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Noise representations of open 
system dynamics
Piotr Szańkowski* & Łukasz Cywiński

We analyze the conditions under which the dynamics of a quantum system open to a given 
environment can be simulated with an external noisy field that is a surrogate for the environmental 
degrees of freedom. We show that such a field is either a subjective or an objective surrogate; the 
former is capable of simulating the dynamics only for the specific system–environment arrangement, 
while the latter is an universal simulator for any system interacting with the given environment. 
Consequently, whether the objective surrogate field exists and what are its properties is determined 
exclusively by the environment. Thus, we are able to formulate the sufficient criterion for the 
environment to facilitate its surrogate, and we identify a number of environment types that satisfy 
it. Finally, we discuss in what sense the objective surrogate field representation can be considered 
classical and we explain its relation to the formation of system–environment entanglement, and the 
back-action exerted by the system onto environment.

In recent years, we have witnessed a tremendous pace of advancement in the field of quantum technology; 
presently, devices that utilize quantum effects to perform useful tasks in practical circumstances seem to be an 
inevitable part of not so far future1,2. Then, it is only natural that the focus of modern applied quantum theory 
shifts from idealized closed systems to more realistic open systems where the system (S) of interest—which can 
be a component of a quantum device—undergoes evolution due to application of various control protocols while 
experiencing the decoherence caused by the contact with its uncontrolled environment (E). Indeed, even the 
system that has been prepared, and is handled, with the utmost care is extremely unlikely to be perfectly isolated 
from the environment. Moreover, unlike classical systems, even weak interactions with the environment can lead 
to decoherence effects that fundamentally alter the properties of quantum system3,4. Therefore, the development 
of effective and accurate description of the dynamics of open quantum systems is of paramount importance.

The standard physically-motivated approach to the problem of open system dynamics is to begin with an 
exact two-party Hamiltonian; here, we focus on simple, albeit by no means trivial, form

where ĤE , ĤS are the free Hamiltonians of the environment and the system (with the latter incorporating any 
applied control scheme) and V̂S , V̂E are the system and the environment sides of the coupling. However, in 
overwhelming majority of cases it is impossible to solve the dynamical problem defined by such a Hamiltonian 
exactly, and hence, the success relies heavily on approximation schemes—e.g., the quantum master equation 
method5—that are specific to a given system–environment arrangement (i.e., the specific choice of ĤS , ĤE , 
V̂S ⊗ V̂E and the initial state ρ̂S ⊗ ρ̂E ). The drawback is that successful schemes and techniques developed for 
one arrangement only rarely can be reused for treating different arrangements, even when the only modified 
element is the control scheme applied to the system (e.g., see6).

An alternative approach, and the main concern of this paper, is the noise representation. Essentially, it is an 
attempt at assigning the involved parties with the distinct roles they play in the dynamics—the environment is 
viewed as the “influencer”, or the “driver”, and the system is the “influencee” or the “driven”. In formal terms, this 
idea is implemented by replacing the exact description ĤSE with an effective system-only Hamiltonian where the 
environmental operators have been superseded by an external field7–17

We will refer to this field as the surrogate field.
If the surrogate field ξ(t) comprises stochastic elements (as it is often the case), then Ĥξ (t) model has to be 

supplemented with an averaging procedure where any quantity computed for given realization (or trajectory) of 

(1)ĤSE = ĤS ⊗ 1̂+ V̂S ⊗ V̂E + 1̂⊗ ĤE ,

(2)Ĥξ (t) = ĤS + ξ(t)V̂S .
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ξ must be averaged over all such realizations. Assuming that only the dynamics of system-only observables are 
of concern, then the averaging can be incorporated into the description by adopting the following definition of 
the density matrix of S

where ρ̂S is the initial state, the unitary evolution operator conditioned by the field realization is given by a 
standard time-ordered exponential

and the symbol (. . .) indicates the average over field’s trajectories.
The conditions for applicability of noise representation are currently not well understood. Over the years, a 

few hypotheses have been posed in the literature17–28, but the definite answer has proven to be elusive. The goal of 
this paper is to provide a possibly complete answer to this question and to quantify the conditions under which 
the system–environment arrangement facilitates a valid surrogate field representation. We will not provide an 
in-depth discussions how one should proceed once the valid surrogate field has been found; there already exists 
a sizable body of literature on this particular topic that supply a number of specific examples7–16. Our first and 
foremost concern is to find out when the surrogate field is a valid representation in the first place. We consider 
the representation to be valid when Ĥξ model allows for high fidelity simulation of the actual dynamics governed 
by ĤSE of any system-only observable; formally

where ρ̂E is the initial state of the environment and trE(. . .) is the partial trace over E subspace. The validity 
criterion we are presenting is based on the discovery of formal analogy between the average over trajectories of 
stochastic process and the partial trace operation. On the one hand, the average can be written as a path integral,

where the non-negative P[ξ ] is the probability distribution of the trajectories of process ξ . On the other hand, 
as we will demonstrate in “Objective surrogate field representation”, the partial trace can also be cast in a form 
that resembles the average-like integral over trajectories

where the super-operator U(t|ξ , ζ ) (i.e., operator acting on operators) is conditioned by real-valued trajecto-
ries of a two-component “quantum process” (ξ(t), ζ(t)) and it satisfies U(t|ξ , ξ)ρ̂S = Û(t|ξ)ρ̂SÛ†(t|ξ) . The 
complex-valued Q[ξ , ζ ] plays the role analogous to the probability distribution in Eq. (6)—essentially, it is the 
quasi-probability distribution of trajectories of quantum process. Then, the validity criterion specifies the sufficient 
conditions for the quasi-probability to be treated as a proper probability distribution, Q[ξ , ζ ] ≈ δ(ξ − ζ )P[ξ ] , 
and thus, for the partial trace (Eq. 7) to take on the form of the stochastic average (Eq. 6). In “Joint probability 
distributions” and “Joint quasi-probability distributions” we will introduce an equivalent formulation of this 
idea that is less succinct but, ultimately, more useful in practice. Instead of functiointroducing the imaginary 
partnal distributions of abstract trajectories, we will make use of an alternative description where one lists the 
hierarchy of probabilities (or quasi-probabilities) that the trajectory passed through given sequence of values, 
e.g., a distribution p(k)ξ (ξ1t1; ξ2t2; . . . ; ξktk) describes the probability that trajectory of stochastic process ξ(t) 
have value ξk at tk , followed by ξk−1 at tk−1 , etc.. The upside is that these joint (quasi-)probability distributions, 
as they are called, are standard functions and, in our case, are defined with closed analytical formulas derived 
from the dynamical laws of the environment (i.e., the triplet of operators V̂E , ĤE and ρ̂E).

In the most basic terms, the surrogate field representation exchanges an exact two-party Hamiltonian for an 
effective evolution generator for the single party S. Generally speaking, the details of the representation depend 
on all elements of the system–environment arrangement: the initial states ρ̂S and ρ̂E , the free Hamiltonians ĤS 
and ĤE , and, of course, both the system and the environment sides of the coupling V̂S and V̂E . It seems quite 
obvious that whenever the original environment is swapped for some other physical system—in the sense that 
any number of elements among ĤE , V̂E and ρ̂E are swapped for different operators—the fundamental changes to 
the representation should also be expected (assuming it would even still exist); after all, the field ξ(t) is supposed 
to be a surrogate for the environment. It is much less obvious what happens to the representation when it is the 
system side of the arrangement that is modified, instead. This brings about the question of objectivity, or more 

(3)ρ̂S(t) = Û(t|ξ)ρ̂SÛ†(t|ξ),

(4)Û(t|ξ) = T e−i
∫ t
0 dτ Ĥξ (τ ) = T e−i

∫ t
0 dτ [ĤS+ξ(τ )V̂S],

(5)trE

(

e−itĤSE ρ̂S ⊗ ρ̂E e
itĤSE

)

≈ Û(t|ξ)ρ̂SÛ†(t|ξ),

(6)Û(t|ξ)ρ̂SÛ†(t|ξ) =
∫

Dξ P[ξ ]Û(t|ξ)ρ̂S Û†(t|ξ),

(7)trE

(

e−itĤSE ρ̂S ⊗ ρ̂E e
itĤSE

)

=
∫

Dξ

∫

Dζ Q[ξ , ζ ]U(t|ξ , ζ )ρ̂S ,
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precisely, of inter-subjectivity of surrogate field representation: for a fixed environment, how does the surrogate 
field depend on the context defined by the system? By context we mean here the choice of all the elements con-
stituting the system S, its initial state ρ̂S , the free Hamiltonian ĤS , and the coupling operator V̂S . Whenever any 
of those elements is modified, we will consider it a different context. These questions are of particular relevance 
for many practical applications. For example, in the field of quantum sensing9,10, a standard approach is to employ 
a simple quantum system as a probe that gathers information about the environment E. Then, one attempts to 
utilize this information to predict the course of decoherence of a more complex systems open to E. When the 
surrogate field representation is valid in the context of the probe, the acquired information would include the 
characteristics of the surrogate. If the representation happens to be context-independent, then one would be able 
to apply this information to simulate the evolution of an arbitrary open quantum systems. Therefore, the issue 
of surrogate field’s objectivity is a vital one. The quasi-probability formalism (Eq. 7) we are presenting here is, by 
design, an ideal approach for resolving this problem. Since the quasi-probability distribution Q[ξ , ζ ] is wholly 
defined by the environment side of the SE arrangement, all its properties, including the compliance with the 
surrogate validity criterion, are independent of the context. In essence, the decomposition (Eq. 7) is the most 
general implementation of the inflencer–influencee paradigm; its strength lies in the ability to identify and neatly 
isolate all contributions from the environment that affect the dynamics of the open system.

The system–environment coupling in Eq. (1) is not of the most general form. However, historically, the noise 
representations have been considered for almost no other form of coupling7–16, and the reason for this is not 
straightforward. The explanation is rather technical and referential to the findings for the coupling (Eq. 1); we 
discuss it in “Multi-component surrogate field” where we investigate the prospects of a multi-component sur-
rogate field representation for the general form of coupling.

Note that traditionally the surrogate field is referred to in the literature as the classical noise7–9,29–32. It is 
then contrasted with the quantum noise33–35 which often simply means that the noise representation fails, and 
one has to solve the dynamics defined by the two-party Hamiltonian. However, some authors36–38 reserve this 
name for the specific arrangement of a two-level system coupled with a thermal reservoir of independent quan-
tum harmonic oscillators—the so-called spin-boson model. Here, we have chosen to abandon the traditional 
nomenclature because of the risk that connotations of the adjective “classical” might be too suggestive, and that 
they could provoke one to draw some far fetched conclusions about the system–environment arrangement on 
the basis of the name alone. For example, one might expect that there is a link between the validity of “classical 
noise” representation and “classicality” of the environment (which is not necessarily the case, as demonstrated in 
“Examples of environments that facilitate objective surrogate field”), or that the “classical noise” representation is 
incompatible with the formation of system–environment entanglement because entanglement is a “non-classical” 
type of correlation (we challenge this sentiment in “Surrogate field and system–environment entanglement”). 
On the other hand, the name “surrogate field” is not burdened by such a baggage, and it represents exactly what 
it advertises—the surrogate field is a surrogate for the environmental degrees of freedom. Nevertheless, some 
analogies between the surrogate field representation and classical theories are expected, and so, we explore this 
issue in “What is classical about surrogate field?”.

Further note regarding the nomenclature, the completely positive trace-preserving dynamical map estab-
lished by Eq. (3), belongs to the class of random unitary maps18. The “prototypical” scenario described with 
random unitary map, one that stems from the basic physical interpretation, occurs when the system dynamics 
are generated by an actual single-party Hamiltonian of form (Eq. 2), and where any stochasticity of the exter-
nal field (as well as the averaging procedure) depicts uncertainty or ignorance of the observer18. In the terms 
we used here, such a scenario is described in the following way. (i) There is no fundamental ĤSE that is being 
replaced by S-only Hamiltonian Ĥξ , i.e., ξ is not a surrogate for any environment but is a genuine external field, 
instead. (ii) Any single instance of the system’s evolution is given by unitary Û(t|ξ) where the trajectory of ξ is 
specified, and could be uncovered in principle, but is unknown to the observer. (iii) Because of this uncertainty, 
any expectation value predicted by the observer has to be averaged over all possibilities. Based on this example, 
some authors18,23 choose to classify evolution maps as classical when the map can be written in random unitary 
form, and as truly quantum or non-classical otherwise. The discussion on the relationship between surrogate 
field representation and the formation of system–environment entanglement presented in “Surrogate field and 
system-environment entanglement” provides an argument that such a classification scheme could be enriched 
with additional nuance. Overall, surrogate field representations showcased in “Examples of environments that 
facilitate objective surrogate field” also provide a number of non trivial examples that should be useful for devel-
oping intuitions regarding the underlying physics of random unitary map theory.

Results
Objective surrogate field representation.  Joint probability distributions.  We begin by examining the 
structure of system state ρ̂S(t) resulting from the simulation with stochastic Hamiltonian Ĥξ (t) = ĤS + ξ(t)V̂S . 
Switching to the interaction picture ρ̂I

S(t) = eitĤS ρ̂S(t)e
−itĤS and expanding the time-ordered exponentials in 

Û(t|ξ) into series, we obtain the following form of the density matrix
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where the super-operators acting on the initial state are defined as

with V̂S(t) = eitĤS V̂Se
−itĤS , and the symbol 

∏k
l=1 VS(tl) applied to super-operators is understood as an ordered 

composition VS(t1)VS(t2) . . .VS(tk) . The influence of the noise on the course of the evolution is quantified by 
the family of joint probability distributions

which establish the probability of the process ξ(t) having the value ξk at the initial time tk , followed by ξk−1 at tk−1 , 
..., and terminating with ξ1 at t1 (assuming t1 > t2 > . . . > tk ); the range of values available to ξ(t) is constraint 
by the set �ξ . The family of probability distributions {p(k)ξ }∞k=1 defines ξ(t) completely, and thus, functions p(k)ξ  
cannot be arbitrary as they have to satisfy the following two conditions39:

(i) Since each p(k)ξ  is a probability distribution, it has to be non-negative

for all ξ ∈ �×k
ξ  and t1 > t2 > . . . > tk.

(ii) The joint probabilities belonging to one family are related through Chapman-Kolmogorov consistency 
criterion

for t1 > t2 > . . . > tk , and

Conversely, any set of functions that satisfy both of the above conditions defines some stochastic process. This 
fact will be the linchpin of our search for surrogate field representation.

Joint quasi‑probability distributions.  The next step is to express the reduced system state evolved under the 
two-party Hamiltonian ĤSE in a form that will most directly compare with the previously obtained expres-
sion (Eq. 8). We demonstrate in the Methods “Reduced system state” that the interaction picture of the reduced 
density matrix can be written in the following way

Here, the set �V̂ is the spectrum of the environment-side coupling operator V̂E and it contains all of its unique 
eigenvalues

The action of super-operators WS(ξζ t) is defined by

and they encapsulate the explicitly context-dependent contribution to the evolution. Finally, the family of func-
tions {q(k)E }∞k=1 , which we will call the joint quasi-probability distributions, are given by

(8)

ρ̂I
S(t) = eitĤS Û(t|ξ)ρ̂SÛ†(t|ξ)e−itĤS

=
∞∑

k=0

(−i)k
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tk−1

0

dtkξ(t1) . . . ξ(tk)

(
k∏

l=1

VS(tl)

)

ρ̂S

=
∞∑

k=0

(−i)k
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tk−1

0

dtk
∑

ξ∈�×k
ξ

p
(k)
ξ (ξ t)

(
k∏

l=1

ξlVS(tl)

)

ρ̂S,

(9)VS(t)Â = V̂S(t)Â− ÂV̂S(t),

(10)p
(k)
ξ (ξ t) = p

(k)
ξ (ξ1t1; ξ2t2; . . . ; ξktk),

(11)p
(k)
ξ (ξ t) � 0,

(12)
∑

ξl∈�ξ

p
(k)
ξ (ξ t) = p

(k−1)
ξ (. . . ; ξl−1tl−1; ξl+1tl+1; . . .),

(13)
∑

ξ1∈�ξ

p
(1)
ξ (ξ1t1) = 1.

(14)

ρ̂I
S(t) = eitĤS trE

(

e−itĤSE ρ̂S ⊗ ρ̂E e
itĤSE

)

e−itĤS

=
∞∑

k=0

(−i)k
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tk−1

0
dtk

∑

ξ ,ζ∈�×k

V̂

δξ1,ζ1 q
(k)
E (ξζ t)

(
k∏

l=1

WS(ξlζl tl)

)

ρ̂S .

(15)V̂E =
∑

n

vn|n��n| =
∑

ξ∈�V̂

ξ
∑

n:ξ=vn

|n��n|.

(16)WS(ξζ t)Â = 1

2
(ξ + ζ )

(

V̂S(t)Â− ÂV̂S(t)
)

+ 1

2
(ξ − ζ )

(

V̂S(t)Â+ ÂV̂S(t)
)

,
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where ρ̂E(t) = e−itĤE ρ̂Ee
itĤE and the propagator

constitute the fundamental context-independent building blocks of the whole structure.
The key feature of Eq. (14) is the analogy between families of quasi-probabilities {q(k)E }∞k=1 and proper prob-

abilities {p(k)ξ }∞k=1 which goes beyond simplistic formal resemblance of the corresponding formulas. Indeed, in 
the Methods “Consistency criterion for joint quasi-probabilities” we verify that, just like joint probabilities, 
functions q(k)E  satisfy the Chapman-Kolmogorov consistency criterion

However, as we will see below, quasi-probabilities do not necessarily satisfy the condition of non-negativity. 
Therefore, in general, a given family {q(k)E }∞k=1 does not properly define a stochastic process.

Structure of joint quasi‑probability distributions.  When examined as a diagram, q(k)E  can be viewed as a superpo-
sition of a selection of propagator chains (or simply chains) where propagators Tt(nm|n′m′) play the role of chain 
links and the connections between consecutive links are established through projectors |n��n| or coherences |n��m| 
( n  = m ) that enforce the matching of indices

Each chain begins with a special link in a form of density matrix element and ends with a propagator that carries 
a disconnected projector

In general, propagators are complex functions

and hence, the chains cannot be assigned with a definite sign (in particular, they are not necessary non-negative). 
However, among all the chains constituting a given quasi-probability distribution we can distinguish a class 
composed entirely of propagators connected through projectors—the projector-connected chains—such that 
each link is of the form

including the initial link �nk|ρ̂E(tk)|nk� � 0 . Consequently, the sum of all such chains is non-negative

Although p(k)E (ξ t) ’s are a multivariate probability distributions (they are non-negative and normalized), they 
do not form a proper family of joint probabilities which would allow to interpret the series of random variables 
ξ1, ξ2, . . . , ξk as a sample of stochastic process ξ(t) . Indeed, the remainder �q

(k)
E (ξζ t) that consists of all the chains 

with, at least, one connection through coherence |n��m| ( n  = m ), as defined by the decomposition

has to be also taken into account for the consistency criterion to be satisfied. On the other hand, it is the contri-
bution from those coherence-connected propagator chains that hinders the compliance with the non-negativity 
criterion as �q

(k)
E  , in contrast to p(k)E  , cannot be guaranteed to have a definite sign. From an oversimplified point 

(17)

q
(k)
E (ξζ t) = q

(k)
E (ξ1ζ1t1; ξ2ζ2t2; . . . ; ξkζktk)

=
( k∏

l=1

∑

nl :
ξl=vnl

∑

ml :
ζl=vml

)

δn1,m1 �nk|ρ̂E(tk)|mk�
(

k−1∏

l=1

Ttl−tl+1
(nlml|nl+1ml+1)

)

,

(18)Tt(nm|n′m′) = trE

(

|m��n| e−itĤE |n′��m′|eitĤE

)

,

(19)
∑

ξl ,ζl∈�V̂

q
(k)
E (ξζ t) = q

(k−1)
E (. . . ; ξl−1ζl−1tl−1; ξl+1ζl+1tl+1; . . .).

. . .

a two-link segment of the chain

Tt−t (nm |n m )Tt −t (n m |
connection through |n m |

n m ) . . . . (20)

Tt1−t2

disconnected projector |n1 n1|

(n1n1|n2m2)Tt2−t3(n2m2|n3m3) . . .

. . .Ttk−1−tk (nk−1mk−1|nkmk) nk|ρ̂E(tk)|mk

initial link

. (21)

(22)Tt(nm|n′m′) = �n|e−itĤE |n′��m|e−itĤE |m′�∗,

(23)Tt(nn|mm) =
∣
∣�n|e−itĤE |m�

∣
∣2 � 0,

(24)p
(k)
E (ξ t) ≡

( k∏

l=1

∑

nl :ξl=vnL

)

�nk|ρ̂E(tk)|nk�
(

k−1∏

l=1

Ttl−tl+1
(nlnl|nl+1nl+1)

)

� 0.

(25)q
(k)
E (ξζ t) = δξ ,ζ p

(k)
E (ξ t)+�q

(k)
E (ξζ t),
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of view, the “quantumness” of a two-component quantum process (ξ(t), ζ(t)) manifests itself through coherence-
connected chains as their composition �q

(k)
E  is a proper quantum superposition where the amplitudes for alterna-

tive outcomes have the ability to interfere with each other.

From quantum process to surrogate field.  Suppose now that �q
(k)
E  ’s are negligible and the quasi-probabilities 

become compliant with the non-negativity criterion q(k)E (ξζ t) ≈ δζ ,ξ p
(k)
E (ξ t) � 0 . In such a case, the remaining 

probability distributions p(k)E  satisfy the Chapman–Kolmogorov consistency criterion by themselves

and, as a result, they form the joint probability distribution family {p(k)E }∞k=1 that defines stochastic process ξ(t) . 
More importantly, this stochastic process is actually a surrogate field that simulates the evolution of the reduced 
state of S via the model Hamiltonian Ĥξ (t) = ĤS + ξ(t)V̂S . Indeed, since WS(ξξ t) = ξVS(t) [compare Eqs. (9) 
and (16)], the reduced density matrix becomes

which holds true in any context (i.e., for any choice of ĤS , V̂S and ρ̂S ). In fact, the joint quasi-probabilities can be 
considered context-independent: each q(k)E  is defined completely and exclusively by the environment side of SE 
arrangement (hence, the index E). Therefore, whether �q

(k)
E ≈ 0 and q(k)E  ’s form the stochastic process-defining 

family of joint probabilities is determined only by the properties of the environment, and if they do, then the 
evolution of any system coupled to E through operator V̂E is simulable with the same surrogate field. In other 
words, the surrogate created in this way is inter-subjective in all contexts.

We will now summarize the above deliberations with formally stated sufficient criterion for validity of the 
objective surrogate field representation; this criterion can be considered as the main result of the paper.

Criterion 1  (Objective surrogate field representation) For the environment E (defined by V̂E , ĤE , and ρ̂E ) to 
facilitate the objective surrogate field representation ξ(t)—the representation that is inter-subjective in all con-
texts—it is sufficient that, for each member of the family of joint quasi-probability distributions {q(k)E }∞k=1 , the 
superposition of coherence-connected propagator chains �q

(k)
E  is negligible so that

Then, the stochastic process ξ(t) is defined by the family of joint probability distributions {p(k)E }∞k=1.

When the surrogate representation is valid, and the environmental Hamiltonian ĤE , the initial state ρ̂E , and 
the eigensystem of the coupling {|n�}n , �V̂ are known, then, in principle, the following algorithm allows to instan-
tiate trajectories of surrogate field ξ(t) : (i) Choose an arbitrary time grid tgrd = (t1, . . . , tk) and t1 > . . . > tk . 
(ii) Calculate the joint probability distribution p(k)E (ξ tgrd) according to (Eq. 24) for all values of ξ ∈ �×k

V̂
 . 

Although straightforward, this is the most difficult and resource intensive step. (iii) Draw at random from 
previously obtained distribution the sequence ξ smp = (ξ1, . . . , ξk) ; such a sequence is a sample trajectory of the 
process spanned on grid tgrd . This concludes the procedure.

Once the probability distribution has been successfully calculated in the second step of the above procedure, 
the last step can be repeated any number of times at relatively low cost. The resultant ensemble of sample tra-
jectories—provided the time grid is fine enough and the number of samples is sufficiently large—can be used to 
carry out the averaging procedure of any quantity. This includes not only the expectation values of system-only 
observables, but also quantities that characterize the process itself, like its moments or cumulants. In Methods 
“How to solve the system dynamics in surrogate field representation”, we give a basic overview how this procedure 
is utilized for finding the system dynamics.

(26)

∑

ξl∈�V̂

p
(k)
E (ξ t) ≈

∑

ξl ,ζl∈�V̂

q
(k)
E (ξζ t)

= q
(k−1)
E (. . . ; ξl−1ζl−1tl−1; ξl+1ζl+1tl+1; . . .)

≈ p
(k−1)
E (. . . ; ξl−1tl−1; ξl+1tl+1; . . .),

(27)

ρ̂I
S(t) = eitĤS trE

(

e−itĤSE ρ̂S ⊗ ρ̂E e
itĤSE

)

e−itĤS

≈
∞∑

k=0

(−i)k
∫ t

0
dt1 . . .

∫ tk−1

0
dtk

∑

ξ ,ζ∈�×k

V̂

δξ ,ζ p
(k)
E (ξ t)

(
k∏

l=1

WS(ξlζl tl)

)

ρ̂S

=
∞∑

k=0

(−i)k
∫ t

0
dt1 . . .

∫ tk−1

0
dtk

∑

ξ∈�×k

V̂

p
(k)
E (ξ t)

(
k∏

l=1

ξlVS(tl)

)

ρ̂S

= eitĤS Û(t|ξ)ρ̂SÛ†(t|ξ)e−itĤS ,

q
(k)
E (ξζ t) ≈ δξ ,ζ p

(k)
E (ξ t).
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Examples of environments that facilitate objective surrogate field.  Quasi‑static coupling.  As-
sume that the environmental free Hamiltonian and the coupling operator commute

Then, the eigenstates of the coupling operator |n� are, simultaneously, eigenstates of the Hamiltonian 
ĤE|n� = ǫn|n� . It follows that, within each propagator, the evolution operators preserve the orthogonality between 
projectors |n��n| and coherences |m��m′| ( m  = m′)

Therefore, all coherence-connected chains vanish because each one of those chains contains at least one instance 
of propagator linking a coherence and a projector [see Eq. (21)]. In such a case, any superposition of those 
chains, including �q

(k)
E ’s, vanishes as well. On the other hand, the projector-connected chains (and their com-

binations) are preserved, and hence, the joint quasi-probabilities become a proper probability distributions 
q
(k)
E (ξζ t) = δξ ,ζ p

(k)
E (ξ t) that read

The resultant surrogate field ξ is of the quasi-static noise type—a stochastic process that is time-independent 
(essentially, a random variable). The process is governed by the probability distribution p(ξ) =

∑

n:ξ=vn
�n|ρ̂E|n� 

given by the initial state of E and the range of values that coincide with the spectrum of coupling operator 
�ξ = �V̂.

Open environment.  Suppose that the environmental degrees of freedom can be further separated into two 
subspaces: one that is in direct contact with the system (let us still label it as E), and the other part (D) that is 
decoupled from the system but interacts with E

Essentially, D is an environment of E but not of S.
In the Methods “Joint quasiprobability distributions for open environment” we show that the joint quasi-

probability distributions resultant from this form of environmental dynamics are given by an effective average 
over D degree of freedom (a partial trace over D):

where the symbol 
∏le

l=lb
Â(l) applied to operators is to be read as an ordered composition: Â(lb)Â(lb + 1) . . . Â(le) 

for lb < le , or Â(lb)Â(lb − 1) . . . Â(le) for lb > le , and the unitary evolution operator

operates in ED subspace while the projectors |nl��nl| onto eigenstates of V̂E act only in E subspace.
Assume the initial state ρ̂D and the relation between coupling V̂ED and the free Hamiltonians are such that 

we can invoke the Born approximation40

In addition, in order to parametrize the undergoing dynamical process only in the terms of environment part 
that couples directly to the system, assume the Markov and secular approximations41 that specify the form of 
the dynamical map acting on E

Here, super-operators �(t, t′) satisfy the composition rule

(28)[ĤE , V̂E] = 0.

(29)
Tt(nn|mm′) = trE

(
|n��n|e−itĤE |m��m′|eitĤE

)

= eit(ǫm′−ǫm)trE
(
|n��n||m��m′|

)
= 0.

(30)p
(k)
E (ξ t) =

(
k∏

l=2

δξ1,ξl

)
∑

n:ξ1=vn

�n|ρ̂E|n�.

(31)Ĥ = ĤS ⊗ 1̂⊗ 1̂+ V̂S ⊗ V̂E ⊗ 1̂+ 1̂⊗ ĤE ⊗ 1̂+1̂⊗ V̂ED + 1̂⊗ 1̂⊗ ĤD .

(32)

q
(k)
E (ξζ t) =

∑

n1:ξ1=vn1

( k∏

l=2

∑

nl :ξl=vnl

∑

ml :ζl=vml

)

× �n1|trD
[( k∏

l=2

ÛED(tl−1 − tl)|nl��nl|
)

× ÛED(tk)ρ̂E ⊗ ρ̂DÛ
†
ED(tk)

×
( 2∏

l=k

|ml��ml|Û†
ED(tl−1 − tl)

)]

|n1�,

(33)ÛED(t) = e−it(ĤE+V̂ED+ĤD),

(34)ÛED(t)Â⊗ ρ̂DÛ
†
ED(t) ≈

ˆ̃A(t)⊗ ρ̂D .

(35)ÛED(t − t ′)Â⊗ ρ̂DÛ
†
ED(t − t ′) ≈

(

�(t, t′)Â
)

⊗ ρ̂D .
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and are generated by non-hermitian super-operator LE(τ )—the so-called Lindbladian—that acts in the E-oper-
ators subspace only

In the terms of open system theory, it is this full suite of approximations that lead to the quantum master equation 
for the evolution of reduced state of a system open to D R̂E(t) = trD(ÛED(t)ρ̂E ⊗ ρ̂DÛ

†
ED(t)),

In our case, the secular Born–Markov approximation leads to quasi-probability distributions in a standard form 
of propagator chain superpositions (Eq. 17) but with propagator links (Eq. 18) modified according to

and the analogous modification to the initial link where �nk|e−itkĤE ρ̂Ee
itkĤE |mk� is replaced with 

�nk|�(tk , 0)ρ̂E|mk� . Note that the composition rule (Eq. 36) is crucial, as it is required for quasi-probability 
distributions to satisfy the consistency criterion.

The fact that dynamical map �(t, t′) is not unitary (Lindbladian is non-Hermitian in general), opens new 
possibilities for breaking the coherence-connected propagator chains. One way to achieve such an effect, is for 
the evolution super-operator to satisfy 

 That is, the super-operator maps projectors onto combination of projectors and coherences onto combination 
of coherences, thus, preserving their mutual orthogonality. When this is the case, then all coherence-connected 
chains constituting �q

(k)
E  vanish because each one of them contains at least one instance of propagator of form 

Tt(nlnl|nl+1ml+1) ∝ δnl+1,ml+1
= 0 ( nl+1 �= ml+1 ); note the similarity to quasi-static coupling case from “Quasi-

static coupling”. Moreover, the remaining combinations of projector-connected chains p(k)E  are guaranteed to 
be non-negative because �(t, t′) is a trace-preserving and completely positive map so that um,n(t, t

′) � 0 and 
∑

m um,n(t, t
′) = 1 , for all t > t ′ and n, m. Therefore, when environment dynamics have the property (Eq. 40), 

{p(k)E }∞k=1 is a family of proper joint probability distributions and they define a surrogate field.
The following simple example showcases how this type of environmental dynamics supports an objective 

surrogate field representation. Let E be a two-level system that is driven by time-independent Lindbladian 
defined by LEÂ = −(γ /2)[σ̂x , [σ̂x , Â]] and the coupling operator is V̂E = (|+��+| − |−��−|)/2 = σ̂z/2 . Then, 
the coupling has two eigenvalues v± = ±1/2 corresponding to |±� eigenstates. It is a matter of straightforward 
algebra to verify that conditions (Eq. 40) are satisfied here. The resultant probability distributions are given by

with process spectrum �ξ = {+1/2,−1/2} . We recognize that this family of probability distributions describe 
a well known random telegraph noise39—a stochastic process that switches between two values, ξ = ±1/2 in 
this case, at the rate γ.

Environment of least action.  In the last example, we will require that the spectrum of the coupling is dense so 
that the sums in (Eq. 17) can be replaced with integration

where the intervals Ŵξl are the degenerate subspaces corresponding to eigenvalues ξl and Ŵ∞ is the whole con-
figuration space. Using this representation we rewrite Eq. (17) into a form that will be better suited for our 
current purposes

where we have defined the Schrödinger chains

(36)�(t, t′)�(t ′, t′′) = �(t, t′′), for t > t ′ > t ′′,

(37)�(t, t′) = T e
∫ t
t′ LE(τ )dτ , for t > t′.

(38)
∂

∂t
R̂E(t) = LE(t)R̂E(t).

(39)Tt−t′ (nm|n′m′) = trE
(
|m��n|�(t, t′)|n′��m′|

)
,

(40a)�(t, t′)|n��n| =
∑

m

um,n(t, t
′)|m��m|,

(40b)�(t, t′)|n��n′| =
∑

m �=m′
wmm′ ,nn′(t, t

′)|m��m′| (n �= n′).

(41)p
(k)
E (ξ t) = �sign(ξk)|etkLE ρ̂E|sign(ξk)�

k−1∏

l=1

(

1+ sign(ξl)sign(ξl+1)e
−2γ (tl−tl+1)

2

)

,

(42)
∑

nl :ξl=vnl

∑

ml :ζl=vml

→
∫

Ŵξl

dxl

∫

Ŵζl

dyl ,

(43)
q
(k)
E (ξζ t) =

∫

Ŵξ1

dx1dy1δ(x1 − y1)

∫

Ŵ∞
dx0 dy0�x0|ρ̂E|y0�

× K(x1, x0, t|Ŵξ2 . . . Ŵξk )K(y1, y0, t|Ŵζ2 . . . Ŵζk )
∗,
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which are simply an alternative to the propagator chain description.
Assume the environment is such that the least action principle approximation is applicable to the Feynman 

path integral representation of its Schrödinger propagators42

where Scl(xete; xbtb) is the environment action43 associated with the classical trajectory of coordinate x—i.e., the 
trajectory x(t) that satisfy the corresponding Euler–Lagrange equation43—that begins at point xb at initial time 
tb , and ends at point xe at time te . The approximation is justified using the stationary phase method: When the 
action S[x(t)] is large (e.g., like for massive macroscopic systems), the destructive interference between rapidly 
oscillating phase factors exp{iS[x(t)]} suppresses the integration over almost all trajectories, except for the imme-
diate vicinity of the stationary point (or rather, the stationary trajectory) of action. The least action principle of 
classical mechanics asserts that the trajectory which satisfies the classical equation of motion is such a stationary 
point (and vice versa). Therefore, the only significant contribution to the integral comes from the neighborhood 
of Scl where the phase slows down and the interference is constructive.

First, we will consider one of the intermediate segments along the Schrödinger chain,

where, for now, we will treat the time arguments tl−1 > tl > tl+1 and the end points xl+1, xl−1 as fixed values. 
Since the action is large, according to stationary phase method, the integral “stitching” the propagators will van-
ish due to destructive interference, unless the degenerate subspace Ŵξl contains a stationary point of the phase. 
To determine if xl is such a point we have to check the derivative of the phase,

Here, we have utilized the theorem from classical theory that the derivative of the action in respect to the end/
beginning point of the trajectory equals the momentum/minus momentum at the corresponding time44, and 
so, pe is the momentum at the end of trajectory from xl+1 to xl , and pb is the initial momentum at the begin-
ning of trajectory from xl to xl−1 . In general, pb  = pe and xl is not a stationary point. Indeed, if we set the initial 
momentum at tl to pe , then the coordinate would propagate, in accordance with Euler–Lagrange equation, from 
xl to a certain point x̃l−1 that is different than the expected end point xl−1 . In order to make the end point match 
the desired xl−1 , the initial momentum has to be adjusted, which can be visualized as an application of impulse 
force that causes the discontinuity in momentum. However, there is one instance when such an intervention 
is not necessary: xl is the stationary point (i.e., pe = pb ) when it happens to lie on the classical trajectory from 
xl+1 directly to xl−1.

We can now apply the above reasoning to the Schrödinger chain K(x1, xk , t|Ŵξ2 . . . Ŵξk ) as a whole. For given 
t and the end points of the trajectory x1 , x0 , the interference effects restrict the choice of Ŵξ2 , . . . ,Ŵξk to only one 
sequence where each interval overlaps with the classical trajectory from x0 to x1 . Since each Ŵξl corresponds to 
eigenvalue ξl , the choice of arguments ξ for which q(k)E (ξζ t)  = 0 , is identically restricted. For the same reasons, 
but applied to the other Schrödinger chain K(y1, y0, t|Ŵζ2 . . . Ŵζk ) , the same is true for ζ.

In order to turn q(k)E  ’s into p(k)E ’s, and thus, obtain the valid surrogate field, the sequences of arguments 
ξ = (ξ1, . . . , ξk) and ζ = (ζ1, . . . , ζk) have to be forced to match up exactly. The first elements of the sequences 
match up by default because the classical trajectories corresponding to each Schrödinger chain end in the same 
point. If the beginning points x0 and y0 would be the same as well, then the classical trajectories would overlap 
and, as a result, the sequences would overlap too. The initial positions of each trajectory are determined by the 
initial state ρ̂E . Therefore, when the least action approximation applies, the environment facilitates the objective 
surrogate field representation when its initial state satisfies

Physically, this means that the environment should not be initialized in the Schrödinger’s cat type of state.

Discussion.  Impostor field representations.  Suppose that the system–environment arrangement is such that 
the interaction picture of the system density matrix is of the form analogous to Eq. (8)

(44)K(x1, x0, t|Ŵξ2 . . . Ŵξk ) =
(

k∏

l=2

∫

Ŵξl

dxl

)(
k−1∏

l=1

�xl|e−i(tl−tl+1)ĤE |xl+1�
)

�xk|e−itkĤE |x0�,

(45)�xe|e−i(te−tb)ĤE |xb� =
∫ x(te)=xe

x(tb)=xb

Dx(t) eiS[x(t)] ∝ eiScl(xete;xbtb),

(46)

∫

Ŵξl

dxl�xl−1|e−i(tl−1−tl)ĤE |xl��xl|e−i(tl−tl+1)ĤE |xl+1�

∝
∫

Ŵξl

dxl e
iScl(xl−1tl−1;xl tl)+iScl(xl tl;xl+1tl+1),

(47)
∂[Scl(xltl; xl+1tl+1)+ Scl(xl−1tl−1; xltl)]

∂xl
= pe − pb.

(48)�x0|ρ̂E|y0� = δ(x0 − y0)ρE(x0).

(49)ρ̂I
S(t) =

∞∑

k=0

(−i)k
∫ t

0
dt1 . . .

∫ tk−1

0
dtkF

(k)(t)

(
k∏

l=1

VS(tl)

)

ρ̂S .
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If the family of multivariate functions {F(k)}∞k=1
 could be identified with moments of certain stochastic process, 

i.e., F(k)(t) = φ(t1) . . . φ(tk) , then it would follow that the dynamics of the system, at least in the case of this 
specific SE arrangement, are simulable with a stochastic model Ĥφ(t) = ĤS + φ(t)V̂S

17. However, it should be 
noted that, in general, the form (Eq. 49) of the system state alone does not guarantee the existence of process 
φ(t) with moments fitting the corresponding functions F(k) . Moreover, even if such process does exist, there 
is no general purpose systematic method for constructing the process given the family {F(k)}∞k=1 ; essentially, 
in order to identify φ(t) , one has be able to recognize in F(k) ’s moments of known stochastic process. The one 
important exception is when functions F(k) follow the factorization pattern characteristic to Gaussian pro-
cesses where the functions of order higher than 2 factorize into specific combinations of F(1) and F(2) , e.g., 
F(4)(t) = F(2)(t1, t2)F

(2)(t3, t4)+ F(2)(t1, t3)F
(2)(t2, t4)+ F(2)(t1, t4)F

(2)(t2, t3) (assuming that F(1) = 0 ). In such 
a case, there are only two functions to be fitted, and thus, it can be shown that it is always possible to find the 
matching Gaussian φ(t) . It is vital to recognize, however, that such a factorization pattern is the unique property 
of Gaussian processes—there cannot exist a kind of “super-Gaussian” stochastic process, where all of its moments 
are expressed by a finite, but greater than two, number of independent autocorrelation functions45.

Although, the “fitted” process described above and the objective surrogate field are both stochastic simula-
tors, the ways they are established are very much different. Indeed, instead of looking for the best fit to the given 
(infinite) set of potential moments F(k) , the surrogate field is constructed algorithmically from the ground up 
using ĤE , V̂E and ρ̂E that characterize the dynamical laws of the environment [see Eq. (24)]. For the sake of clar-
ity, we will label the fitted stochastic model according to the following

Definition 1  (Impostor field representation) Any stochastic model Ĥφ(t) that is not explicitly constructed by 
the means of the family of joint probability distributions {p(k)E }∞k=1 where q(k)E (ξζ t) ≈ δξ ,ζ p

(k)
E (ξ t) , but instead, 

is postulated or constructed in any other way under the constraint that its moments match certain form, will be 
referred to as an impostor field representation.

The difference between surrogate and impostor representations extends beyond the way they are established. 
The defining feature of objective surrogate field representation is its inter-subjectivity in all contexts. On the other 
hand, the impostor representation is inherently subjective—i.e., it is context-dependent and is not necessarily 
valid in all contexts—because it is based on functions F(k) that, in general, combine contributions from both sides 
of SE arrangement. Hence, when the impostor is found, it can be used to simulate the decoherence caused by E in 
the given specific context17, but nothing beyond that purpose. If the impostor proves to be inter-subjective any-
way, it can only be by accident, e.g., because it happens to be identical with the objective surrogate. We will illus-
trate these points with an example of dephasing qubit context defined by ĤS = ω(|+��+| − |−��−|)/2 = ωσ̂z/2 
(with ω = 0 for simplicity) and V̂S = σ̂z/2 . The special feature of this particular context is that the density matrix 
of the system always has the form (Eq. 49) and functions F(k) can be expressed in terms of joint quasi-probabilities

where �{V} contains all unique values φ = (ξ + ζ )/2 and ξ , ζ ∈ �V̂ . Formally, the members of {f (k)}∞k=1 are sub-
ensembles of joint quasi-probabilities, and thus, they inherit from {q(k)E }∞k=1 the compliance with the Chapman-
Kolmogorov consistency criterion. Therefore, f (k)(φt) ’s also count as a joint quasi-probability distributions, but 
of quantum process φ(t) , instead of (ξ(t), ζ(t)) . For functions F(k)qubit to be identified with moments of stochastic 
process, however, f (k) ’s have to be downgraded to proper joint probability distributions, which means that they 
have to be non-negative

Of course, when the environment satisfies criterion1 (so that �q
(k)
E ≈ 0 ), the above condition is met, and sto-

chastic process φ(t) defined by {f (k)}∞k=1 is the same as the objective surrogate field. However, the form of condi-
tion (Eq. 51) allows for another possibility: f (k) ’s can be non-negative even when �q

(k)
E  ’s are non-negligible, e.g., 

because of constructive interference between the constituting propagator chains. When this is the case, the impos-
tor representation φ(t) exists while the surrogate representation is invalid. In practical terms, this means that, 
even though, the dynamics of the dephasing qubit can be described with model Ĥφ(t) = φ(t)σ̂z/2 , the stochastic 

(50)

F
(k)
qubit(t) =

∑

ξ ,ζ∈�×k

V̂

δξ1,ζ1

(
k∏

l=1

ξl + ζl

2

)

q
(k)
E (ξζ t)

=
∑

φ∈�×k
{V}

(
k∏

l=1

φl

)( k∏

l=1

∑

ξl ,ζl : 2φl=ξl+ζl

)

δξ1,ζ1q
(k)
E (ξζ t)

︸ ︷︷ ︸

≡f (k)(φt)

,

(51)f (k)(φt) � 0 ⇔
( k∏

l=1

∑

ξl ,ζl :
2φl=ξl+ζl

)

δξ1,ζ1�q
(k)
E (ξζ t) � 0.
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simulation would break down when the qubit is swapped for a different system. An example of such a scenario 
was observed in Refs.33,46 where it was demonstrated that the Gaussian stochastic model fitted to F(k) obtained for 
dephasing qubit with V̂S = σ̂z/2 is no longer valid when the coupling is swapped with V̂S = (1̂+ σ̂z)/2 = |+��+| . 
In fact, unless the environment facilitates its surrogate field, this seemingly insignificant change of context renders 
impostor representations impossible because the new coupling operator causes the system state to deviate from 
the form (Eq. 49) by introducing the imaginary part to the second moment17.

What is classical about surrogate field?  In classical theory, a particle is considered an element of objective reality—it 
is assumed that it unconditionally exists in some definite state at all times. In the formalism of the theory, the state 
of the particle is equated to continuous single-valued trajectory r(t) representing the position of its center of mass as 
a function of time. If the system is composed of multiple particles labeled with index i, the description is extended 
by simply including a trajectory ri(t) for each constituent so that each one of them is an element of objective reality.

Note that the unconditional existence assumption implies that the state of classical particle is inter-subjective. 
Indeed, since the position and the momentum are definite at all times, then all observers will report the same 
result when they measure them at the given moment in time. This points to the first analogy between classical 
theory and the surrogate field representation. When we know that any system coupled to the environment that 
facilitates its objective surrogate will experience the same field, and that the experience of such systems is the 
only possible record about the surrogate, then it makes no practical difference if we choose to presume that 
the surrogate exists even if no one is “looking”. Therefore, we can say that the objective surrogate field can be 
considered an element of objective reality.

Although the very fact of the classical particle’s existence—formally represented by uninterrupted generation 
of its trajectory—does not rely on any other agent, these “other agents” can intervene and cause the particle’s 
trajectory to be modified. In the formalism of the theory, the modifications due to particles’ interactions are 
governed by an appropriate set of coupled equations of motion for all trajectories. However, it is impossible to 
store an unambiguous record about the form of equations of motion in any of those modified trajectories. Or 
in other words, the same set of trajectories could result from whole plethora of different sets of equations. In 
particular, it is always possible to replace equations that couple many trajectories through interaction potentials 
with a set of decoupled equations where each particle experiences an external force field. Equivalently, one can 
describe the dynamics of these particles in terms of constrained motion—the method that allows to “conceal” 
most of (or even all) such force fields by switching to properly chosen set of generalized coordinates. Hence, 
one can always describe a multi-particle system in terms of independent particles, each riding on an elaborately 
constructed track that leads it over trajectory that is identical to one generated in the presence of interactions. 
The model of epicycles in Ptolemaic system of astronomy is an example of such an approach.

The concept of external force fields and the method of constrained motion, naturally supported by classical 
theory, are, in general, not compatible with the formalism of quantum mechanics. However, the cases when the 
surrogate field, or even the impostor fields, are valid, represent exceptions when a multi-party quantum system 
allows this kind of semi-classical description. It is the second reason why surrogate field representation can be 
considered classical.

Surrogate field and back‑action.  A commonly entertained hypothesis (e.g., see Refs.20,22,25,26) proposes that for 
the stochastic modeling of system–environment interaction to work, the coupling between S and E has to cause 
no back-action. The absence of back-action is understood here as the asymmetry between the system and the 
environment where E influences S but S does not influence E.

This hypothesis can be motivated by the following intuitive reasoning. When there is no back-action, it stands 
to reason that E evolves as if S did not exist, and hence, the environment can always be assigned with a definite 
state ρ̂E(t) as the dynamical equation of its motion is decoupled from the system. Moreover, if the state of one of 
the parties is definite at all times, then the state of the total system can only be separable

where the evolution of the system state is, in general, dependent on the history of the environment [compare with 
Born approximation (Eq. 34) of “Open environment”.] When this is the case, it seems reasonable to anticipate 
that, from the point of view of the system, E would act as a source of external (i.e., independent of S) field that 
drives its evolution. On the other hand, if the system evolves as if driven by an external field, it seems self evident 
that it would be a contradiction if S was able to influence the field’s source. In what follows, we will investigate 
if this line of argument holds up.

The back-action will be considered absent (or, at least, negligible) when the expectation value of any E-only 
observable is unchanged in comparison to the value obtained in the case when there is no system–environment 
coupling. Formally, this criterion is expressed as

where trS indicates the partial trace over system degrees of freedom. With the use of this criterion, and the follow-
ing counter examples, we will now show that the argument presented above is faulty and that there is no causal 
link between the lack of back-action and the validity of surrogate field representation.

First, we choose S to be a dephasing qubit system with ĤS = 0 and V̂S = (|+��+| − |−��−|)/2 = σ̂z/2 and an 
arbitrary ĤE , V̂E . Then, when the interaction is present, with some algebra, we can express the reduced density 
matrix of the environment in the terms of propagator chains

(52)ρ̂SE(t) ∼ ρ̂S
(
t|{ρ̂E(τ ) : 0 < τ < t}

)
⊗ ρ̂E(t),

(53)trS

(

e−it(ĤS+ĤE+V̂S⊗V̂E)ρ̂S ⊗ ρ̂E e
it(ĤS+ĤE+V̂S⊗V̂E)

)

≈ trS

(

e−it(ĤS+ĤE)ρ̂S ⊗ ρ̂E e
it(ĤS+ĤE)

)

,
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Note that the links in the chains are connected only through coherences (i.e., the index pairs in each sum can-
not match up). With this in mind, we take the initial state ρ̂E ∝ 1̂ . Then, in the above expression, only k = 0 
term survives because the initial link of each chain vanishes as �nk|e−itkĤE 1̂eitkĤE |mk� = 0 , which leaves us with

i.e., according to criterion (Eq. 53), the back-action disappears. On the other hand, restricting the form of the 
initial state is not sufficient to ensure that each �q

(k)
E ≈ 0 . Therefore, even though there is no back-action, the 

surrogate field representation is not guaranteed to be valid.
With another counter example, we can also disprove the reciprocal assertion that a valid surrogate field 

implies the lack of back-action. In this case, we keep the same choice for S as before, but we specify E to be of 
the quasi-static coupling type discussed in “Quasi-static coupling”. When [ĤE , V̂E] = 0 , the expressions for the 
reduced density matrix with, and without, system–environment coupling simplify as follows

where ĤE|n� = ǫn|n� . On the one hand, we have demonstrated in “Quasi-static coupling” that quasi-static cou-
pling facilitates valid surrogate field representation. On the other hand, by comparing Eqs. (56) and (57) we can 
see that, in those same circumstances, the qubit can still influence the environment. Hence, it is possible that a 
valid surrogate field representation exists while S exerts the back-action onto E.

The above examples demonstrate that, contrary to the “common sense” intuition, there is no causal link 
between the lack of back-action and surrogate field representation. We believe the reason for this counter-intui-
tive disconnect can be explained with another intuitive picture. As we argued previously, no back-action means 
that the state of E remains definite and is independent of S, hence, it is a statement about the environment as a 
whole. On the other hand, the surrogate field representation de-emphasizes the role of the state of the environ-
ment ρ̂E(t) , and instead, places the focus on the coupling V̂E(t) and its dynamics: when the valid surrogate exists, 
one could say that it is the “state” of the coupling operator which remains definite (or that it can be assigned 
with a definite “value”), and so it can be as well superseded with an external field. As it turns out, the way the 
state of the environment evolves is not necessarily the decisive factor in determining the “state” of the coupling.

Surrogate field and system–environment entanglement.  When the initial states ρ̂S and ρ̂E are pure, it is known3, 
that any subsequent loss of purity in S is caused by the formation of entanglement between the system and the 
environment. When this is the case, it is said that the system undergoes the process of quantum decoherence. 
When the causes for the loss of purity are of secondary importance, or they cannot be unambiguously identified 
with the entanglement formation, it is said that S undergoes wide-sense decoherence, or simply decoherence 
without adjectives (as we are using it throughout the paper). It has been demonstrated47–52, that in a more real-

(54)

trS

(

e−it(ĤE+ 1
2 σ̂z⊗V̂E)ρ̂S ⊗ ρ̂Ee

it(ĤE+ 1
2 σ̂z⊗V̂E)

)

=
∑

s=±
�s|ρ̂S|s�e−it(ĤE+ 1

2 sV̂E)ρ̂Ee
it(ĤE+ 1

2 sV̂E)

=
∑

s=±
�s|ρ̂S|s�

∞∑

k=0

(

−i
s

2

)k
∫ t

0
dt1 . . .

∫ tk−1

0
dtk

×
( k∏

l=1

∑

nl �=ml

)[ k∏

l=1

(vnl − vml
)

]

�nk|ρ̂E(tk)|mk�

×
(

k−1∏

l=1

Ttl−tl+1
(nlml|nl+1ml+1)

)

× e−i(t−t1)ĤE |n1��m1|ei(t−t1)ĤE .

(55)

trS

(

e−it(ĤE+ 1
2 σ̂z⊗V̂E)

∝ρ̂S⊗1̂
︷ ︸︸ ︷

ρ̂S ⊗ ρ̂E e
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2 σ̂z⊗V̂E)
)

=
∑
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�s|ρ̂S|s� e−itĤE ρ̂E e
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= trS

(
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)

= trS
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−it(ĤS+ĤE)

)

,

(56)
trS
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e−it(ĤE+ 1
2 σ̂z⊗V̂E)ρ̂S ⊗ ρ̂E e

it(ĤE+ 1
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=
∑
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|n��m|eit(ǫm−ǫn)�m|ρ̂E|n�
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i
2 s(vm−vn),

(57)trS

(

e−itĤE ρ̂S ⊗ ρ̂E e
itĤE

)

=
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n,m

|n��m|eit(ǫm−ǫn)�m|ρ̂E|n�.
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istic case of mixed ρ̂E , the correlation between the presence (or amount) of SE entanglement, and the severity of 
the purity decay in S is rather weak or even nonexistent, e.g., in the process of pure dephasing of a qubit coupled 
with E initialized in maximally mixed state, ρ̂E ∝ 1̂ , the SE entanglement can never form51. Therefore, in general, 
the question of the relationship between decoherence and SE entanglement is rather uninteresting. However, 
given that the objective surrogate field can be considered classical (see “What is classical about surrogate field?”), 
one might be tempted to surmise that its source, the environment itself, is also effectively a classical system that, 
by its very nature, is unable to participate in quantum correlation such as entanglement. In other words, one 
might presume that the formation of SE entanglement is incompatible with surrogate field. This line of reasoning 
leads to a strong suggestion that, in this specific case, there is a link between entanglement (or rather, its absence) 
and the surrogate field-induced decoherence.

We will show now that such a conclusion is incorrect, and there is no causal link between the lack of entangle-
ment and the validity of surrogate representation. For this purpose, let us utilize the recently discovered criterion 
for the absence of entanglement between dephasing qubit (i.e., ĤS = 0 and V̂S = σ̂z/2 ) and its environment51 
which reads: the dephasing qubit is not entangled with its environment at time t if and only if

First, set the initial state of E to ρ̂E ∝ 1̂ , then Eq. (58) is trivially satisfied. On the other hand, specifying the initial 
state of E is not sufficient for ensuring the validity of the surrogate representation. Therefore, even though there 
is no entanglement with the environment, the surrogate field might not exist.

Second, choose E to be of the quasi-static coupling type (i.e., [ĤE , V̂E] = 0 ), then the surrogate field repre-
sentation is guaranteed to be valid, but the criterion (58) is not necessarily satisfied because

which shows that the l.h.s of Eq. (58) differs from the r.h.s unless the initial state is diagonal in {|n�}n basis. Hence, 
even when the surrogate field representation is valid, the system can still become entangled with its environment.

As it was the case in the previous section, also here, the causal link has to be dismissed. The reasons for the 
disconnect are essentially the same as before: the entanglement is a statement about the state of system–envi-
ronment complex, while the surrogate field representation is concerned only with substituting for the coupling.

Multi‑component surrogate field.  In general, the system–environment coupling has a form of a compound 
operator

with Hermitian constituents V̂�
S  and V̂�

E . This also includes the “non-Hermitian” couplings âS ⊗ âE + â†S ⊗ â†E , 
because they can always be written as a compound operator with V̂1

S/E = (âS/E + â†S/E)/
√
2 and 

V̂2
S/E = ±i(âS/E − â†S/E)/

√
2.

A valid surrogate field representation for such a coupling utilizes the model

where the surrogate is a multi-component stochastic process �(t) = (�1(t), . . . ,��(t)) governed by the fam-
ily of joint probability distributions P(k)� (�t) . However, the evolution is not directly determined by these joint 
probabilities, as we have

where V �
S (t)Â = V̂�

S (t)Â− ÂV̂�
S (t) and

are the marginal joint distributions. As sub-ensembles of P(k)� ’s, these distributions satisfy the non-negativity 
and consistency criteria

(58)e−it(ĤE+ 1
2 V̂E)ρ̂Ee

it(ĤE+ 1
2 V̂E) = e−it(ĤE− 1

2 V̂E)ρ̂E e
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In the case of the exact Hamiltonian, given the spectral decomposition of operators in the compound coupling

the evolution of the reduced system state reads

where W�
S are defined analogously to WS [see Eq. (16)] but with V̂�

S (t) replacing V̂S(t) . The quasi-probabilities 
corresponding to the marginal distributions in (62) are given by

where the propagators have been modified according to

These marginal quasi-probabilities are consistent

and, due to the contribution from coherence-connected chains, they are not necessarily non-negative. There-
fore, the validity criterion for multi-component surrogate field representation is virtually identical to criterion1: 
when the superposition of coherence-connected propagator chains in each quasi-probability is negligible, then 
the remaining non-negative projector-connected chains p(k)

�1...�k
(ξ t) can be treated as a proper marginal joint 

probability distributions. When this is the case, then the evolution of the reduced state of any S coupled to E 
through operator compounded from any combination of V̂�

E ’s is indistinguishable from the simulation with 
multi-component surrogate field.

However, the issue is that this criterion is only an existence theorem: when it is satisfied, we only know that the 
objective surrogate �(t) exists and that the stochastic simulation is valid, but we cannot access the multi-compo-
nent trajectories of the surrogate to run this simulation with. Indeed, the projector-connected chains p(k)

�1...�k
 are 

only marginal distributions, and hence, even when one calculates all of them, it is still not enough information to 
recover the distributions they are marginalizing—the family analogous to {P(k)� }∞k=1 that is needed to instantiate 
trajectories. The exception is when the components of the surrogate are mutually independent, which occurs 
when V̂�

E ’s couple to separate sub-environment, i.e., when ρ̂E =
⊗

�
ρ̂� , ĤE =

∑

�
1̂
⊗�−1 ⊗ Ĥ� ⊗ 1̂

⊗�−�+1 and 
V̂�
E = 1̂

⊗�−1 ⊗ V̂� ⊗ 1̂
⊗�−�+1 , and each of those sub-environments facilitates its own surrogate field. Therefore, 

only in this case, the multi-component surrogate representation is useful in practical terms.

Conclusions
We have formulated the sufficient criterion for the dynamics of any open quantum system coupled with a given 
environment to be simulated using the external field that is a surrogate for the environmental degrees of free-
dom—the surrogate field representation. To achieve this, we have developed the approach in which the influ-
ence of the environment is wholly described by the family of joint quasi-probabilities {q(k)E }∞k=1 , with each of its 
members constructed out of simple basic elements. This language has proven to be flexible enough to allow us 
not only to carry out a comprehensive analysis of microscopic origins of so-called classical noise approximations 
and random unitary dynamical maps, but also to explore some of the most interesting accompanying issues. Two 
important examples of such issues were the previously hypothesized incompatibility of surrogate representa-
tion with the formation of system–environment entanglement, and the causal relation between the absence of 
system’s back-action and the existence of valid surrogate representation; we have disproved both propositions.

We have concluded that it is impossible to point to one reason for the validity of the surrogate field repre-
sentation (like e.g., the absence of back-action). Instead, whether the simulation with surrogate field is valid is 
determined by the relationship between the dynamical laws governing the environment (the free Hamiltonian 
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ĤE and the initial state ρ̂E ) and operator V̂E that couples it to the system. The examples of environment types 
that facilitate their surrogate fields presented here illustrate this point by showing a variety of ways to satisfy the 
validity criterion.

We have addressed the issue of subjectivity and inter-subjectivity of the surrogate field representation. Even 
though the question of the objectivity of external field simulator is an important one—both from practical and 
purely theoretical point of view—previous studies on classical noise or random unitary maps were unable to 
engage with it in satisfactory capacity. We have taken this particular shortcoming into consideration, and we have 
set fixing this specific blind spot as one of the main design goals of our approach. The resultant quasi-probability 
formulation leads to the system state decomposition (Eq. 14) where the contributions from the system and the 
environment are clearly separated. This separation is crucial; it allows for the influence exerted by the environ-
ment to be considered independently of the influenced system (e.g., in order to determine whether this influ-
ence can be represented with the surrogate field). Thus, the quasi-probability formulation was an ideal tool for 
finding the answer to the question of surrogate’s objectivity; one can hope that it will also open new avenues for 
the development of the quantum open systems theory.

Methods
Reduced system state.  The interaction picture of the reduced state of the system is given by

where we have switched to the super-operator representations, 

 Continuing,

where symbol 
∏k

l=1 A (l) applied to super-operators is understood as an ordered composition 
A (1)A (2) . . .A (k) , T  indicates time-ordering operation, and V̂S(t) = eitĤS V̂Se
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First, note the following identity for super-operator associated with commutator of a composite operator

where {Â, B̂} = ÂB̂+ B̂Â is the anti-commutator. Next, let {|n�}n be the basis in E composed of eigenstates of the 
environment-side coupling, V̂E|n� = vn|n� . Then, the set {|n��m|}n,m composed of projectors |n��n| and coherences 
|n��m| ( n  = m ) forms an orthonormal basis in the subspace of linear Hermitian operators acting in E. Moreover, 
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anti-commutator of V̂E,

Since these super-operators are Hermitian [with respect to the trace inner product (Â|B̂) = tr(Â†B̂) ], |n��m| 
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e−itĤSE ρ̂S ⊗ ρ̂E e
itĤSE
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which we then substitute into Eq. (72)

Consistency criterion for joint quasi‑probabilities.  Using the definition of joint quasi-probability dis-
tribution (Eq. 17), we can write the left hand side of the consistency criterion (Eq. 19) as

The sum over ξl and ζl effectively lifts all constraints from the sums over indices nl and ml

These indices form a connection between a two-link segment of the propagator chain; using the explicit definition 
of propagator (Eq. 18) and the super-operator representation (Eq. 71) introduced in the Methods “A Reduced 
system state”, we can preform the summation across this segment

where we have utilized the super-operator variant of the decomposition of identity (recall from the Methods 
“Reduced system state” that {|n��m|}n,m is an orthonormal basis)
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trE(|n1��m1|)�nk|ρ̂E(tk)|mk�
k−1∏

l=1

Ttl−tl+1
(nlml|nl+1ml+1)

=
∞∑

k=0

(−i)k
∫ t

0
dt1 . . .

∫ tk−1

0
dtk

∑

ξ ,ζ∈�×k

V̂

δξ1,ζ1q
(k)
E (ξζ t)

(
k∏

l=1

WS(ξlζl tl)

)

ρ̂S .

(78)

�

ξl ,ζl∈�V̂

q
(k)
E (ξζ t) =

�

n1,m1:
ξ1=vn1
ζ1=vm1

. . .







�

ξl ,ζl∈�V̂

�

nl :
ξl=vnl

�

ml :
ζl=vml







. . .
�

nk ,mk :
ξk=vnk
ζk=vmk

δn1,m1

k−1�

b=1

Ttb−tb+1
(nbnb|nb+1mb+1)�nk|ρ̂E(tk)|mk�.

(79)

∑

ξl ,ζl∈�V̂

∑

nl :
ξl=vnl

∑

ml :
ζl=vml

=
∑

nl ,ml

.

(80)

∑

nl ,ml

Ttl−1−tl (nl−1ml−1|nlml)Ttl−tl+1
(nlml|nl+1ml+1)

= trE(|ml−1��nl−1|•)e−i(tl−1−tl)[ĤE ,•]
(
∑

nl ,ml

|nl��ml|trE(|ml��nl|•)
)

e−i(tl−tl+1)[ĤE ,•]|nl+1��ml+1|

= trE(|ml−1��nl−1|•)e−i(tl−1−tl)[ĤE ,•]e−i(tl−tl+1)[ĤE ,•]|nl+1��ml+1|

= trE(|ml−1��nl−1|e−i(tl−1−tl+1)[ĤE ,•]|nl+1��ml+1|) = Ttl−1−tl+1
(nl−1ml−1|nl+1ml+1),

(81)
∑

n,m

|n��m|tr(|m��n|•) = •.
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Joint quasiprobability distributions for open environment.  Consider an orthonormal basis in ED 
subspace {|n; i�}n,i , where |n; i� = |n� ⊗ |i� , {|i�}i is an arbitrary basis in subspace D, and |n� are the eigenstates of 
V̂E . Using this basis and the Schrödinger representation of propagators [see Eqs. (22) and (33)]

we will now rewrite the general definition (Eq. 17) of q(k)E

where the symbol 
∏le

l=lb
Â(l) is to be understood as an ordered composition: Â(lb)Â(lb + 1) . . . Â(le) for 

lb < le , or Â(lb)Â(lb − 1) . . . Â(le) for lb > le . Since the sums over il and jl are not constraint in any way, we get 
∑

i1
�n1; i1| • |n1; i1� = �n1|trD(•)|n1� and 

∑

il
|il��il| = 1̂ , which leads to Eq. (32).

How to solve the system dynamics in surrogate field representation.  First step is to choose a 
method for solving the dynamics of system S for a given time-dependent external field, e.g., Euler’s method for 
integrating von Neumann equation,

for small time step h. Index j indicates the solution obtained for jth trajectory ξ (j)(t) (real-valued function of 
time) of the surrogate field ξ (stochastic process defined by the family {p(k)E }∞k=1 ). The chosen method defines the 
time grid for sampling the field’s trajectories (see “From quantum process to surrogate field”); in this case, it is 
a basic uniform grid tgrd = {Mh = t, . . . , 2h, h, 0} with sample trajectories

Each trajectory is instantiated by drawing it at random from the joint probability distribution

In this way one populates an ensemble of trajectories {ξ (j)smp}Ns
j=1 and calculates the corresponding ensemble of 

density matrices {ρ̂(j)
S (Mh)}Ns

j=1 . The individual members of this ensemble are meaningless and their only purpose 
is to calculate the physically meaningful average,

The larger the ensemble, the more accurate the approximation; typically, the sufficient ensemble size is 
Ns ∼ 103 − 104.
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Û(t|ξ (j))ρ̂SÛ†(t|ξ (j)) ≈ 1

Ns

Ns∑

j=1

Û(t|ξ (j))ρ̂SÛ†(t|ξ (j)) ≈ 1

Ns

Ns∑

j=1

ρ̂
(j)
S (Mh).

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea


18

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22189  | https://doi.org/10.1038/s41598-020-78079-7

www.nature.com/scientificreports/

	 4.	 Żurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715. https​://doi.org/10.1103/
RevMo​dPhys​.75.715 (2003).

	 5.	 Breuer, H. P. & Petruccione, F. The theory of open quantum systems 105–136 (Oxford University Press, Oxford, 2002).
	 6.	 Kołodyński, J., Brask, J. B., Perarnau-Llobet, M. & Bylicka, B. Adding dynamical generators in quantum master equations. Phys. 

Rev. A 97, 062124. https​://doi.org/10.1103/PhysR​evA.97.06212​4 (2018).
	 7.	 Klauder, J. R. & Anderson, P. W. Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912. https​://doi.org/10.1103/

PhysR​ev.125.912 (1962).
	 8.	 Biercuk, M. J., Doherty, A. C. & Uys, H. Dynamical decoupling sequence construction as a filter-design problem. J. Phys. B At. 

Mol. Opt. Phys. 44, 154002. https​://doi.org/10.1088/0953-4075/44/15/15400​2 (2011).
	 9.	 Szańkowski, P., Ramon, G., Krzywda, J., Kwiatkowski, D. & Cywiński, Ł. Environmental noise spectroscopy with qubits subjected 

to dynamical decoupling. J. Phys. Condens. Matter 29, 333001. https​://doi.org/10.1088/1361-648X/aa764​8 (2017).
	10.	 Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002. https​://doi.org/10.1103/RevMo​dPhys​

.89.03500​2 (2017).
	11.	 Glaser, S. J. et al. Training schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279. https​://doi.org/10.1140/epjd/e2015​

-60464​-1 (2015).
	12.	 Szańkowski, P., Trippenbach, M. & Cywiński, Ł. Spectroscopy of cross correlations of environmental noises with two qubits. Phys. 

Rev. A 94, 012109. https​://doi.org/10.1103/PhysR​evA.94.01210​9 (2016).
	13.	 Krzywda, J., Cywiński, Ł & Szańkowski, P. Localization of a magnetic moment using a two-qubit probe. Phys. Rev. A 96, 042108. 

https​://doi.org/10.1103/PhysR​evA.96.04210​8 (2017).
	14.	 Krzywda, J., Szańkowski, P. & Cywiński, Ł. The dynamical-decoupling-based spatiotemporal noise spectroscopy. New J. Phys. 21, 

043034. https​://doi.org/10.1088/1367-2630/ab0ce​7 (2019).
	15.	 Norris, L. M., Paz-Silva, G. A. & Viola, L. Qubit noise spectroscopy for non-gaussian dephasing environments. Phys. Rev. Lett. 

116, 150503. https​://doi.org/10.1103/PhysR​evLet​t.116.15050​3 (2016).
	16.	 Norris, L. M. et al. Optimally band-limited spectroscopy of control noise using a qubit sensor. Phys. Rev. A 98, 032315. https​://doi.

org/10.1103/PhysR​evA.98.03231​5 (2018).
	17.	 Gu, B. & Franco, I. When can quantum decoherence be mimicked by classical noise?. J. Chem. Phys. 151, 014109. https​://doi.

org/10.1063/1.50994​99 (2019).
	18.	 Audenaert, K. M. R. & Scheel, S. On random unitary channels. New J. Phys. 10, 023011. https​://doi.org/10.1088/1367-

2630/10/2/02301​1 (2008).
	19.	 Neder, I. et al. Semiclassical model for the dephasing of a two-electron spin qubit coupled to a coherently evolving nuclear spin 

bath. Phys. Rev. B 84, 035441. https​://doi.org/10.1103/PhysR​evB.84.03544​1 (2011).
	20.	 Zhao, N., Wang, Z.-Y. & Liu, R.-B. Anomalous decoherence effect in a quantum bath. Phys. Rev. Lett. 106, 217205. https​://doi.

org/10.1103/PhysR​evLet​t.106.21720​5 (2011).
	21.	 Reinhard, F. et al. Tuning a spin bath through the quantum-classical transition. Phys. Rev. Lett. 108, 200402. https​://doi.org/10.1103/

PhysR​evLet​t.108.20040​2 (2012).
	22.	 Witzel, W. M., Young, K. & Das Sarma, S. Converting a real quantum spin bath to an effective classical noise acting on a central 

spin. Phys. Rev. B 90, 115431. https​://doi.org/10.1103/PhysR​evB.90.11543​1 (2014).
	23.	 Kayser, J., Luoma, K. & Strunz, W. T. Geometric characterization of true quantum decoherence. Phys. Rev. A 92, 052117. https​://

doi.org/10.1103/PhysR​evA.92.05211​7 (2015).
	24.	 Hernández-Gómez, S., Poggiali, F., Cappellaro, P. & Fabbri, N. Noise spectroscopy of a quantum-classical environment with a 

diamond qubit. Phys. Rev. B 98, 214307. https​://doi.org/10.1103/PhysR​evB.98.21430​7 (2018).
	25.	 Bethke, P. et al. Coherent hyperfine back-action from single electrons on a mesoscopic nuclear spin bath. arXiv preprint arXiv​

:1906.11264​ [quant–ph] (2019).
	26.	 Ma, W.-L., Wolfowicz, G., Li, S.-S., Morton, J. J. L. & Liu, R.-B. Classical nature of nuclear spin noise near clock transitions of bi 

donors in silicon. Phys. Rev. B 92, 161403. https​://doi.org/10.1103/PhysR​evB.92.16140​3 (2015).
	27.	 Chen, H.-B., Gneiting, C., Lo, P.-Y., Chen, Y.-N. & Nori, F. Simulating open quantum systems with hamiltonian ensembles and 

the nonclassicality of the dynamics. Phys. Rev. Lett. 120, 030403. https​://doi.org/10.1103/PhysR​evLet​t.120.03040​3 (2018).
	28.	 Chen, H.-B. et al. Quantifying the nonclassicality of pure dephasing. Nat. Commun. 10, 3794. https​://doi.org/10.1038/s4146​7-019-

11502​-4 (2019).
	29.	 de Sousa, R. Electron spin as a spectrometer of nuclear-spin noise and other fluctuations. Top. Appl. Phys. 115, 183. https​://doi.

org/10.1007/978-3-540-79365​-610 (2009).
	30.	 Cywiński, Ł, Lutchyn, R. M., Nave, C. P. & Das Sarma, S. How to enhance dephasing time in superconducting qubits. Phys. Rev. B 

77, 174509. https​://doi.org/10.1103/PhysR​evB.77.17450​9 (2008).
	31.	 Szańkowski, P., Trippenbach, M., Cywiński, Ł & Band, Y. B. The dynamics of two entangled qubits exposed to classical noise: role of 

spatial and temporal noise correlations. Quantum Inf. Process. 14, 3367–3397. https​://doi.org/10.1007/s1112​8-015-1044-7 (2015).
	32.	 Paz-Silva, G. A., Lee, S.-W., Green, T. J. & Viola, L. Dynamical decoupling sequences for multi-qubit dephasing suppression and 

long-time quantum memory. New J. Phys. 18, 073020. https​://doi.org/10.1088/1367-2630/18/7/07302​0 (2016).
	33.	 Paz-Silva, G. A., Norris, L. M. & Viola, L. Multiqubit spectroscopy of Gaussian quantum noise. Phys. Rev. A 95, 022121. https​://

doi.org/10.1103/PhysR​evA.95.02212​1 (2017).
	34.	 Beaudoin, F., Norris, L. M. & Viola, L. Ramsey interferometry in correlated quantum noise environments. Phys. Rev. A 98, 020102. 

https​://doi.org/10.1103/PhysR​evA.98.02010​2 (2018).
	35.	 Szańkowski, P. Transition between continuous and discrete spectra in dynamical-decoupling noise spectroscopy. Phys. Rev. A 100, 

052115. https​://doi.org/10.1103/PhysR​evA.100.05211​5 (2019).
	36.	 Gardiner, C. & Zoller, P. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Appli-

cations to Quantum Optics. Springer Series in Synergetics (Springer, 2004).
	37.	 Schoelkopf, R. J., Clerk, A. A., Girvin, S. M., Lehnert, K. W. & Devoret, M. H. Qubits as spectrometers of quantum noise 175–203 

(Kluwer, Dordrecht, 2003).
	38.	 Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and 

amplification. Rev. Mod. Phys. 82, 1155. https​://doi.org/10.1103/RevMo​dPhys​.82.1155 (2010).
	39.	 Van Kampen, N. Stochastic Processes in Physics and Chemistry. North-Holland Personal Library (Elsevier Science, 2011).
	40.	 Breuer, H. P. & Petruccione, F. The theory of open quantum systems 125–126 (Oxford University Press, Oxford, 2002).
	41.	 Breuer, H. P. & Petruccione, F. The theory of open quantum systems 127–131 (Oxford University Press, Oxford, 2002).
	42.	 Brown, L. M. Feynman’s Thesis: A New Approach to Quantum Theory (World Scientific, 2005).
	43.	 Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol. 1, Mechanics 2nd edn, 2–4 (Pergamon Press, New York,1969).
	44.	 Landau, L. D. & Lifshitz, E. M. Course of Theoretical Physics Vol. 1, Mechanics 2nd edn, 138–140 (Pergamon Press, New York, 1969).
	45.	 Marcinkiewicz, J. Sur une peropri’et’e de la loi de gauss. Math. Z. 44, 612 (1939).
	46.	 Kwiatkowski, D., Szańkowski, P. & Cywiński, L. Influence of nuclear spin polarization on the spin-echo signal of an nv-center 

qubit. Phys. Rev. B 101, 155412. https​://doi.org/10.1103/PhysR​evB.101.15541​2 (2020).
	47.	 Eisert, J. & Plenio, M. B. Quantum and classical correlations in quantum brownian motion. Phys. Rev. Lett. 89, 137902. https​://

doi.org/10.1103/PhysR​evLet​t.89.13790​2 (2002).

https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/PhysRevA.97.062124
https://doi.org/10.1103/PhysRev.125.912
https://doi.org/10.1103/PhysRev.125.912
https://doi.org/10.1088/0953-4075/44/15/154002
https://doi.org/10.1088/1361-648X/aa7648
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1103/PhysRevA.94.012109
https://doi.org/10.1103/PhysRevA.96.042108
https://doi.org/10.1088/1367-2630/ab0ce7
https://doi.org/10.1103/PhysRevLett.116.150503
https://doi.org/10.1103/PhysRevA.98.032315
https://doi.org/10.1103/PhysRevA.98.032315
https://doi.org/10.1063/1.5099499
https://doi.org/10.1063/1.5099499
https://doi.org/10.1088/1367-2630/10/2/023011
https://doi.org/10.1088/1367-2630/10/2/023011
https://doi.org/10.1103/PhysRevB.84.035441
https://doi.org/10.1103/PhysRevLett.106.217205
https://doi.org/10.1103/PhysRevLett.106.217205
https://doi.org/10.1103/PhysRevLett.108.200402
https://doi.org/10.1103/PhysRevLett.108.200402
https://doi.org/10.1103/PhysRevB.90.115431
https://doi.org/10.1103/PhysRevA.92.052117
https://doi.org/10.1103/PhysRevA.92.052117
https://doi.org/10.1103/PhysRevB.98.214307
http://arxiv.org/abs/1906.11264
http://arxiv.org/abs/1906.11264
https://doi.org/10.1103/PhysRevB.92.161403
https://doi.org/10.1103/PhysRevLett.120.030403
https://doi.org/10.1038/s41467-019-11502-4
https://doi.org/10.1038/s41467-019-11502-4
https://doi.org/10.1007/978-3-540-79365-610
https://doi.org/10.1007/978-3-540-79365-610
https://doi.org/10.1103/PhysRevB.77.174509
https://doi.org/10.1007/s11128-015-1044-7
https://doi.org/10.1088/1367-2630/18/7/073020
https://doi.org/10.1103/PhysRevA.95.022121
https://doi.org/10.1103/PhysRevA.95.022121
https://doi.org/10.1103/PhysRevA.98.020102
https://doi.org/10.1103/PhysRevA.100.052115
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevB.101.155412
https://doi.org/10.1103/PhysRevLett.89.137902
https://doi.org/10.1103/PhysRevLett.89.137902


19

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22189  | https://doi.org/10.1038/s41598-020-78079-7

www.nature.com/scientificreports/

	48.	 Hilt, S. & Lutz, E. System-bath entanglement in quantum thermodynamics. Phys. Rev. A 79, 010101. https​://doi.org/10.1103/PhysR​
evA.79.01010​1 (2009).

	49.	 Maziero, J., Werlang, T., Fanchini, F. F., Céleri, L. C. & Serra, R. M. System-reservoir dynamics of quantum and classical correla-
tions. Phys. Rev. A 81, 022116. https​://doi.org/10.1103/PhysR​evA.81.02211​6 (2010).

	50.	 Pernice, A. & Strunz, W. T. Decoherence and the nature of system-environment correlations. Phys. Rev. A 84, 062121. https​://doi.
org/10.1103/PhysR​evA.84.06212​1 (2011).

	51.	 Roszak, K. & Cywiński, Ł. Characterization and measurement of qubit-environment-entanglement generation during pure dephas-
ing. Phys. Rev. A 92, 032310. https​://doi.org/10.1103/PhysR​evA.92.03231​0 (2015).

	52.	 Roszak, K. & Cywiński, Ł. Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions 
and the resulting consequences. Phys. Rev. A 97, 012306. https​://doi.org/10.1103/PhysR​evA.97.01230​6 (2018).

Acknowledgements
We would like to thank M. Kuś and F. Sakuldee for insightful and helpful discussions. This work is supported by 
funds of Polish National Science Center (NCN), grant no. 2015/19/B/ST3/03152.

Author contributions
P.S. and Ł.C. formulated the initial research program. P.S. developed the theoretical framework, carried out the 
calculations, and refined the scope of the project. Both authors contributed to the discussion, analysis of the 
results and the writing of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1103/PhysRevA.79.010101
https://doi.org/10.1103/PhysRevA.79.010101
https://doi.org/10.1103/PhysRevA.81.022116
https://doi.org/10.1103/PhysRevA.84.062121
https://doi.org/10.1103/PhysRevA.84.062121
https://doi.org/10.1103/PhysRevA.92.032310
https://doi.org/10.1103/PhysRevA.97.012306
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Noise representations of open system dynamics
	Results
	Objective surrogate field representation. 
	Joint probability distributions. 
	Joint quasi-probability distributions. 
	Structure of joint quasi-probability distributions. 
	From quantum process to surrogate field. 

	Examples of environments that facilitate objective surrogate field. 
	Quasi-static coupling. 
	Open environment. 
	Environment of least action. 

	Discussion. 
	Impostor field representations. 
	What is classical about surrogate field? 
	Surrogate field and back-action. 
	Surrogate field and system–environment entanglement. 
	Multi-component surrogate field. 


	Conclusions
	Methods
	Reduced system state. 
	Consistency criterion for joint quasi-probabilities. 
	Joint quasiprobability distributions for open environment. 
	How to solve the system dynamics in surrogate field representation. 

	References
	Acknowledgements


