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An artificial neural network prediction model
of congenital heart disease based on risk factors
A hospital-based case-control study
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Abstract
An artificial neural network (ANN) model was developed to predict the risks of congenital heart disease (CHD) in pregnant women.
This hospital-based case-control study involved 119 CHD cases and 239 controls all recruited from birth defect surveillance

hospitals in Hunan Province between July 2013 and June 2014. All subjects were interviewed face-to-face to fill in a questionnaire
that covered 36 CHD-related variables. The 358 subjects were randomly divided into a training set and a testing set at the ratio of
85:15. The training set was used to identify the significant predictors of CHD by univariate logistic regression analyses and develop a
standard feed-forward back-propagation neural network (BPNN) model for the prediction of CHD. The testing set was used to test
and evaluate the performance of the ANN model. Univariate logistic regression analyses were performed on SPSS 18.0. The ANN
models were developed on Matlab 7.1.
The univariate logistic regression identified 15 predictors that were significantly associated with CHD, including education level

(odds ratio =0.55), gravidity (1.95), parity (2.01), history of abnormal reproduction (2.49), family history of CHD (5.23), maternal
chronic disease (4.19), maternal upper respiratory tract infection (2.08), environmental pollution around maternal dwelling place
(3.63), maternal exposure to occupational hazards (3.53), maternal mental stress (2.48), paternal chronic disease (4.87), paternal
exposure to occupational hazards (2.51), intake of vegetable/fruit (0.45), intake of fish/shrimp/meat/egg (0.59), and intake of milk/
soymilk (0.55). After many trials, we selected a 3-layer BPNNmodel with 15, 12, and 1 neuron in the input, hidden, and output layers,
respectively, as the best prediction model. The prediction model has accuracies of 0.91 and 0.86 on the training and testing sets,
respectively. The sensitivity, specificity, and Yuden Index on the testing set (training set) are 0.78 (0.83), 0.90 (0.95), and 0.68 (0.78),
respectively. The areas under the receiver operating curve on the testing and training sets are 0.87 and 0.97, respectively.
This study suggests that the BPNN model could be used to predict the risk of CHD in individuals. This model should be further

improved by large-sample-size research.

Abbreviations: ANN= artificial neural network, AUC= area under the receiver operating curve, BPNN= back-propagation neural
network, CHD = congenital heart disease, MSE = average square error, NPV = negative predictive value, OR = odds ratio, PPV =
positive predictive value, ROC = receiver operating curves.
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1. Introduction

Congenital heart disease (CHD) is the most common congenital
malformation and 1 leading cause of infant mortality. The global
incidence rate of CHD is 6.8 to 9.0 per 1000 live births.[1–3]

Its most common subtypes are atrial septal defect, ventricular
septal defect, patent ductus arteriosus, pulmonary stenosis, and
tetralogy of Fallot.[4,5] The World Health Organization statistics
in 2014 shows that 1.5 million infants are born with CHD in the
world each year. The China Birth Defects Prevention Report in
2012 shows that over 130,000 infants in China are born with
CHD each year, causing a total economic burden of more than
12.6 billion yuan. CHD can result in long-term disability and
need long-term expert medical care, so CHD becomes a major
global health problem that may significantly impact individuals,
families, and the society.
Many studies in this field are focused on using epidemiological

data and/or clinical characteristics that can be used to predict
adverse pregnancy outcomes (APOs), such as preterm birth, low
birth weight, small-for-gestational-age, large-for-gestational-age,
intrauterine fetal demise, and neonatal death.[6–15] Preterm birth
can be predicted by many methods (e.g., risk scoring systems and
logistic regression models) that are based on epidemiological
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data, biochemical markers (e.g., fetal fibronection, amniotic
fluid urocortin-1,[9]), or sonographic parameters (e.g., cervical
length[10]). These methods have sensitivity of 0.25 to 0.82, and
specificity of about 0.60. Low-birth-weight can be predicted by 2
risk scoring systems based on epidemiological data and clinical
characteristics (hemoglobin concentration) that have relatively
high sensitivity and specificity.[11,12] Moreover, small-for-gesta-
tional-age can be predicted by logistic regressionmodels based on
simple maternal demographic factors[13] or second-trimester fetal
sonographic parameters (e.g., abdominal circumference and head
circumference).[14] These models have similar performances, with
sensitivity of 0.52 to 0.73 and specificity of 0.50 to 0.77. Despite
the unsatisfactory sensitivity and generally low specificity, these
predictions are significant clinical attempts to predict specific
APOs and are pivotal in classified management of pregnant
women and in prevention of APOs. In all, prediction of APOs is a
promising research trend, but the existing models should be
further explored and improved.
However, there is rare research about risk prediction of

individual congenital malformations including CHD. Previously,
by using logistic regression and a decision tree, we established a
fetus CHD prediction model based on epidemiological data in
early pregnancy, but due to the small sample, we only reported
the accuracy while ignoring the sensitivity and specificity.[16]

Thus, there is no comprehensive evaluation for the prediction
models.
The aim of this study is to develop an effective CHD prediction

model using artificial neural networks (ANN) and based on
comprehensive epidemiological data. This model can be used as a
preliminary screening tool to identify pregnant women who were
at high risk of CHD in early pregnancy, and be helpful for
prenatal care providers in guiding prenatal management and
prevention.
2. Materials and methods

2.1. Subjects

In this hospital-based case-control study, subjects were all
recruited from birth defect surveillance hospitals in Hunan
Province, China. Mothers who gave birth to CHD infants
between July 2013 and June 2014 in these hospitals were
involved as cases. CHD was diagnosed by heart specialists. The
exclusion criterion were: chromosomal anomalies or other birth
defects of known etiology; isolated patent ductus arteriosus or
patent foramen ovale in premature infants, or the diameters of
Table 1

Data collection from the subjects.

Category

Sociodemographic characteristics Maternal age, ethnicity, residence, education le
Pregnancy history Gravidity, parity, history of abnormal reproductio
Family history Family history of CHD
Environmental risk factors Maternal environmental risk factors: chronic dis

pregnancy, contraceptive intake, ovulation dr
place, exposure to occupational hazards, pes

Paternal environmental risk factors: chronic dise
Dietary and lifestyle behaviors Maternal dietary behaviors: intake of picked/sm

milk/soymilk
Maternal lifestyle behaviors: smoking, alcohol d
Paternal lifestyle behaviors: smoking, alcohol dr

CHD=congenital heart disease.
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pulmonary artery end or patent foramen <3mm in full-term
infants in 24hours after birth; presence of congenital anomalies
other than CHD; refusal or inability to participate in the survey
because of mental symptoms, thinking, or memory disorders.
In this hospital-based study, the number of cases was relatively

small, and a large number of potential controls were selected
from the birth defect surveillance hospitals. To diminish potential
risk of bias as much as possible and ensure the statistical power
needed to detect an important predictor, we randomly selected
those mothers who delivered normal infants without any
congenital anomalies at the same hospitals and same time period
as controls. Those who could not cooperate with the survey were
also excluded from the study.
Informed consent was obtained from all individuals before

the interview. Ethical approval was obtained from the Ethics
Committee of Xiangya School of Public Health, Central South
University. All the procedures in this study conformed to the
Declaration of Helsinki.
2.2. Data collection

All subjects were interviewed face-to-face by well-trained
obstetricians and gynecologists and asked to fill in a question-
naire. The questionnaire included 36 variables from 5 categories:
sociodemographic characteristics, pregnancy history, family
history, environmental risk factors, and dietary/lifestyle behav-
iors during pregnancy (Table 1). The questionnaire was designed
by the experts from our research team and modified based on a
pilot study.
2.3. Measurements of risk factors
2.3.1. Sociodemographic characteristics. Ethnicity was clas-
sified into 2 categories: Han and minorities (minorities were the
other 55 ethnicities in China except Han). Residence was divided
into urban and rural residences. Education level was classified
into 3 categories: primary school and below; middle school;
college and above. Occupations included farmers, migrant
workers, employers/ managers, workers, administrative staff,
and housewives or else.

2.3.2. Pregnancy history. Maternal pregnancy history con-
sisted of gravidity, parity, and history of abnormal reproduction
(stillbirth, spontaneous abortion, or birth defect).

2.3.3. Family history. Family history of CHD was defined as 1
or more first relatives of a CHD patient.
Variable

vel, occupation
n

ease, upper respiratory tract infection, reproductive system infection, complications of
ugs intake, pets-keeping, folic acid intake, environmental pollution around dwelling
ticide exposure, mental stress
ase, exposure to occupational hazards
oked food, intake of vegetable and fruit, intake of fish/shrimp/meat/egg, and intake of

rinking, betel nuts chewing, and strong tea drinking
inking, betel buts chewing, strong tea drinking, and drug taking
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2.3.4. Environmental risk factors. There were maternal and
paternal aspects. Information about exposure to environmental
risk factors was collected using the questions with the answer
“yes or no.” The exposure time of maternal risks was defined as
from “6 months before conception” to “the first trimester of
pregnancy,” while the exposure time of paternal risks was
6 months before conception.

2.3.5. Dietary and lifestyle behaviors. Maternal dietary
patterns referred to the dietary behaviors in the first trimester
of pregnancy. Each of the 4 maternal dietary behaviors
mentioned in Table 1 was classified into 3 scales: �2, 3 to 5,
and ≥6 times per week. Maternal lifestyle behaviors and paternal
lifestyle behaviors were summarized from the same periods as
environmental risk factors. Smoking was defined as smoking any
cigarette during pregnancy. Alcohol drinking was defined as
drinking any liquor, including beer, wine, andwhite spirit. Strong
tea drinking was defined as more than 200 mL per day on
average. Drug taking was defined as taking any drugs, including
heroin, cannabis, morphine, cocaine, and ketamine.
2.4. Statistical analysis

The subjects were randomly divided into a training set and a
testing set at the ratio of 85:15 (The subjects with missing data
>20% were excluded from the study). The training set was used
to screen out the predictors using univariate logistic regression
and develop ANN prediction models. The testing set was used to
test and evaluate the performance of ANN models.
Analysis was undertaken in 3 stages. In the first stage,

univariate logistic regression was performed to identify the
significant predictors of CHD based on the training set.
Continuous variables were sorted into categories to facilitate
the risk factor identification. Maternal age was classified into 4
groups: �24, 25 to 29, 30 to 34, and ≥35 years old. Gravidity
was divided into 3 groups: 1, 2 to 3, and >3. Parity was sorted
into 2 categories: 1, and ≥2.
In the second stage, we developed ANN models for the

prediction of CHD risk, and inputted the significant predictors
selected in the first stage. A standard feed-forward back-
propagation neural network (BPNN) was applied due to its
relative simplicity and stability.[17,18] In general, a BPNN consists
of 3 layers: an input layer that receives information, a hidden
layer that processes information, and an output layer that
calculates results.[19] BPNN was run with the significant
predictors as the input variables and the risk of CHD as the
output variable. The numbers of neurons in the input and output
layers (marked as N and M, respectively) corresponded to the
numbers of significant predictors and output variables, respec-
tively. The number of neurons in the hidden layer (H) was not any
actual variable. The optimalHwas determined by trial and error,
since no authoritative theory is available for such predetermina-
tion.[20] The optimal H was determined from the prediction
model with the highest sensitivity and specificity. Nevertheless,
the trial range of H could be determined as follows:
H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MþN
p þ a, where a is a constant ranging from 1 to

10. All data were normalized to the range of 0 to 1. For binary
variables, 0 means “No” and 1 means “Yes.” Nonbinary
variables were normalized as x

0
m ¼ ðxm � xminÞ=ðxmax � xminÞ.

Continuous log-sigmoid functions were used as the transfer
functions of the hidden and output layers. The Levenberg–
Marquardt algorithm was used as the training function. The
Learngdm algorithm was used as an adaptive learning function.
3

The training parameters such as learning rate and momentum
were set at their default values. The networks were trained at a
maximum of 100 epochs or until the minimum average square
error (MSE) was <0.001.
In the third stage, we assessed the performance of the BPNN

model. We calculated its accuracy, sensitivity, specificity, Yuden
Index, positive predictive value (PPV), negative predictive value
(NPV), and area under the receiver operating curve (AUC) on
both sets. We also plotted receiver operating curves on both sets.
The categorical and continuous variables were both

compared between the training set and the testing set by using
x2 test, Fisher exact test, and t test. Comparisons and univariate
logistic regression analyses were all performed on SPSS 18.0
(IBM, Chicago, IL). The BPNN models were developed on
Matlab 7.1 (MathWorks, Natick, MA). The significance level
was set at P<0.05.
3. Results

3.1. Sociodemographic characteristics of the subjects

Initially, 366 subjects (123 cases and 243 controls) were enrolled.
Eight subjects with missing data >20% were excluded from the
study. Finally, 358 subjects (119 cases and 239 controls) were
included, with a valid response rate of 97.8%. The 358 subjects
were randomly divided into a training set involving 300 subjects
(101 cases and 199 controls) and a testing set involving 58
subjects (18 cases and 40 controls).
The sociodemographic characteristics of the 2 sets are listed in

Table 2. The subjects are aged 27.2±4.0 years old (mean±
standard deviation [SD]) in the training set and 27.9±4.3 years
old in the testing set. The subjects are predominantly Han and
mainly lived in urban areas. The main education level is middle
school. The predominant occupations are housewives or else,
farmers, and employers/managers. The sociodemographic char-
acteristics are not significantly different between the 2 sets
(P>0.05).

3.2. Predictors of CHD risk

The 36 variables listed in Table 1 were analyzed by univariate
logistic regression. Table 3 shows the 15 significant predictors of
CHD risk selected by univariate logistic regression based on the
training set (n=300). The following 11 factors are significantly
associated with the increased risk of CHD: gravidity (OR=1.95),
parity (2.01), history of abnormal reproduction (2.49), family
history of CHD (5.23), maternal chronic disease (4.19), maternal
upper respiratory tract infection (2.08), environmental pollution
around maternal dwelling place (3.63), maternal exposure to
occupational hazards (3.53), maternal mental stress (2.48),
paternal chronic disease (4.87), and paternal exposure to
occupational hazards (2.51). The occurrence of CHD is inversely
related to 4 protective factors, including high education level
(OR=0.55), intake of vegetable/fruit (0.45), intake of fish/
shrimp/meat/egg (0.59), and intake of milk/soymilk (0.55). None
of the other 21 variables is significantly associated with CHD.

3.3. BPNN prediction models

BPNN models were built based on the significant CHD risk
predictors. The input variables are the 15 significant predictors
mentioned above, and the output variable is the binary variable
whether an individual gave birth to a CHD infant. The BPNN
models each consist of an input layer, a hidden layer, and an

http://www.md-journal.com


Table 2

Sociodemographic characteristics of the subjects.

Characteristics Training set (n=300) Testing set (n=58) Test statistic P value

Age, y, mean (SD) 27.2 (4.0) 27.9 (4.3) t=�1.18 0.24
Ethnicity (%)
Han 294 (98.0) 57 (98.3) — 0.89

∗

Minorities 6 (2.0) 1 (1.7)
Residence (%)
Urban 209 (69.7) 39 (67.2) x2=0.13 0.71
Rural 91 (30.3) 19 (32.8)

Education level (%)
Primary school and below 14 (4.7) 2 (3.4) — 0.72

∗

Middle school 166 (55.3) 29 (50.0)
College and above 120 (40.0) 27 (46.6)

Occupation n (%)
Farmers 60 (20.0) 9 (15.5) x2=3.72 0.59
Migrant workers 34 (11.3) 3 (5.2)
Employers/managers 52 (17.3) 13 (22.4)
Workers 34 (11.3) 8 (13.8)
Staffs in administrative institutions 51 (17.0) 9 (15.5)
Housewives or else 69 (23.0) 16 (27.6)

SD= standard deviation.
∗
The P value was estimated by using Fisher exact test.
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output layer. The input and output layers contain 15 and 1
neuron, respectively, corresponding to the numbers of predictors
and output variables, respectively. The reference equation
mentioned above indicates that the number of neurons in the
hidden layer, H, ranges from 5 to 14. Therefore, we developed
the BPNNmodel in whichH increased by 1 from 5 to 14. Finally,
a 3-layer BPNN model with 15, 12, and 1 neuron in the input,
hidden, and output layers, respectively, was selected as the best
prediction model (see Fig. 1).

3.4. Performance of BPNN model

Table 4 shows the performances of the BPNN model on the
training and testing sets. The accuracies on training and testing
sets are 0.91 and 0.86, respectively. The sensitivity, specificity
and Yuden Index on the testing set (training set) are 0.78 (0.83),
0.90 (0.95), and 0.68 (0.78), respectively. To provide more
information about the model performances, we also calculated
Table 3

Predictors of congenital heart disease analyzed by univariate logistic

Variable B SE

Education level �0.60 0.22
Gravidity 0.67 0.20
Parity 0.70 0.31
History of abnormal reproduction 0.91 0.39
Family history of CHD 1.66 0.55
Maternal chronic disease 1.43 0.63
Maternal upper respiratory tract infection 0.73 0.52
Environmental pollution around maternal dwelling place 1.29 0.64
Maternal exposure to occupational hazards 1.26 0.47
Maternal mental stress 0.91 0.37
Paternal chronic disease 1.58 0.70
Paternal exposure to occupational hazards 0.92 0.41
Intake of vegetable/fruit �0.81 0.27
Intake of fish/shrimp/meat/egg �0.53 0.25
Intake of milk/soymilk �0.59 0.25

CHD=congenital heart disease, CI= confidence interval, OR=odds ratio.

4

PPV and NPV, which are 0.78 (0.89) and 0.90 (0.92),
respectively, on the testing set (training set).
Figure 2 shows the ROC curves for the BPNN model on both

sets. The AUCs on the training and testing sets are 0.97 (see
Fig. 2A) and 0.87 (see Fig. 2B), respectively.
Thus, the well-trained optimal BPNN model here could

successfully predict the individual risk of CHD, with high
accuracy and large AUC.
4. Discussion

ANN is ideal for prediction of disease occurrence in individuals,
and specifically, it fits a nonlinear correlation between input and
output variables until reaching high accuracy. ANNmodels have
been applied to predict the occurrence of hypertension,[19]

cardiovascular autonomic dysfunction,[20] coronary artery
disease,[21,22] and metabolic syndrome.[23] These studies demon-
strate ANN can accurately predict diverse clinical settings and
regression.

Wald x2 P OR 95% CI (OR)

7.29 0.01 0.55 0.36 0.85
11.77 <0.001 1.95 1.33 2.86
5.14 0.02 2.01 1.10 3.67
5.50 0.02 2.49 1.16 5.33
9.14 <0.001 5.23 1.79 15.30
5.26 0.02 4.19 1.23 14.28
8.53 <0.001 2.08 1.27 3.41
4.07 0.04 3.63 1.04 12.71
7.27 0.01 3.53 1.41 8.82
6.09 0.01 2.48 1.21 5.10
5.09 0.02 4.87 1.23 19.24
4.93 0.03 2.51 1.11 5.65
9.32 <0.001 0.45 0.27 0.75
4.68 0.03 0.59 0.36 0.95
5.70 0.02 0.55 0.34 0.90



Figure 1. Architecture of back-propagation neural network for predicting congenital heart disease risk. The circles represent neurons, and the lines between circles
represent modifiable connections. CHD=congenital heart disease, EL=education level, EPMDP=environmental pollution around maternal dwelling place, FH=
family history, FSMEI=fish/shrimp/meat/egg intake, G=gravidity, HAR=history of abnormal reproduction, MCD=maternal chronic disease, MEOH=maternal
exposure to occupational hazards, MMS=maternal mental stress, MSI=milk/ soymilk intake, MURTI=maternal upper respiratory tract infection, P=parity, PCD=
paternal chronic disease, PEOH=paternal exposure to occupational hazards, VFI=vegetable/fruit intake.
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outperforms conventional statistical methods. Using BPNN, we
developed a CHD prediction model involving 15 significant
predictors, including maternal education level, gravidity, parity,
history of abnormal reproduction, family history, maternal
chronic disease, maternal upper respiratory tract infection,
environmental pollution around maternal dwelling place,
maternal exposure to occupational hazards, maternal mental
stress, paternal chronic disease, paternal exposure to occupa-
tional hazards, intake of vegetable/fruit, fish/shrimp/meat/egg,
and milk/soymilk. For the testing set (training set), this model has
sensitivity of 0.78 (0.83), specificity of 0.90 (0.95), accuracy of
0.86 (0.91), and Yuden Index of 0.68 (0.78), suggesting that this
BPNN model is successful and valuable. This is the first study to
develop a high-performance CHD prediction BPNNmodel based
on risk factors.
Table 4

Performances of back-propagation neural network on training and
testing sets.

Indicator Training set Testing set

Accuracy 0.91 0.86
Sensitivity 0.83 0.78
Specificity 0.95 0.90
Yuden index 0.78 0.68
PPV 0.89 0.78
NPV 0.92 0.90
AUC (95% CI) 0.97 (0.95, 0.99) 0.87 (0.75, 0.98)

AUC= area under the receiver operating curve, NPV=negative predictive value, PPV=positive
predictive value.

5

So far, the existing APO prediction models based on
epidemiological data and/or clinical characteristics are mainly
risk scoring models and conventional statistical models. With
logistic regression and based on maternal demographic factors
(maternal age, race, education, marital status, parity, prenatal
care initiations, and smoking), Tan et al[6] built preterm birth
models for prediction of singleton, twin, and triplet pregnancies,
and got the sensitivity of 0.25, 0.65, and 0.64, respectively, and
the specificity of 0.94, 0.57, and 0.54, respectively. Based on 6
variables (weight gain in the mother during pregnancy, intake of
proteins in diet, history of preterm birth, history of low birth
weight, maternal anemia, and passive smoking), Singh et al[11]

developed a weighted risk score model for the prediction of low
birth weight and obtained the sensitivity of 0.72 and specificity of
0.64. In this study, we established a relatively stable BPNNmodel
for CHD prediction using comprehensive epidemiological data
from maternal and paternal factors (e.g., common sociodemo-
graphic characteristics, pregnancy history, family history,
environmental risk factors, dietary, and lifestyle factors) and
for training and testing sets, and achieved sensitivity of 0.83
and 0.78, specificity of 0.95 and 0.90, accuracy of 0.91 and 0.86.
Our prediction model outperforms the above methods, which
indicates the superiority and rationality of BPNN models in
solving complex nonlinear relationships.
The new model based on epidemiological data can be used as a

preliminary screening tool to identify pregnant women at high
risk of CHD in early pregnancy. The model-predicted risk
probability helps prenatal care providers to guide prenatal
management and prevent high-risk pregnant women. The
predictors included in the model are common and available in
prenatal routine practice, and this model might be applicable to

http://www.md-journal.com


Figure 2. Receiver operating characteristic (ROC) curves for the back-propagation neural network on training and testing sets. A, ROC curve and corresponding
area under the receiver operating curve (AUC) on the training sets. B, ROC curve and corresponding AUC on the testing set.
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the general population. The new model could be saved as a
program in the computer. After a clinician inputs the 15
predictors of a pregnant woman into the program, the computer
automatically calculates the probability of CHD. The new model
may help clinicians to identify pregnant women at high-risk
CHD, who should be considered with high priority for prenatal
counseling and diagnosis. Thus, more-expensive and complicated
prenatal diagnosis technology (e.g., fetal echocardiography,
chromosome karyotype analysis, and gene detection) can bemore
efficient for high-risk pregnant women. Furthermore, the new
model can also be used to prevent the causes of CHD. For
example, by applying presumed data, women of childbearing age
could estimate the CHD risk of their future babies. The model
would help them to reduce the exposure to environmental risk
factors and conduct healthy dietary and lifestyle behaviors
throughout the pregnant course. This is the fundament of CHD
primary prevention.
In our study, the BPNN predictors seem reasonable as most of

them are reportedly associated with CHD. The risk factors of
CHD reported in previous epidemiological studies include
maternal low education level,[24,25] family history of
CHD,[26–28] maternal diseases (e.g., upper respiratory tract
infection, hyperhomocysteinaemia, phenylketonuria, diabetes
mellitus, hypertension, thyroid disorders, obesity),[25,29–31]

maternal and paternal exposures to occupational/environmental
risks,[32–34] and maternal mental stress.[25] Most predictors
selected by logistic regression in our study are consistent with
previous reports. However, unlike other findings,[26,31,35–37] we
do not find maternal age, maternal medication exposure,
complications of pregnancy, or parental lifestyle (alcohol
drinking, smoking) as significant risk factors of CHD. This
inconsistency may result from the small sample size and low
exposure rates of those investigated factors in our study. We also
find that intake of vegetable/fruit, intake of fish/shrimp/meat/egg,
and intake of milk/soymilk are all protective factors of CHD.
Thus, the CHD risk can be alleviated by reducing the exposure to
environmental risk factors and appropriately increasing intakes
of vegetable/fruit, fish/shrimp/ meat/egg, and milk/soymilk
during pregnancy.
The BPNN model developed here has high specificity but

relatively low sensitivity. The sensitivities on training and testing
sets are 0.83 and 0.78, respectively. The low sensitivity may be
6

attributed to 2 reasons. First, except for family history of CHD,
the remaining 14 significant predictors are not specific indicators
of CHD, but are common environmental risk factors for a variety
of birth defects, such as neural tube defects, orofacial clefts, renal
malformations, congenital hydrocephalus, and congenital club-
foot. Second, not all of risk factors of CHD were included as the
predictors. Due to the small sample size and low exposure rates of
some investigated factors, only a small number of significant risk
factors were identified by logistic regression. As the occurrence of
CHD may be affected by multiple unknown factors, the BPNN
model should be updated continuously. Therefore, further large-
sample-size research is needed to identify the specific predictors of
CHD (e.g., CHD-associated biological markers or genes) and to
improve the model sensitivity.
This study has several limitations. First, we developed the

BPNN model using epidemiological data, mainly including
family history and environmental factors, but did not consider
relevant laboratory data such as biochemical indicators and
genetic factors (CHD-associated genes). The epidemiological
data was collected using a case-control study, which was a
retrospective observational study and susceptible to bias. The
CHD cases and controls were only a sample of the source
population, so there might be potential selection bias, which
could be seen as 1 “incoherence” of the cases and controls with
respect to the corresponding population at risk.[38] The method
of data collection in our study was based on self-report by the
subjects (recall of past events), which inevitably led to recall
bias in the data. In addition, measurement bias might also exist
in the CHD case ascertainment. Second, most of factors
measured were dichotomous variables rather than continuous
variables, without considering dose response relationship
between exposure levels of these risk factors and CHD, which
may hide their true relationships with CHD. Third, the training
and testing samples were all from the same population. The
predictive performance of the new model was not validated in
other populations, and its generalizability could not be
correctly determined. Fourth, the model could not be expressed
by specific equations due to the complexity of ANN and the
weak explanatory of their weights. The application of this
model was not as simple and convenient as nomogram models
for the clinicians,[39] since it relies on a computer and a specific
program.
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Li et al. Medicine (2017) 96:6 www.md-journal.com
5. Conclusions

Despite the limitations, this is the first study using BPNN to
estimate the CHD risk for pregnant women. With the new BPNN
model, we can identify pregnant women at high-risk CHD in
early pregnancy, and the model-predicted risk probability is
helpful for prenatal care providers in guiding prenatal manage-
ment and prevention of high-risk pregnant women.
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