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Abstract
Purpose The radiologists’ workload is increasing, and computational imaging techniques may have the potential to identify
visually unequivocal lesions, so that the radiologist can focus on equivocal and critical cases. The purpose of this study was
to assess radiomics versus dual-energy CT (DECT) material decomposition to objectively distinguish visually unequivocal
abdominal lymphoma and benign lymph nodes.
Methods Retrospectively, 72 patients [m, 47; age, 63.5 (27–87) years] with nodal lymphoma (n � 27) or benign abdominal
lymph nodes (n � 45) who had contrast-enhanced abdominal DECT between 06/2015 and 07/2019 were included. Three
lymph nodes per patient were manually segmented to extract radiomics features and DECT material decomposition values.
We used intra-class correlation analysis, Pearson correlation and LASSO to stratify a robust and non-redundant feature subset.
Independent train and test data were applied on a pool of four machine learning models. Performance and permutation-based
feature importance was assessed to increase the interpretability and allow for comparison of the models. Top performing
models were compared by the DeLong test.
Results About 38% (19/50) and 36% (8/22) of the train and test set patients had abdominal lymphoma. Clearer entity
clusters were seen in t-SNE plots using a combination of DECT and radiomics features compared to DECT features only.
Top model performances of AUC � 0.763 (CI � 0.435–0.923) were achieved for the DECT cohort and AUC � 1.000 (CI �
1.000–1.000) for the radiomics feature cohort to stratify visually unequivocal lymphomatous lymph nodes. The performance
of the radiomics model was significantly (p � 0.011, DeLong) superior to the DECT model.
Conclusions Radiomics may have the potential to objectively stratify visually unequivocal nodal lymphoma versus benign
lymph nodes. Radiomics seems superior to spectral DECT material decomposition in this use case. Therefore, artificial
intelligence methodologies may not be restricted to centers with DECT equipment.
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Abbreviations

AUC Area under the curve
CT Computed tomography
CTDI CT dose index
DECT Dual-energy computed tomography
DICOM Digital imaging and communications inmedicine
DLP Dose-length product
GLCM Gray level co-occurrence matrix
GLDM Gray level dependence matrix
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GLRLM Gray level run length matrix
GLSZM Gray level size zone matrix
HU Hounsfield units
ICC Intra-class correlation coefficient
ID Iodine density
ID% Normalized iodine uptake
IQR Interquartile range
LASSO Least absolute shrinkage and selection operator
NGTDM Neighboring gray tone difference matrix
PET Positron emission tomography
ROC Receiver operating characteristics
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ROI Region of interest
STARD Standards for Reporting Diagnostic Accuracy

Studies

Introduction

In patients with suspected lymphoma, suspicion of nodal
involvement in cross-sectional imaging is primarily based
on lymph node size and the number of nodes [1]. A high
number of large lymph nodes increase the probability of
malignancy [1]. To determine criteria for consistent assess-
ment of pathological lymph nodes, several size thresholds
were proposed [2]. Although determined thresholds exist, an
accurate diagnosis of lymph node involvement in suspected
or confirmed lymphoma still remains difficult in some cases.
For example,when no priorCT is present or in caseswith bor-
derline lymph node size, further work-up may be required,
potentially delaying diagnosis, therapy and prognosis [3, 4].
Positron emission tomography (PET) CT may confirm sus-
pected nodal involvement, but high radiation exposure and
costs require restrictive application [5]. Still, early identifi-
cation of patients with lymphomatous disease is important
and has prognostic relevance. As demand for medical imag-
ing is steadily increasing, imaging biomarkers could serve
as a supporting decision tool to counteract radiologists’
growing workload. Quantitative image analysis tools such
as dual-energy CT (DECT) material decomposition analysis
offer a non-invasive alternative to characterize tissue with-
out the necessity of additional imaging and related radiation
exposure. Some of these techniques have been extensively
investigated over recent years [6, 7]. A commonly used post-
processing technique is iodine-selective imaging. Iodine
maps allow for further tissue characterization compared to
subjective reporting and standard attenuation measurements
in Hounsfield units (HU) [7, 8]. This material decomposition
analysis technique is based on the differences in absorption
characteristics for various elements at different energy lev-
els [9, 10]. Thus, iodine quantification provides information
about the local content of iodine contrast agent and can serve
as a surrogate for tumor vascularity [11, 12]. The potential of
DECT-based iodine quantification to differentiate benign and
malignant lymph nodes has been assessed in recent studies
[13–15].

Radiomics is a rapidly evolving research field that uses
high-dimensional quantitative imaging features to describe
tumor phenotypes objectively and quantitatively [16, 17].
Particularly in the field of oncology, the potential of
radiomics features has been investigated as the features can
provide additional, high-dimensional data [16]. Radiomics
features capture tissue characteristics such as heterogeneity

and shape and may be used for the prediction of tumor sub-
types, treatment response and clinical outcome [16, 17]. The
potential of DECT material decomposition and radiomics
features for the characterization of benign and malignant
lymphnodes including lymphomahas been assessed in recent
studies [14, 15, 18, 19]. However, the combined application
of both DECT and radiomics features for stratification of
lymphoma has not been evaluated. It is unclear, which tech-
nique is superior and whether both techniques may support
each other with increased predictive accuracy of a combined
model.

In times of increasing demand for medical imaging, we
hypothesized that quantitative imaging features may have
the potential to serve as non-invasive imaging biomarkers
to potentially stratify visually unequivocal lymphomatous
lymph nodes. This approach may allow radiologists to focus
on indistinct and borderline lymph nodes in the future [20]. In
this study, we stratified and compared a set of robust and non-
redundant radiomics features and DECT features to decipher
abdominal lymphoma. We hypothesized that a combined
application of radiomics andDECT featuresmay improve the
stratification of abdominal lymphoma in contrast-enhanced
abdominal CT compared to DECT features only.

Materials andmethods

The local ethics committee approved this retrospective study
(project number: 20–688 Goethe University Frankfurt am
Main, Germany) and waived informed written consent.

Study design

A total of 72 patients who had contrast-enhanced abdominal
DECT imaging between 06/2015 and 07/2019 were included
in the study. Inclusion criteria for the lymphoma cohort were
as follows: (I) > 18 years of age, (II) visually unequivocal
malignant lymph nodes > 1.5 cm [21], (III) confirmation of
abdominal lymphoma by histopathology and (IV) abdom-
inal DECT imaging with availability of 1.5 mm 100 kV
and 150 kV series. Exclusion criteria were as follows: (I)
multiple diagnosed malignancies and (II) imaging artifacts.
The control cohort only comprised patients without diag-
nosis of abdominal malignancy. In cases of patients with
multiple CT studies, the first DECT was used. All data were
obtained in clinical routine. Figure 1 depicts the flowchart
of patient inclusion following Standards for Reporting Diag-
nostic Accuracy Studies (STARD).

CT acquisition protocol

All examinations were performed on a third-generation,
dual-source, dual-energy CT (Somatom Force; Siemens
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Fig. 1 STARD flowchart of study
inclusion

Healthineers). The acquisition protocol operated the X-ray
tubes at different kilovoltage and tube current settings (tube
A: 100 kV, 190mAs; tube B: 150 kV, 95mAs). An additional
tin filter (Selective Photon Shield II, Siemens Healthineers)
was used in tube B to reduce radiation exposure. The dual-
energy protocol (craniocaudal direction; rotation time, 0.5 s;
pitch, 0.6; collimation, 2 × 192 × 0.6) included automatic
attenuation-based tube current modulation (CAREDose 4D;
Siemens Healthineers). Contrast media injection was per-
formed through a peripheral vein of the forearm at a flow
of 2–3 ml/s. A non-ionic contrast agent (Imeron® 400 mg
iodine/ml; Bracco, Milan, Italy) with a total of 1.2 ml/kg
body weight (maximum of 120 ml) was administered. Image
acquisition during venous phase of contrast enhancement
started 70 s after contrast agent injection in inspiratory
breath-hold. CT dose index (CTDI) and dose-length prod-
uct (DLP) were recorded. Iterative reconstruction algorithm
(ADMIRE®, Siemens Healthineers, Strength Level 3) was
used for image reconstruction.

Image preprocessing

DECT images were reconstructed in axial orientation (slice
thickness, 1.5mm; increment, 1.2mm)with a dedicated dual-
energy medium-soft convolution kernel [Qr40, advanced
model-based iterative reconstruction (ADMIRE) level of 3].
DECT material decomposition image reconstruction was
performed on a 3D multi-modality workstation (syngo.via,
version VB10B, Siemens Healthineers). An iodine subtrac-
tion algorithm (Liver VNC, Siemens Healthineers) was used
to calculate DECT data including iodine density (ID), nor-
malized iodine uptake (ID%) and fat fraction. ID% was
calculated: ID% � IDlymph node/IDaorta. Region-of-interest
(ROI) IDaorta was defined manually in the abdominal aorta
at the level of the celiac trunk. For the radiomic analysis,
the single-energy tube A image stack was exported in digital
imaging and communications in medicine (DICOM) format
and imported into the 3D Slicer software platform (http://
slicer.org, version 4.9.0) [22, 23].
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Fig. 2 DECT iodine
quantification and radiomics
feature segmentation. A
66-year-old female patient with
diffuse large B-cell lymphoma
(DLBCL). Diagnosis was
confirmed by lymphadenectomy
and PET/CT. a Axial
DECT-based iodine map image
with region-of-interest (ROI)
measurement of the respective
lymph node. b Axial DECT
image with standard
volume-of-interest (VOI)
measurement of the respective
lymph node for radiomics feature
extraction

Image segmentation

One investigator (SM, radiologist in training, 2 years of
experience) who had access to the clinical data (histopathol-
ogy, PET-CT or follow-up imaging) chose and marked three
lymph nodes per patient. ROI and spheric volume-of-interest
(VOI) circumscription were performed manually by three
blinded independent readers (I, SB, radiologist, in-training,
3.5 years of experience; II, VK, radiologist, in-training,
2 years of experience and III, IW, especially trained inves-
tigator, 1 year of experience). Each blinded investigator
independently segmented one of the three previously marked
lymph nodes. Priorly segmented lymph nodes were marked
to exclude the segmentation of identical lymph nodes. In
total, three segmentations, each of a different independent
lymph node, were obtained per patient. ROI measurements
for DECT analysis and VOI measurements for radiomics
analysis were drawn as large as possible with a maximum
diameter of 1.0 cm (Fig. 2), carefully avoiding surround-
ing structures, calcifications and visual artifacts. We chose a
maximum diameter of 1.0 cm to exclude potential shape bias
between enlarged lymphomatous and small benign lymph
nodes. The segmentations were independently reviewed by
a board-certified and blinded radiologist (SSM, 8 years of
experience), and no disagreement was stated.

Radiomics analysis

PyRadiomics v3.0.1 was used within the 3D Slicer software
to extract radiomics features [23, 24] from the tube A single-
energy images. With default settings, i.e., no resampling or
filtering, bin width 25 and enforced symmetrical GLCM,
we extracted all original standard features (n � 107, feature
classes � 7) for each segmentation, as previously described
[25]: shape, first-order statistics, gray level co-occurrence

matrix (GLCM), gray level run length matrix (GLRLM),
gray level size zonematrix (GLSZM), gray level dependence
matrix (GLDM) and neighboring gray tone differencematrix
(NGTDM) [25]. Shape features (n � 14) were excluded
for the following analysis as we used spheric VOIs for fea-
ture extraction. The radiomics quality score was 12 (https://
radiomics.world/rqs, Supplementary Material S1) [26].

Interobserver robustness and analysis of feature
redundancy

We calculated the intra-class correlation coefficient (ICC)
for each feature and DECT material decomposition for the
three independently segmented and measured lymph nodes
per patient to assess the measurement’s stability [25]. ICC
ranges from −1 (perfect anticorrelation) to 1 (perfect cor-
relation), and we defined reproducibility with thresholds
commonly used in radiomics studies: excellent (≥ 0.75),
good (0.60–0.74), moderate (0.40–0.59) or poor≤ 0.39 [25].
For further analysis, we discarded all radiomics features with
ICC < 0.6 to include only radiomics features with at least
good reproducibility (n � 31), and we excluded DECT fea-
tures with ICC < 0.4 (iodine density) as no DECT feature had
an ICC ≥ 0.6 (see Supplementary Data S2). We intercorre-
lated the robust features by Pearsonmethod, andwe excluded
all highly correlated (Pearson > 0.95) redundant features (n
� 13) (Supplementary Data S3).

Radiographic biomarkers to predict lymphoma

We performed all analysis in Python 3.7.6, within Jupyter
Notebook [27] and respective open-source packages. We
aimed to predict our target variable (lymphoma) either
using DECT material decomposition, combined DECT and
radiomics features or radiomics features only. Therefore,

123

https://radiomics.world/rqs


International Journal of Computer Assisted Radiology and Surgery (2023) 18:1829–1839 1833

we stratified our independent variables into three groups:
I, DECT feature group; II, combined feature group and III,
radiomics feature group. First, we performed explorative data
analysis on our datasets using Euclidean distance matrices to
explore the pairwise dataset relations and low-dimensional
embedding with t-SNE plots to explore cohort distributions
(scikit-learn [28]). Next, we used least absolute shrinkage
and selection operator (LASSO) [28] to reduce the number
of features and the risk of overfitting. LASSO did not select
anyDECT feature; therefore, the radiomics feature group and
combined feature group yielded identical nonzero LASSO
features, and we dismissed one redundant cohort (the com-
bined feature group) for further analysis. The DECT feature
group had only two features, and we did not perform LASSO
for further feature reduction. We drew 70% random data
samples as training set and used the remaining 30% to test
our model. We locked the train and test split for all models.
StandardScaler was used to scale the data to uniform vari-
ance. We trained and tested four individual and independent
machine learning models [28]: (1) logistic regression classi-
fier, (2) AdaBoost classifier, (3) gradient boosting classifier
and (4) random forest classifier (see Supplementary Data S4
for detailed information on the feature selection andmachine
learning models). For each classifier, we calculated the mean
importance score based on a 15 times shuffled permutation-
based analysis of feature importance within the test set. We
calculated the receiver operating characteristics (ROC) area
under the curve (AUC), precision score and F-score for each
model and depict the respective ROC curves.

General statistics

We performed the statistical analyses in Python. For ICC
analysis, we used the Pingouin package [29]. We used the
implementation of the WORC.statistics package [30] for the
DeLong’s test [31]. Graphical compositions were done in
Affinity Designer 1.8.5.703 (Serif (Europe) Ltd.).

Results

Study population

The study population comprised 72 patients (m, 47; f , 25;
median age, 63.5 (IQR, 57–64) years) with abdominal CT
at a single DECT scanner. Twenty-seven patients (m, 15;
f , 12; median age, 60 (IQR, 51–74) years) suffered from
lymphoma; 38% (19/50) of the train set patients and 36%
(8/22) of the test set patients. The diagnosis was made by
histopathological analysis (lymph node biopsy, n � 16; lym-
phadenectomy, n � 11). The remaining patients (n � 45;
m, 32; f , 13; median age, 67 (IQR, 59–74) years) did not
have malignant abdominal lymph nodes and were part of

Table 1 Patient characteristics

Parameters All patients Train set Test set

Number of patients
(n)

72 22 50

Male/female (n) 47/25 15/7 32/18

Mean age (years) 63.8 (27–87) 63.7 (35–86) 64.3
(27–87)

Patients with benign
lymph nodes (n)

45 14 31

Patients with
abdominal
lymphoma (n)

27 8 19

Hodgkin lymphoma 4 2 2

Non-Hodgkin
lymphoma (NHL)

23 6 17

B-cell
lymphoma/T-cell
lymphoma

19/4 4/2 15/2

If not depicted otherwise, the numbers without parenthesis depict abso-
lute numbers. Data in round parenthesis are the min/max values

the control cohort. Patient characteristics are depicted in
Table 1.

Unsupervised cluster analysis

The distance matrices depict the pairwise Euclidean distance
for each sample. Using DECT features only, a clear stratifi-
cation into two cohorts was not seen (Fig. 3a) whereas the
combined feature group showed two unequivocally distinct
clusters (Fig. 3b). The findingwas corroborated in the respec-
tive t-SNE plots which depict lymphomatous lymph nodes in
orange (label � 1) and benign lymph nodes in blue (label �
0). In the DECT feature group, no clear clustering was seen
(Fig. 3c). Two clearly separated clusters were visualized in
the combined feature group with only one outlier (Fig. 3d).

Feature importance characteristics

We used LASSO to reduce the number of radiomics features
from 18 robust and non-redundant features (ICC > 0.6 and
Pearson correlation≤ 0.95, see Supplementary Data S21 and
S3) to our final radiomics feature set of five features (Table
2). The final features were part of the feature classes first
order (n � 2), GLDM (n � 2) and GLSZM (n � 1). For
each model, we calculated the importance of each feature
for the final prediction. Within the DECT feature groups, fat
fractionwas superior to ID% in allmodels, and in twomodels
(SGB and RF), ID% did not have any importance at all. In
the radiomics feature group, one feature (large area high gray
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Fig. 3 Unsupervised explorative
data analysis. Euclidean distance
matrices with samples sorted by
label (lymphoma vs. benign) for
the DECT (a) and combined
feature cohort (b). White
coloring depicts smaller
Euclidean distances. Squarish
patterns along the white diagonal
show clusters with similar
pairwise distance. In c and d,
t-SNE plots of the DECT and
combined cohort show the
two-dimensional embedding of
the joint probabilities (label: 1
(orange), lymphoma; 0 (blue),
benign). DECT dual-energy
computed tomography and t-SNE
t-distributed stochastic neighbor
embedding

Table 2 Least absolute shrinkage and selection operator (LASSO) fea-
ture selection

Feature Class

Energy First order

Maximum First order

Dependence non-uniformity GLDM

Large dependence emphasis GLDM

Large area high gray level emphasis GLSZM

The final feature set after LASSO feature reduction. GLDM gray level
dependence matrix and GLSZM gray level size zone matrix

level emphasis) did show nonzero importance values in all
models (Table 3).

Model performance differences and best performing
model comparison

The DECT models achieved performances from AUC �
0.683 (F1 � 0.571, precision � 0.667) (ADB) up to AUC
� 0.763 (F1 � 0.571, precision � 0.667, CI 0.435–0.923)
(RF) (Fig. 4a). The radiomicsmodels achieved performances
from AUC � 0.938 (F1 � 0.933, precision � 1.000) (ADB)
up to AUC � 1.000 (F1 � 1.000, precision � 1.000, CI

Table 3 Permutation-based
feature importance analysis for
each model

Radiomics LR AB SGB RF

Imp Std Imp Std Imp Std Imp Std

Energy 0.030 0.027 0.000 0.000 0.021 0.023 0.303 0.036

Maximum 0.067 0.037 0.000 0.000 0.015 0.021 0.021 0.023

Dependence
Non-uniformity

0.079 0.042 0.000 0.000 0.033 0.031 0.015 0.021

Large dependence
Emphasis

0.118 0.040 0.000 0.000 0.000 0.000 0.000 0.000

Large area high
Gray level
emphasis

0.021 0.023 0.424 0.072 0.015 0.021 0.015 0.021

DECT

Iodine_density_% − 0.042 0.011 − 0.003 0.011 0.000 0.000 0.000 0.000

Fat_fraction 0.145 0.112 0.164 0.129 0.158 0.122 0.158 0.122

LR logistic regression, AB AdaBoost, SGB stochastic gradient boosting and RF random forest
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Fig. 4 Performance visualization by receiver operating characteristics
curves. Receiver operating characteristics (ROC) curves are depicted
for the DECT (a) and radiomics (b) feature group. Each model is color
coded. Models with identical performances are depicted in one color
(see Table 4). LR logistic regression, RF random forest, ADBAdaBoost
and SGB stochastic gradient boosting

1.000–1.000) (LR, SGB and RF) (Fig. 4b). Detailed perfor-
mance characteristics are depicted in Table 4. We compared
the best performing models of the DECT (RF) and radiomics
feature group (RF) model (Fig. 5). A significant superiority
was seen for the radiomics feature group model (p � 0.011).

Fig. 5 Comparison of the top performing models. Receiver operating
characteristics (ROC) curves of the top performing model of the DECT
(random forest, RF, green) and radiomics feature (random forest, RF,
orange) group with DeLong test (p value) for statistical analysis

Discussion

In this retrospective study, we evaluated the potential of
radiomics features to stratify visually unequivocal abdominal
lymphoma in comparison to DECT-based material decom-
position analysis. The findings of our study suggest superior
performance of radiomics-based machine learning models
compared to DECT-based material decomposition analysis
techniques for the stratification of abdominal lymphoma in
contrast-enhanced abdominal CT. Thus, quantitative image
biomarkers may not be restricted to centers with DECT
equipment as artificial intelligence methodologies including
radiomics are applicable in standard single-energy CT. Our
findings indicate that the automatic stratification of unequiv-
ocal lymphomatous lymphnodes basedon radiomics features
may be feasible, and it could serve as a prioritization support
tool to help radiologists focus on critical cases.

Over recent years, DECT post-processing techniques and
radiomics have become rapidly evolving research fields in
cancer research, leading to improved non-invasive lesion
characterization [16, 32, 33]. The ability of DECT to pro-
vide information about lymph node characterization beyond
subjective evaluation and simple attenuation measurements

Table 4 Model performance
metrics LR AB SGB RF

Rad DECT Rad DECT Rad DECT Rad DECT

AUC 1.000 0.732 0.938 0.683 1.000 0.714 1.000 0.763

F1 1.000 0.533 0.933 0.571 1.000 0.571 1.000 0.571

Prec 1.000 0.571 1.000 0.667 1.000 0.667 1.000 0.667

AUC area under the curve, LR logistic regression, AB AdaBoost, SGB stochastic gradient boosting, rad
radiomics and RF random forest

123



1836 International Journal of Computer Assisted Radiology and Surgery (2023) 18:1829–1839

has been validated in prior studies [13–15]. In a study from
2018, the authors investigated the potential of DECT iodine
quantification to differentiate lymphoma, lymph nodemetas-
tases and benign lymph nodes [13]. Whereas significant
differences were found between lymphoma and lymph node
metastases, a discrimination between lymphoma and benign
lymph nodes could not be demonstrated using DECT iodine
quantification. Therefore, prediction of lymphoma in CT
using DECT-based imaging biomarkers has not yet been
approved. In contrast to basic material decomposition anal-
ysis techniques, radiomics can provide additional, higher
dimensional data by extracting a variety of mineable image
features [16]. Several studies have investigated the impact
of radiomics for tissue and tumor characterization. In the
field of oncologic imaging, the potential of radiomics for
the stratification of lymph node metastases has been shown
for several tumor entities, such as breast cancer, colorec-
tal carcinoma, gastric cancer and lung cancer [34–37]. All
of these studies have demonstrated the ability of radiomics
features to stratify lymph node metastases in a preopera-
tive setting. Similar findings have been presented for the
identification of lymphoma using radiomics features [38].
Inmultiple studies, the predictive performance of CT-derived
radiomics features has been successfully validated for several
lymphoma subtypes, including Hodgkin lymphoma, diffuse
large B-cell lymphoma, mantle-cell lymphoma and follic-
ular lymphoma [38–41]. The novelty of our study relates
to the direct comparison of the accuracy of DECT mate-
rial decomposition versus radiomics features to differentiate
benign and lymphomatous lymph nodes non-invasively. Fur-
ther, we aimed to analyze the feasibility to objectively stratify
visually unequivocal cases to path theway for a potential flag-
ging tool, so that radiologists can focus their workforce on
equivocal or critical cases. We could demonstrate superior
predictive performance of machine learning models trained
with radiomics features compared to DECTmaterial decom-
position values. Our findings demonstrate higher robustness
of radiomics features compared to DECTmaterial decompo-
sition which is an important factor for sustainable research.
Onemajor advantage of radiomics compared to DECT-based
algorithms is that radiomics can be applied on standard-of-
care CT scans without the necessity for DECT equipment.
DECT is not as widespread in health centers as single-energy
CT.Therefore,DECT-basedmaterial decomposition analysis
techniques are restricted to a minor group of well-equipped
health-care centers. In sharp contrast toDECT-basedmaterial
decomposition, CT-based radiomics features offer a superior
quantitative data characterization tool that is accessible to a
very wide hospital spectrum. Even in health centers where
DECT equipment is available, retrospective application of
DECT post-processing is limited to scans in which DECT
raw data (1.5 mm low and high kV series) are available
as DECT raw data are mandatory for post-processing. Due

to storage capacity reasons, these DECT raw data are not
always available for material decomposition analysis recon-
struction. This limitation restricts the use of DECT material
decomposition analysis to selected DECT scans. As a conse-
quence, in the screening process of the current study, a major
part of potentially eligible cases had to be excluded due to
incompleteDECTrawdata.Our studyhas further limitations,
which have to be taken into account. We analyzed retrospec-
tive data. Therefore, we cannot rule out selection bias. Also,
our study included 72 patients, and a larger cohort might
have been favorable. This might reduce generalizability of
the result. Last, we restricted the patient inclusion to one
dual-energy CT scanner to exclude inter-scanner variability
and to include only reconstructions with a slice thickness of
1.5mm and increment of 1.2mm; nevertheless, intra-scanner
variability may have occurred.

In conclusion, our findings indicate that radiomics fea-
tures are superior to DECT material decomposition for
the objective identification of visually unequivocal abdom-
inal lymphoma in contrast-enhanced CT scans. In patients
with suspected or diagnosed abdominal lymphadenopathy,
radiomics may assist in clinical diagnosis as a support tool
for the identification of lymphomatous lymph nodes. In times
of steadily increasing radiological workload, radiomics and
DECT-based biomarkers may be used to identify visually
unequivocal lymph nodes, promoting that radiologists can
focus on equivocal and critical cases. In medical institu-
tions without DECT equipment, radiomics-based machine
learning models may offer an alternative for the non-invasive
prediction of abdominal lymphoma with superior diagnostic
accuracy compared to DECT material decomposition analy-
sis.
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