related genes via the multivariate Cox regression
analysis.

Gene symbol Coefficient HR P value

ANKZF1 0.054262 1.055762 4.24E-05
ETS1 �0.00974 0.990305 .009003
FBP1 �0.01052 0.989535 .016046
PFKP �0.00426 0.995746 .012756
PLAUR 0.048648 1.04985 1.41E-07
SERPINE1 0.000519 1.000519 .048343
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and the 6 hypoxia-related genes might be suitable for predicting
the prognosis of ccRCC patients.

3.7. Validation of the nomogram

We also designed a nomogram for ccRCC prognosis based on the
signatures of the 6 hypoxia-related genes (Fig. 9A). The point of
each variable could be found in a horizontal line, which was then
summed and normalized into a distribution of 0 to 100 for each
patient. The nomogram-predicted probability of 3- and 5-year OS
for ccRCC patients could be obtained after calculating the total
nomogramscore.TheC-indexof the newmodel andoldmodelwas
0.773 (95% CI: 0.724–0.822) and 0.758 (95% CI: 0.705–0.811),
respectively. IDI results showed that the new model was 3.7%
better than the old model (P< .01). Calibration curve revealed that
thenewmodelwas better than theoldmodel, as shown inFigure9B
toE.Afterwe concluded that the newmodelwas better than the old
model,we conducted external verificationof the newmodel. The 3-
year and5-year calibration curvesof the ICGCdataset are shown in
Figure 9F and G. The indication of the calibration curve matches
well. The C-index of the ICGCdataset was 0.710 (95%CI: 0.592–
0.828). The results also showed that the new model has a better
ability to predict the survival rate of ccRCC patients. In addition,
DCA and NRI plots also revealed that the new model was better
than the old model, as shown in Figure 10A to D.

4. Discussion

Since the 1990s, hypoxia-induced pathways have received great
attention from researchers. Rapidly-proliferating tumor cells,
incremental oxygen consumption, and structurally and function-
ally abnormal vasculature inside tumor tissue co-formed a unique
hypoxia micro-environment of solid tumors, distinguishing
cancer from normal tissue and also partly contributing to a
poor clinical outcome.[24] Interestingly, the hypoxia signaling
pathway can sometimes also be activated by genetic alterations in
cancers; for example, the dysfunction of VHL can be observed in
ccRCC.[25] Most ccRCC are associated with deregulation of
hypoxia pathways.[26] This shows that the hypoxia pathway
plays an important role in ccRCC.
Increasing evidence demonstrates that there are direct or

indirect interactions between the hypoxia signaling pathway and



Figure 5. RiskScore analysis of prognostic model based on 6 hypoxia-related genes. (A) Survival curves for low- and high-risk subgroups. (B) ROC curves for
forecasting 3- and 5-year overall survival based on RiskScore. (C) Expression heat map, RiskScore distribution, and survival status. ROC = receiver operating
characteristic.
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tumorigenesis or tumor progression. However, adaptive
responses triggered by hypoxia containing hundreds of related
proteins and genes can be both diverse and specific. Besides,
intersecting with other signaling mechanisms also makes the
hypoxia signaling pathway intricate and obscure. It is impractical
to figure out all the steps involved in the hypoxia signaling
pathway relying on present theory. Hypoxia-induced up-
transcription of genes has shown a demonstrable influence on
a series of tumor BPs, including cell uncontrollable proliferation
and immortalization,[27] angiogenesis,[27] glucose metabo-
7

lism,[28] immune escape,[29] tumor invasion and metastasis,[30]

and radiation resistance.[31] This reveals that the differential
expression of hypoxia-related genes might be a risk feature for
survival of ccRCC patients. Accordingly, we focused our
attention to the hypoxia-related genes of the hypoxia signaling
pathway and investigate the role of these hypoxia genes in the
occurrence and development of ccRCC.
Here, we tried to investigate the correlation between the

survival of patients with ccRCC and hypoxia-related genes and
subsequently identify genes significantly contributing to clinical

http://www.md-journal.com


Figure 6. Hypoxia-related gene signatures are significantly associated with ccRCC survival. (A) Forest plot of associations between risk factors and the survival of
ccRCC via univariate Cox regression analysis. (B) The hypoxia-associated gene signature is an independent predictor of ccRCC via multiple Cox regression
analysis. (C) Multiindex ROC curve of risk score and other indicators. ccRCC = clear cell renal cell carcinoma, ROC = receiver operating characteristic.
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outcome. After univariate Cox regression analysis and multivari-
ate Cox regression analysis, the signature of 6 genes (ETS1,
ANKZF1, PLAUR, SERPINE1, PFKP, and FBP1) were selected.
We further established the multigene prognostic model of ccRCC
based on the 6 genes, which was more reliable than single gene
prognostic model. According to the median RiskScore, patients
were divided into high-risk group and low-risk group. Subse-
quently, a series of analysis including ROC curve, risk plot, and
survival analysis were conducted to evaluate the prognostic value
of RiskScore, resultantly suggesting that RiskScore had ideal
overall diagnosis and prognosis performance. In addition, results
of univariate Cox regression analysis and multivariate Cox
proportional hazards regression analyses revealed that RiskScore
based on these hypoxia-related genes was an independent risk
factor beyond TNM staging and grading. A multiple risk factors
ROC curve also suggested that RiskScore was an excellent
independent prognosis predictor for the 5-year survival rate of
patients compared with other risk factors such as TNM staging,
grading, and age. Gene signature is often applied to forecast the
prognosis of a variety of tumors in the past few years,[32] which is
even better than TNM staging and histopathological diagnosis in
some extent.[33] Therefore, we believe that the model we
constructed has certain value in predicting the prognosis of
ccRCC patients.
Differential expression of the abovementioned 6 gene

signatures and their impacts in cancer have been reported
previously. Over-expression of ETS1 (E26 transformation
specific-1), which belongs to the large family of transcription
factors with ETS domain, was identified in a variety of solid
tumors, including breast cancer, lung cancer, and specifically,
renal carcinoma.[34] ETS1 was also considered as an oncogene
8

that was involved in many BPs, such as invasion, proliferation,
cell metabolism, and angiogenesis, and thus was linked to
unfavorable survival. For instance, Gao et al[35] research shows
that b6 integrin upregulates MMP3 and 9 (metalloproteinase-3
and 9) via ERK-ETS1 pathway, and subsequent the invasion of
colon cancer cells. Singh et al[36] research shows that EST1 can
stimulate the proliferation of the hepatoma cell line Huh7 by
upregulating cyclin E and CDK2 (cyclin-dependent kinase 2).
Interestingly, study by Verschoor et al[37] shows that ovarian
cancer cells that over expressed EST1 are glycolytic reliance,
suggesting that EST1 is also involved in the regulation of cancer
cells energy metabolism. Additionally, EST1 expression has also
been found to promote tumor angiogenesis in many cancers.[34]

Further research provided evidence that ETS1 played a part
through regulating the expression of HIF-related genes, consis-
tent with the results of GO and KEGG enrichment analyses in our
research.[38] However, our research came to the conflicting
conclusion that the elevated expression of ETS1 was a protective
feature for prognosis. Similar experimental conclusions have also
been reported for colon cancer cells and invasive breast
cancer.[39,40] This may be related to the heterogeneity of the
tumor. The apoptosis-inducing activity of ETS1may also account
for that. Pro-apoptotic genes, including CDKN1A (encoding p21
protein), CDKN1B (encoding p27 protein) and caspase I,[41] and
tumor suppressor protein genes, including p16INK4A,[42] were
validated as targets of ETS1.[43] ANKZF1 is a cofactor that binds
to p97 and regulates its cellular biological functions, such as
protein quality control, apoptosis, autophagy, DNA damage
repair, and transcriptional activation.[44] The research about
ANKZF1 has been reported in recent years, some of which
suggest that it may be associated with tumor angiogenesis.[45]



Figure 7. Relationships of the hypoxia genes in the model with the clinical characteristics of patients.
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Plasminogen activator urokinase receptor (PLAUR) acts as a
receptor for urokinase plasminogen activator and plays a role in
localizing and promoting plasmin formation. In the mechanisms
of tumorigenesis, PLAUR can promote tumor invasion by
remodeling of the extracellular matrix and tumor microenviron-
ment and actively promotes DNA repair in cancer cells.[46] In
addition, PLAUR is highly expressed in most solid cancers and
serves as a marker of poor prognosis, consistent with the results
of GEPIA database in our research. Wu et al[47] research showed
that Serpin Family E Member 1 (SERPINE1) was high-expressed
in glioma and up-regulation of miR-1275 activated p53 signaling
pathway via regulating SERPINE1 and therefore suppressed
glioma cell proliferation, invasion, and migration, whereas
promoted cell apoptosis. Some study also showed that over-
expression of SERPINE1 enhances tumor cell migration and
9

invasion and plays a key role in metastasis development,
conferring poor prognosis.[48] Up-regulation of phosphofructo-
kinase-platelet (PFKP), one of the isoforms of phosphofructoki-
nase-1 (PFK-1), had been frequently reported in different types of
cancer. Shen et al[49] detected the expression of PFKP in lung
cancer and put forward that the overexpression of PFKP played a
crucial role in tumor initiation and progression in lung cancer by
glycolysis. Our study also found that PFKP was enriched in the
glycolysis pathway according to the results of KEGG analysis.
This indicates that FPKP may also affect the occurrence and
development of ccRCC through glycolysis. After detecting the
expression of PFKP in human glioblastoma and investigating a
possible regulation mechanism, Lee et al[50] drew a conclusion
that decreased degradation of PFKP due to phosphorylation
correlated with clinical aggressiveness of glioblastoma. Li et al[51]
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Figure 8. Validation the prognostic value of hub hypoxia genes in ccRCC by GEPIA online tool. ccRCC = clear cell renal cell carcinoma, GEPIA =Gene Expression
Profiling Interactive Analysis.
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research revealed that FBP1 knockdown in prostate cancer could
activate autophagy mediated by the AMPK-mTOR signaling
pathway, while inhibition of the AMPK-mTOR signaling
pathway could reverse FBP1 knockdown-mediated autophagy
and apoptosis. Our KEGG enrichment analysis results also
indicate that AMPK signaling pathway may play an important
role in ccRCC (P< .05). However, whether FBP1 can also
influence the occurrence and development of ccRCC through
AMPK signaling pathway is worthy of further study. Another
research showed that FBP1, which was the crucial enzyme in
gluconeogenesis, was general absence in ccRCC.[51] They
provided an opinion and relevant evidence that FBP1 worked
as an opposer by antagonizing both HIF mediated hypoxia
adaption responses and glycolytic flux within tumor tissue in
ccRCC progression.[51,52] However, further clinical trials are
needed to validate our observations and the mechanisms
underlying the prognostic value of these genes in ccRCC also
deserve further experimental exploration.
In addition, the 6 hypoxia-related genes chosen for RiskScore

calculation seemed to be expressed more in high staging tumors,
whereas others were expressed more in low staging tumors.
Whether these genes are up-regulated or down-regulated in
tumor tissues, the association between these genes and the tumor
clinical grades and TNM stages could be observed in the present
study, indicating that multiple prognostic hypoxia-related genes
might co-effect in the progression of ccRCC.
A novel and robust prognostic tool for patients with ccRCC has

been in high demand. Hence, by combining clinical-pathological
features and prognostic gene signatures, a nomogram was
established to predict individual survival probability. Different
from previous prognostic systems, either comprehensive or simply
10
based on clinicopathologic characteristics and the current TNM
staging method, ideas about the prognostic implications of
hypoxia-related genes are the focus of this study. Necessarily,
we compared theoptimizedprognosis nomogramand the previous
one with several evaluations, including C-index, calibration
curves, NRI, IDI, and especially, DCA, which was more practical
than the typical ROC curve analysis since it took the consequences
of clinical strategies into consideration.[53] The optimized nomo-
gram was clearly the superior one, with better accuracy and
discrimination. Unsurprisingly, subsequent external validation in
the ICGC database showed the promising performance of the
optimized nomogram. The above results indicate that a novel
prognosis nomogram optimized via RiskScore, a new independent
prognosis predictor, is feasible. We believe that the findings of our
research could provide robust prognostic indicators and underly-
ing therapeutic targets for patients with ccRCC, and more
importantly, provide insight into the correlation between hypox-
ia-related gene expression and clinical outcomes. We believe that
patients may benefit from our study.
Although we made several accomplishments in the investiga-

tion of novel prognostic biomarkers, there were several
limitations in this study. Firstly, our study was designed on the
basis of a retrospective analysis and prospective research should
be performed to verify the outcomes. Secondly, because of the
limited clinical information, some other key clinical pathological
features, such as lymph node invasion, are not included in the
nomogram. Finally, we did not further investigate and verify the
roles that these hypoxia-related genes played in tumorigenesis
and tumor progression in ccRCC through experimental research.
Further functional studies of these genes identified will be
necessary in the future.



Figure 9. The nomogram can predict the prognosis probability in ccRCC. (A) A nomogram of the TCGA cohort used to predict the OS. (B, C) Calibration maps
used to predict the (B) 3-year and (C) 5-year survival in the oldmodel. (D, E) Calibration plots for (D) 3-year and (E) 5-year survival in the newmodel (training set). (F, G)
Calibration plots for (F) 3-year and (G) 5-year survival in the ICGC cohort (test set). The x-axis and y-axis represent the predicted and actual survival rates of the
nomogram, respectively. The solid line represents the predicted nomogram, and the vertical line represents the 95% confidence interval. ccRCC = clear cell renal
cell carcinoma, ICGC = International Cancer Genome Consortium, OS = overall survival, TCGA = the Cancer Genome Atlas.
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Figure 10. Comparative analysis of new and old models. (A) DCA curve of 3-year survival rate of ccRCC patients. DCA-risk stands for “old model”; DCA+risk
stands for “newmodel.” (B) DCA curve of 5-year survival rate of ccRCC patients. (C) NRI plot of 3-year survival rate of ccRCC patients. (D) NRI plot of 5-year survival
rate of ccRCC patients. ccRCC = clear cell renal cell carcinoma, DCA = decision curve analysis, NRI = net reclassification index.

Li et al. Medicine (2021) 100:39 Medicine
5. Conclusions

Our study reveals that the differential expression of hypoxia-
related genes is associated with the OS of patients with ccRCC.
We further established the prognostic model of ccRCC based on
these genes identified, which showed a good predictive and
discerning ability. And the novel nomogram optimized via the
hypoxia-related genes-based RiskScore exhibited promising
predictive ability. It may be able to serve as a prognostic tool
for guiding clinical decisions and developing effective individu-
alized treatment.
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