

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ -2,3,5,6-Tetrakis(pyridin-2-yl)pyrazinebis[(2,2':6',2"-terpyridine)ruthenium(II)] tetrakis(hexafluoridophosphate) acetonitrile tetrasolvate

Hershel Jude, Brian L. Scott and Reginaldo C. Rocha*

Los Alamos National Laboratory, MPA Division, Los Alamos, NM 87545, USA Correspondence e-mail: rcrocha@lanl.gov

Received 26 November 2012; accepted 18 December 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.045; wR factor = 0.102; data-to-parameter ratio = 11.6.

In the title compound $[Ru_2(C_{15}H_{11}N_3)_2(C_{24}H_{16}N_6)](PF_6)_4$. 4CH₃CN, two of the counter-ions and one of the solvent molecules are disordered with occupancies for the major components between 0.57 (2) and 0.64 (1). The structure of the dinuclear tetracation exhibits significant distortion from planarity in the bridging 2,3,5,6-tetrakis(pyridin-2-yl)pyrazine (tppz) ligand, which has a saddle-like geometry with an average dihedral angle of 42.96 (18)° between adjacent pyridine rings. The metal-ligand coordination environment is nearly equivalent for the two Ru^{II} atoms, which have a distorted octahedral geometry due to the restricted bite angle [157.57 (13)-159.28 (12)°] of their two mer-arranged tridendate ligands [2,2':6',2"-terpyridine (tpy) and tppz] orthogonal to each other. At the peripheral tpy ligands, the average Ru-N bond distance is 2.072 (4) Å for the outer N atoms trans to each other (N_{outer}) and 1.984 (1) Å for the central N atoms (N_{central}). At the bridging tppz ligand, the average metalligand distances are significantly shorter [2.058 (4) Å for Ru-N_{outer} and 1.965 (1) Å for Ru–N_{central}] as a result of both the geometric constraints and the stronger π -acceptor ability of the pyrazine-centered bridge. The dihedral angle between the two tpy planes is $27.11 (6)^\circ$. The intramolecular linear distance between the two Ru atoms is 6.6102 (7) Å.

Related literature

For a previously reported solvent-free structure of this compound, see: Yoshikawa *et al.* (2011). For the crystal structure of a related diruthenium(II) compound containing the {(tpy)Ru(tppz)} moiety, see: Chen *et al.* (2011). For details of the synthesis, see: Arana & Abruña (1993); Rocha *et al.* (2008); Thummel & Chirayil (1988); Vogler *et al.* (1996); Wadman *et al.* (2009). For general properties of this compound, see: Arana & Abruña (1993); Dattelbaum *et al.* (2002); Flores-Torres *et al.* (2006); Gourdon & Launay (1998);

Jones et al. (1998); Thummel & Chirayil (1988); Vogler et al. (1996); Wadman et al. (2009).

Experimental

Crystal data

 $\begin{array}{ll} [\mathrm{Ru}_2(\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{N}_3)_2(\mathrm{C}_{24}\mathrm{H}_{16}\mathrm{N}_6)]^- & \beta = 95.880 \ (1)^\circ \\ (\mathrm{PF}_6)_4\cdot 4\mathrm{C}_2\mathrm{H}_3\mathrm{N} & V = 6968.0 \ (9) \ \mathrm{\mathring{A}}^3 \\ M_r = 1801.20 & Z = 4 \\ \mathrm{Monoclinic}, \ P2_1/c & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ a = 11.8871 \ (9) \ \mathrm{\mathring{A}} & \mu = 0.64 \ \mathrm{mm}^{-1} \\ b = 31.824 \ (2) \ \mathrm{\mathring{A}} & T = 120 \ \mathrm{K} \\ c = 18.5168 \ (14) \ \mathrm{\mathring{A}} & 0.18 \times 0.10 \times 0.08 \end{array}$

Data collection

Bruker D8 with APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T_{min} = 0.893, T_{max} = 0.950

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.102$ S = 1.1012753 reflections 1101 parameters $\begin{array}{l} \mu = 0.64 \ \mathrm{mm^{-1}} \\ T = 120 \ \mathrm{K} \\ 0.18 \times 0.10 \times 0.08 \ \mathrm{mm} \end{array}$

67490 measured reflections 12753 independent reflections 8864 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.107$

78 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.75$ e Å⁻³ $\Delta \rho_{min} = -0.50$ e Å⁻³

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2523).

References

- Arana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194–203.
- Bruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604.
- Dattelbaum, D. M., Hartshorn, C. M. & Meyer, T. J. (2002). J. Am. Chem. Soc. **124**, 4938–4939.

Flores-Torres, S., Hutchison, G. R., Stoltzberg, L. J. & Abruña, H. D. (2006). J. Am. Chem. Soc. 128, 1513–1522.

Gourdon, A. & Launay, J.-P. (1998). Inorg. Chem. 37, 5336-5341.

Jones, S. W., Vrana, L. M. & Brewer, K. J. (1998). J. Organomet. Chem. 554, 29–40.

Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). *Angew. Chem. Int. Ed.* **47**, 503–506.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Thummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77-81.

Vogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). *Inorg. Chim. Acta*, 250, 155–162.

Wadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). *Inorg. Chem.* **48**, 5685–5696.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T., Takashima, H. & Tsukahara, K. (2011). J. Phys. Org. Chem. 24, 1110–1118.

supplementary materials

Acta Cryst. (2013). E69, m81-m82 [doi:10.1107/S1600536812051215]

μ -2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine-bis[(2,2':6',2''-terpyridine)ruthenium(II)] tetrakis(hexafluoridophosphate) acetonitrile tetrasolvate

Hershel Jude, Brian L. Scott and Reginaldo C. Rocha

Comment

The PF₆⁻ salt of the symmetric dinuclear complex $[(tpy)Ru^{II}(\mu-tppz)Ru^{II}(tpy)]^{4+}$ (I) in acetonitrile crystallized in the monoclinic space group (*P*2₁/*c*). Its crystal structure is shown in Figs. 1 and 2, and discussed below.

A structure of the compound $[(tpy)Ru(tppz)Ru(tpy)](PF_6)_4$ was recently reported (Yoshikawa *et al.*, 2011). In this case, the compound crystallized in the triclinic ($P\overline{1}$) space group, without containing solvent molecules in the unit. However, the relatively poor quality of that structure (*R*-factor = 15.61%) and relatively large deviations in metal-ligand bond distances (0.02 Å) and angles (0.6–0.8°) precludes an accurate comparison with the data reported here. A better comparative analysis involves the only other crystallographically characterized compound featuring the {(tpy)Ru(tppz)Ru} fragment, the PF_6 salt of the photocatalyst [(tpy)Ru^{II}(tppz)Ru^{II}(bpy)(Cl)]³⁺ (**II**; Chen *et al.*, 2011).

In the {(tpy)Ru(tppz)} moiety of **II**, the average Ru—N distances (tpy: Ru—N_{outer} = 2.071 (4) Å and Ru—N_{central} = 1.984 (4) Å; tppz: Ru—N_{outer} = 2.056 (4) Å and Ru—N_{central} = 1.963 (4) Å) and bite angles of the *mer*-coordinated tpy and tppz (157.59 (17)°–159.43 (16)°) are nearly identical to those observed for **I**. Also similar but even more pronounced in **II** is the highly distorted saddle-like conformation adopted by the bridging tppz ligand, with an average torsion angle of 52.2 (3)° between adjacent pyridyl rings.

In $[(tpy)Ru(tppz)Ru(tpy)](PF_6)_4 \times 4MeCN$, the cation (I) packs in alternating layers with the PF₆⁻ anions and solvent molecules packed between the cations. No significant interactions are present between different layers. Two of the PF₆⁻ counterions and one of the MeCN solvent molecules are disordered (Fig. 2). The percentage of the major disordered component is 62 (2)% for the first anion (atoms P2, F7 to F12), 57 (2)% for the second anion (P4, F19 to F24), and 64 (1)% for the solvent molecule (N13, C55, C56).

Experimental

The synthesis of $[(tpy)Ru^{II}(tppz)Ru^{II}(tpy)](PF_6)_4$ was performed by two methods. **A**) In this route, we took advantage of our previously reported precursor to tppz-bridged dimers, the mixed-valent solvento complex $[(EtOH)Cl_2Ru^{II}(tppz)Ru^{III}Cl_3]$ (Chen *et al.*, 2011; Rocha *et al.*, 2008). This precursor was utilized in a reaction with 2 equiv of tpy in EtOH heated at reflux for 8 h, under an Ar atmosphere. Et₃N in stoichiometric excess was added as a reductant. Following substitution of the Cl⁻ ligands, the tpy-capped dimer was collected as a solid salt by filtration of the precipitate formed upon addition of a concentrated aqueous solution of NH₄PF₆ to the reactional mixture. The compound was further purified *via* alumina column chromatography (MeCN:toluene 1:1 as eluent) and the final product isolated/air-dried by vacuum filtration following precipitation of the salt into Et₂O. **B**) In this method, we followed a literature procedures (Arana & Abruña, 1993; Vogler *et al.*, 1996) by reacting tppz with 2 equiv of the mononuclear Ru^{III}Cl₃(tpy) complex for 24 h in refluxing EtOH/H₂O (2:1 vol. mixture), under Ar and with excess Et₃N added. The solid product was isolated and purified as described for method A. The identity of the cation [(tpy)Ru^{II}(tppz)Ru^{II}(tppz)]⁴⁺ (**I**) in solution was

also confirmed by electrochemical and spectroscopic measurements. Single crystals suitable for X-ray analysis were obtained by slow diffusion of Et_2O into concentrated MeCN solutions of $[(tpy)Ru(tppz)Ru(tpp)](PF_6)_4$.

Refinement

Two PF₆⁻ counterions and one MeCN solvent molecule were disordered, and each refined in two positions. The siteoccupancy-factors (sof) of disordered pairs of atoms were refined and tied to sum to 1.0. The sof for the first anion (atoms P2, F7 to F12) was refined to 0.62 (2). The sof for the second anion (atoms P4, F19 to F24) was refined to 0.57 (2). The MeCN sof (atoms N13, C55, C56) was refined to 0.64 (1). For the first anion, only atoms F7, F9, F10, and F12 were disordered. Bond distances of disordered molecule pairs were restrained to have identical values. The disordered atoms P4 and P4' were constrained to have identical temperature factors. For the disordered MeCN molecule, atoms were restrained to have similar U_{ij} components. All H atoms were idealized and refined as riding atoms, with C-H = 0.93 Å (aromatic) or 0.96 Å (methyl) and $U_{iso}(H) = 1.2$ (aromatic) or 1.5 (methyl) times $U_{eq}(C)$. Methyl torsion angles were refined from electron density.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Two views of the single-crystal structure of the cation (I) in $[(tpy)Ru(tppz)Ru(tpy)](PF_6)_4 \times 4MeCN$. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Figure 2

Single-crystal structure of $[(tpy)Ru(tppz)Ru(tpy)](PF_{6})_{4} \times 4MeCN$, with all counterions and solvent molecules included. Also shown is the observed disorder in two of the PF₆⁻ anions (P2,F7–F12 and P4,F19–F24) and one of the MeCN solvent molecules (N13,C55,C56). Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

μ -2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine-bis[(2,2':6',2''- terpyridine)ruthenium(II)] tetrakis(hexafluoridophosphate) acetonitrile tetrasolvate

Crystal data

```
[\operatorname{Ru}_2(\operatorname{C}_{15}\operatorname{H}_{11}\operatorname{N}_3)_2(\operatorname{C}_{24}\operatorname{H}_{16}\operatorname{N}_6)](\operatorname{PF}_6)_4 \cdot 4\operatorname{C}_2\operatorname{H}_3\operatorname{N}_4

M_r = 1801.20

Monoclinic, P2_1/c

Hall symbol: -P 2ybc

a = 11.8871 (9) \text{ Å}

b = 31.824 (2) \text{ Å}

c = 18.5168 (14) \text{ Å}

\beta = 95.880 (1)^\circ

V = 6968.0 (9) \text{ Å}^3

Z = 4
```

Data collection

Bruker D8 with APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008) $T_{\min} = 0.893, T_{\max} = 0.950$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.102$ S = 1.1012753 reflections F(000) = 3592 $D_x = 1.717 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5749 reflections $\theta = 4.4-44.8^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 120 KBlock, green $0.18 \times 0.10 \times 0.08 \text{ mm}$

67490 measured reflections 12753 independent reflections 8864 reflections with $I > 2\sigma(I)$ $R_{int} = 0.107$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -14 \rightarrow 14$ $k = -38 \rightarrow 38$ $l = -22 \rightarrow 22$

1101 parameters78 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0305P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.75$ e Å⁻³ $\Delta\rho_{min} = -0.50$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.28004 (3)	0.035873 (10)	0.746568 (18)	0.01496 (9)	
Ru2	0.07869 (3)	0.229580 (10)	0.741853 (18)	0.01721 (10)	
P1	0.25514 (9)	0.90082 (4)	0.56200 (6)	0.0227 (3)	
P2	0.28371 (11)	0.44051 (4)	0.55316 (7)	0.0335 (3)	
P3	0.68786 (11)	0.30383 (4)	0.57181 (7)	0.0338 (3)	
F1	0.25658 (19)	0.90561 (7)	0.64831 (12)	0.0268 (6)	
F2	0.24448 (19)	0.85077 (7)	0.56958 (14)	0.0324 (6)	
F3	0.38934 (19)	0.89688 (8)	0.56969 (13)	0.0331 (6)	
F4	0.2513 (2)	0.89662 (8)	0.47551 (13)	0.0372 (7)	
F5	0.26664 (19)	0.95111 (7)	0.55527 (12)	0.0263 (6)	
F6	0.12030 (19)	0.90529 (7)	0.55462 (13)	0.0279 (6)	
F8	0.3444 (3)	0.39580 (9)	0.55286 (16)	0.0592 (9)	
F11	0.2215 (3)	0.48488 (10)	0.55481 (17)	0.0639 (10)	
F7	0.3737 (7)	0.4580 (2)	0.6111 (5)	0.061 (3)	0.620 (16)
F9	0.2061 (7)	0.42705 (18)	0.6146 (5)	0.052 (3)	0.620 (16)
F10	0.1800 (9)	0.4271 (2)	0.4950 (6)	0.097 (4)	0.620 (16)
F12	0.3450 (10)	0.4581 (3)	0.4896 (6)	0.077 (4)	0.620 (16)
F7′	0.2920 (19)	0.4335 (3)	0.6394 (4)	0.075 (7)	0.380 (16)
F9′	0.1765 (9)	0.4112 (5)	0.5478 (11)	0.098 (7)	0.380 (16)
F10′	0.2855 (15)	0.4379 (6)	0.4691 (5)	0.071 (6)	0.380 (16)
F12′	0.4061 (9)	0.4613 (3)	0.5608 (13)	0.086 (7)	0.380 (16)
F13	0.6356 (2)	0.31570 (8)	0.64503 (16)	0.0503 (8)	
F14	0.6916 (4)	0.25661 (10)	0.5933 (2)	0.1006 (15)	
F15	0.8113 (2)	0.31061 (10)	0.61355 (15)	0.0609 (9)	
F16	0.7432 (3)	0.29210 (10)	0.50021 (15)	0.0635 (9)	
F17	0.6918 (3)	0.35241 (9)	0.55080 (15)	0.0578 (9)	
F18	0.5676 (3)	0.29980 (11)	0.5294 (2)	0.0859 (12)	
P4	0.2383 (7)	0.1122 (3)	0.4097 (5)	0.0257 (6)	0.57 (2)
F19	0.3620 (9)	0.0939 (5)	0.4252 (8)	0.058 (4)	0.57 (2)
F20	0.1908 (10)	0.0826 (3)	0.4676 (3)	0.048 (3)	0.57 (2)
F21	0.2668 (14)	0.1450 (4)	0.4736 (7)	0.054 (3)	0.57 (2)
F22	0.1166 (7)	0.1327 (5)	0.3952 (5)	0.051 (3)	0.57 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

F23	0.2835 (11)	0.1430 (4)	0.3528 (6)	0.068 (3)	0.57 (2)
F24	0.2076 (12)	0.0789 (4)	0.3475 (7)	0.069 (4)	0.57 (2)
P4′	0.2409 (10)	0.1081 (4)	0.4068 (7)	0.0257 (6)	0.43 (2)
F19′	0.3744 (9)	0.1053 (5)	0.4070 (9)	0.038 (4)	0.43 (2)
F20′	0.2414 (12)	0.0637 (5)	0.4463 (10)	0.068 (6)	0.43 (2)
F21′	0.2594 (15)	0.1316 (8)	0.4826 (9)	0.076 (7)	0.43 (2)
F22′	0.1071 (8)	0.1098 (5)	0.4053 (7)	0.040 (3)	0.43 (2)
F23′	0.2421 (14)	0.1526 (3)	0.3683 (11)	0.065 (5)	0.43 (2)
F24′	0.2257 (12)	0.0861 (5)	0.3299 (8)	0.042 (4)	0.43 (2)
N1	0.3936 (3)	0.03905 (10)	0.66882 (18)	0.0181 (8)	
N2	0.3472 (3)	-0.02106 (10)	0.75424 (17)	0.0173 (8)	
N3	0.1865 (3)	0.00855 (10)	0.82253 (17)	0.0193 (8)	
N4	0.1428 (3)	0.02977 (10)	0.66999 (17)	0.0167 (8)	
N5	0.2211 (3)	0.09345 (10)	0.74346 (17)	0.0149 (7)	
N6	0.3934 (3)	0.06344 (10)	0.82402 (17)	0.0163 (8)	
N7	0.0196 (3)	0.21001 (10)	0.63882 (17)	0.0167 (8)	
N8	0.1398 (3)	0.17199 (10)	0.74223 (17)	0.0160 (8)	
N9	0.1634 (3)	0.22700 (10)	0.84401 (17)	0.0175 (8)	
N10	0.2107(3)	0.26278 (10)	0.70475 (17)	0.0204 (8)	
N11	0.0202(3)	0.28805 (10)	0.74401 (17)	0.0196 (8)	
N12	-0.0772(3)	0.21994 (10)	0.78029 (18)	0.0209 (8)	
N15	0.4640(5)	0.16296 (15)	0.6902 (3)	0.0695(16)	
N16	0.1018(3) 0.8158(7)	0.08326 (18)	0.0302(3) 0.7468(3)	0.110(3)	
C1	0.0150(7) 0.4069(4)	0.00020(10) 0.07013(14)	0.6217(2)	0.0265(11)	
H1	0.3620	0.0940	0.6231	0.032*	
C^2	0.3020 0.4843 (4)	0.0510	0.5231	0.032 0.0349(12)	
02 Н2	0.4913	0.00029 (10)	0.5393	0.042*	
C3	0.4919	0.03303 (16)	0.5595	0.042 0.0358 (12)	
НЗ	0.6050	0.0314	0.5357	0.043*	
C4	0.5367(4)	0.0011	0.5557 0.6148(2)	0.0283(11)	
Сч Н4	0.5801	-0.0238	0.6129	0.034*	
C5	0.4577(3)	0.0230 0.00342(13)	0.612	0.0218(10)	
C6	0.4335(3)	-0.03055(13)	0.0043(2) 0.7148(2)	0.0210(10) 0.0229(10)	
C_{0}	0.4355(3) 0.4878(4)	-0.06887(14)	0.7140(2) 0.7234(3)	0.0229(10) 0.0324(12)	
U7	0.4078 (4)	-0.0756	0.7254 (5)	0.0324 (12)	
117 C8	0.3473 0.4517 (4)	-0.09672(15)	0.0900	0.039 0.0380 (13)	
С0 Н8	0.4868	-0.1228	0.7725 (3)	0.0380 (13)	
C_0	0.4600	-0.08701(14)	0.7785	0.040	
U0	0.3032 (4)	-0.1060	0.8150 (5)	0.0300 (13)	
П9 С10	0.3420 0.3126 (4)	-0.1000 -0.04804 (13)	0.8400	0.043°	
C10	0.3120(4) 0.2183(4)	-0.03205(13)	0.8030(2) 0.8403(2)	0.0239(10)	
C12	0.2183(4) 0.1585(4)	-0.05205(15)	0.8403(2)	0.0238(10) 0.0382(13)	
U12	0.1363 (4)	-0.03318(13)	0.8870 (3)	0.0382 (15)	
П12 С12	0.1601	-0.0820	0.0990	0.040°	
U15 U12	0.0072 (4)	-0.03733(10)	0.9138 (3)	0.0418 (14)	
п13 С14	0.0270	-0.0330	0.94/2	0.030°	
U14 U14	0.0355 (4)	0.00323 (10)	0.09/8(2)	0.0330 (12)	
п14 С15	-0.0200	0.0130	0.9102	0.045°	
	0.0984 (4)	0.02503 (14)	0.8517(2)	0.0264 (11)	
ніз	0.0785	0.0527	0.8404	0.032*	

C16	0.0985 (3)	-0.00642 (12)	0.6426 (2)	0.0186 (10)
H16	0.1383	-0.0312	0.6527	0.022*
C17	-0.0039 (3)	-0.00814 (13)	0.6002 (2)	0.0217 (10)
H17	-0.0318	-0.0337	0.5818	0.026*
C18	-0.0641 (3)	0.02809 (13)	0.5853 (2)	0.0220 (10)
H18	-0.1333	0.0275	0.5569	0.026*
C19	-0.0198 (3)	0.06579 (13)	0.6135 (2)	0.0183 (9)
H19	-0.0606	0.0906	0.6052	0.022*
C20	0.0844 (3)	0.06646 (12)	0.6537 (2)	0.0166 (9)
C21	0.1359 (3)	0.10381 (12)	0.6913 (2)	0.0158 (9)
C22	0.2681 (3)	0.12141 (12)	0.7936 (2)	0.0151 (9)
C23	0.3740 (3)	0.10548 (13)	0.8336 (2)	0.0186 (9)
C24	0.4533 (3)	0.13076 (13)	0.8722 (2)	0.0197 (10)
H24	0.4414	0.1595	0.8756	0.024*
C25	0.5505 (3)	0.11264 (13)	0.9058 (2)	0.0244 (10)
H25	0.6049	0.1292	0.9319	0.029*
C26	0.5665 (4)	0.07012 (13)	0.9005 (2)	0.0242 (10)
H26	0.6296	0.0573	0.9249	0.029*
C27	0.4869 (3)	0.04663 (13)	0.8580 (2)	0.0211 (10)
H27	0.4992	0.0180	0.8529	0.025*
C28	-0.0338 (3)	0.23341 (13)	0.5858 (2)	0.0207 (10)
H28	-0.0563	0.2605	0.5969	0.025*
C29	-0.0568 (3)	0.21909 (12)	0.5156 (2)	0.0191 (10)
H29	-0.0971	0.2357	0.4806	0.023*
C30	-0.0194 (3)	0.17995 (13)	0.4977 (2)	0.0203 (10)
H30	-0.0301	0.1704	0.4501	0.024*
C31	0.0343 (3)	0.15503 (12)	0.5520(2)	0.0172 (9)
H31	0.0605	0.1285	0.5408	0.021*
C32	0.0491 (3)	0.16933 (12)	0.6225 (2)	0.0166 (9)
C33	0.1078 (3)	0.14650 (12)	0.6842 (2)	0.0152 (9)
C34	0.2115 (3)	0.15964 (12)	0.7997 (2)	0.0158 (9)
C35	0.2151 (3)	0.18920 (12)	0.8611 (2)	0.0174 (9)
C36	0.2575 (3)	0.18020 (13)	0.9310(2)	0.0233 (10)
H36	0.2867	0.1537	0.9426	0.028*
C37	0.2570 (4)	0.21042 (14)	0.9842 (2)	0.0269 (11)
H37	0.2862	0.2045	1.0316	0.032*
C38	0.2123 (3)	0.24982 (14)	0.9662 (2)	0.0253 (10)
H38	0.2148	0.2712	1.0006	0.030*
C39	0.1646 (3)	0.25648 (13)	0.8968 (2)	0.0222 (10)
H39	0.1315	0.2824	0.8853	0.027*
C40	0.3096 (4)	0.24702 (13)	0.6877 (2)	0.0232 (10)
H40	0.3215	0.2182	0.6911	0.028*
C41	0.3941 (4)	0.27222 (13)	0.6653 (2)	0.0256 (10)
H41	0.4623	0.2606	0.6547	0.031*
C42	0.3758 (4)	0.31444 (14)	0.6589 (2)	0.0292 (11)
H42	0.4306	0.3317	0.6421	0.035*
C43	0.2758 (4)	0.33143 (14)	0.6775 (2)	0.0281 (11)
H43	0.2639	0.3603	0.6746	0.034*
C44	0.1933 (4)	0.30535 (13)	0.7005 (2)	0.0219 (10)

			/ /->		
C45	0.0855 (4)	0.31972 (13)	0.7234 (2)	0.0243 (11)	
C46	0.0477 (4)	0.36090 (13)	0.7270 (2)	0.0314 (12)	
H46	0.0910	0.3830	0.7121	0.038*	
C47	-0.0548 (4)	0.36862 (14)	0.7531 (2)	0.0352 (12)	
H47	-0.0805	0.3961	0.7560	0.042*	
C48	-0.1195 (4)	0.33595 (14)	0.7749 (2)	0.0319 (12)	
H48	-0.1884	0.3412	0.7929	0.038*	
C49	-0.0805 (4)	0.29505 (13)	0.7697 (2)	0.0227 (10)	
C50	-0.1377 (4)	0.25614 (14)	0.7883 (2)	0.0245 (11)	
C51	-0.2441 (4)	0.25438 (16)	0.8121 (2)	0.0337 (12)	
H51	-0.2842	0.2790	0.8178	0.040*	
C52	-0.2905 (4)	0.21650 (17)	0.8274 (3)	0.0445 (14)	
H52	-0.3622	0.2153	0.8433	0.053*	
C53	-0.2303 (4)	0.18012 (17)	0.8190 (3)	0.0422 (13)	
H53	-0.2603	0.1541	0.8294	0.051*	
C54	-0.1243 (4)	0.18309 (14)	0.7947 (2)	0.0292 (11)	
H54	-0.0842	0.1585	0.7881	0.035*	
N13	0.0164 (8)	0.1179 (3)	0.8910 (5)	0.068 (3)	0.639 (11)
C55	0.0032 (12)	0.1310 (3)	0.9445 (7)	0.056 (3)	0.639 (11)
C56	0.006 (2)	0.1500 (7)	1.0178 (13)	0.062 (6)	0.639 (11)
H56A	0.0421	0.1769	1.0180	0.094*	0.639 (11)
H56B	0.0467	0.1320	1.0527	0.094*	0.639 (11)
H56C	-0.0703	0.1534	1.0302	0.094*	0.639 (11)
C57	0.4656 (4)	0.26977 (16)	0.8956 (3)	0.0340 (12)	
N13′	-0.112 (2)	0.0966 (5)	0.9245 (9)	0.112 (10)	0.361 (11)
C55′	-0.070 (3)	0.1201 (6)	0.9621 (10)	0.070 (7)	0.361 (11)
C56′	-0.010 (5)	0.1545 (15)	1.003 (3)	0.089 (15)	0.361 (11)
H56D	0.0695	0.1494	1.0074	0.133*	0.361 (11)
H56E	-0.0357	0.1561	1.0507	0.133*	0.361 (11)
H56F	-0.0265	0.1806	0.9781	0.133*	0.361 (11)
N14	0.4391 (3)	0.24561 (14)	0.8530 (2)	0.0425 (11)	
C58	0.5019 (4)	0.30040 (16)	0.9534 (3)	0.0525 (15)	
H58A	0.5589	0.2879	0.9872	0.079*	
H58B	0.4382	0.3083	0.9783	0.079*	
H58C	0.5323	0.3249	0.9321	0.079*	
C59	0.5485 (6)	0.16313 (16)	0.6670 (3)	0.0489 (16)	
C60	0.6584 (5)	0.16184 (17)	0.6398 (3)	0.0640 (18)	
H60A	0.6938	0.1889	0.6459	0.096*	
H60B	0.6495	0.1546	0.5892	0.096*	
H60C	0.7048	0.1412	0.6663	0.096*	
C61	0.7993 (5)	0.0490 (2)	0.7523 (3)	0.0512 (15)	
C62	0.7804 (5)	0.00479 (17)	0.7588 (3)	0.0589 (17)	
H62A	0.7081	0.0001	0.7762	0.088*	
H62B	0.8387	-0.0072	0.7923	0.088*	
H62C	0.7817	-0.0083	0.7121	0.088*	

sup-8

Ru2	0.0201 (2)	0.01344 (19)	0.01807 (19)	0.00433 (15)	0.00167 (15)	-0.00166 (15)
P1	0.0194 (6)	0.0221 (7)	0.0266 (7)	0.0011 (5)	0.0021 (5)	-0.0013 (5)
P2	0.0376 (8)	0.0355 (8)	0.0278 (7)	-0.0062 (6)	0.0048 (6)	0.0005 (6)
P3	0.0380 (8)	0.0253 (7)	0.0379 (8)	0.0073 (6)	0.0027 (6)	-0.0078 (6)
F1	0.0291 (15)	0.0270 (14)	0.0245 (14)	-0.0054 (11)	0.0043 (11)	0.0011 (11)
F2	0.0264 (15)	0.0183 (14)	0.0521 (18)	0.0015 (11)	0.0018 (13)	-0.0053 (12)
F3	0.0191 (14)	0.0351 (16)	0.0455 (17)	0.0015 (12)	0.0057 (12)	-0.0005 (13)
F4	0.0368 (17)	0.0472 (18)	0.0269 (15)	0.0078 (13)	0.0008 (12)	-0.0110 (13)
F5	0.0304 (15)	0.0200 (13)	0.0294 (15)	-0.0019 (11)	0.0066 (12)	0.0039 (11)
F6	0.0183 (13)	0.0254 (14)	0.0398 (16)	-0.0003 (11)	0.0014 (11)	-0.0067 (12)
F8	0.094 (3)	0.0336 (18)	0.053 (2)	0.0041 (17)	0.0224 (18)	-0.0046 (15)
F11	0.068 (2)	0.062 (2)	0.066 (2)	0.0283 (18)	0.0262 (18)	0.0213 (18)
F7	0.046 (5)	0.038 (4)	0.094 (7)	-0.010 (3)	-0.025 (4)	-0.018 (4)
F9	0.056 (5)	0.038 (3)	0.068 (6)	0.007 (3)	0.030 (4)	0.025 (3)
F10	0.115 (7)	0.081 (5)	0.080 (7)	-0.034 (5)	-0.055 (6)	0.024 (4)
F12	0.121 (9)	0.053 (5)	0.070 (7)	0.012 (5)	0.071 (6)	0.015 (4)
F7′	0.16 (2)	0.046 (7)	0.019 (5)	0.048 (10)	0.006 (7)	-0.006 (4)
F9′	0.033 (6)	0.127 (12)	0.138 (18)	-0.025 (7)	0.028 (8)	-0.018 (11)
F10′	0.112 (14)	0.074 (11)	0.025 (5)	0.055 (9)	-0.003 (7)	0.002 (6)
F12′	0.046 (7)	0.043 (6)	0.17 (2)	-0.023 (5)	0.021 (9)	-0.016 (10)
F13	0.0499 (19)	0.0447 (18)	0.061 (2)	-0.0099 (15)	0.0293 (16)	-0.0184 (15)
F14	0.204 (5)	0.0232 (19)	0.080 (3)	0.005 (2)	0.039 (3)	0.0015 (18)
F15	0.0428 (19)	0.095 (3)	0.0421 (19)	0.0274 (18)	-0.0063 (15)	-0.0161 (18)
F16	0.085 (3)	0.069 (2)	0.0383 (19)	0.0147 (19)	0.0131 (17)	-0.0218 (17)
F17	0.096 (3)	0.0345 (18)	0.0394 (18)	0.0012 (17)	-0.0082 (17)	-0.0002 (14)
F18	0.048 (2)	0.100 (3)	0.105 (3)	-0.004(2)	-0.017 (2)	-0.047 (2)
P4	0.0226 (7)	0.0271 (16)	0.0282 (9)	0.0022 (9)	0.0056 (6)	-0.0040 (10)
F19	0.033 (5)	0.098 (9)	0.042 (6)	0.047 (5)	0.001 (4)	0.001 (5)
F20	0.062 (6)	0.030 (5)	0.053 (4)	-0.010 (4)	0.007 (3)	0.009 (3)
F21	0.056 (6)	0.044 (5)	0.062 (6)	-0.016 (4)	0.014 (4)	-0.029 (4)
F22	0.028 (4)	0.081 (8)	0.044 (4)	0.024 (5)	0.002 (3)	-0.011 (5)
F23	0.065 (7)	0.086 (8)	0.054 (5)	-0.004 (5)	0.018 (5)	0.029 (5)
F24	0.093 (8)	0.071 (7)	0.046 (6)	-0.024 (5)	0.013 (5)	-0.041 (5)
P4′	0.0226 (7)	0.0271 (16)	0.0282 (9)	0.0022 (9)	0.0056 (6)	-0.0040 (10)
F19′	0.024 (5)	0.043 (6)	0.046 (9)	-0.006 (4)	0.000 (4)	-0.015 (6)
F20′	0.046 (7)	0.039 (8)	0.114 (10)	-0.012 (6)	-0.022 (6)	0.045 (7)
F21′	0.031 (8)	0.143 (18)	0.052 (8)	0.022 (9)	-0.001 (6)	-0.057 (10)
F22′	0.022 (4)	0.038 (7)	0.062 (6)	-0.003 (4)	0.005 (4)	-0.010 (5)
F23′	0.060 (10)	0.020 (5)	0.107 (12)	-0.002 (5)	-0.029(7)	0.022 (6)
F24′	0.030 (6)	0.056 (7)	0.038 (7)	0.025 (6)	-0.009 (5)	-0.019 (5)
N1	0.0149 (19)	0.0183 (19)	0.021 (2)	-0.0022 (15)	0.0005 (15)	-0.0010 (16)
N2	0.019 (2)	0.0140 (18)	0.0180 (19)	0.0019 (15)	-0.0035 (15)	-0.0024 (15)
N3	0.021 (2)	0.019 (2)	0.0173 (19)	-0.0043 (16)	-0.0003 (16)	-0.0003 (16)
N4	0.0180 (19)	0.0160 (19)	0.0169 (19)	0.0018 (15)	0.0056 (15)	0.0002 (15)
N5	0.0135 (18)	0.0169 (19)	0.0142 (18)	-0.0005 (15)	0.0012 (15)	0.0003 (15)
N6	0.0180 (19)	0.0124 (18)	0.0190 (19)	-0.0018 (15)	0.0050 (15)	-0.0016 (15)
N7	0.0164 (19)	0.0172 (19)	0.0165 (19)	0.0029 (15)	0.0022 (15)	0.0014 (15)
N8	0.0193 (19)	0.0136 (18)	0.0152 (19)	0.0009 (15)	0.0030 (15)	-0.0003 (15)
N9	0.020 (2)	0.0138 (19)	0.0193 (19)	-0.0008 (15)	0.0035 (15)	-0.0021 (15)

N10	0.024(2)	0.010(2)	0.018(2)	0.0008 (16)	-0.0003(16)	-0.0025(15)
N11	0.024(2) 0.026(2)	0.019(2)	0.018(2)	0.0003(10) 0.0041(16)	-0.0003(10)	-0.0023(15)
N12	0.020(2) 0.023(2)	0.0105(19)	0.0140(17)	0.0041(10) 0.0052(16)	0.0021(10) 0.0040(16)	-0.0007(15)
N15	0.025(2) 0.086(4)	0.022(2)	0.019(2) 0.078(4)	0.0052(10)	0.0016(3)	-0.013(3)
N16	0.000(1) 0.216(8)	0.040(4)	0.078(1)	0.010(3)	0.010(5)	-0.010(3)
C1	0.210(0)	0.010(1)	0.076(3)	-0.003(2)	0.000(3)	0.010(3)
C2	0.029(3) 0.042(3)	0.024(3) 0.043(3)	0.020(3)	-0.015(3)	0.001(2)	0.004(2) 0.002(2)
C3	0.012(3)	0.048(3)	0.022(3)	-0.014(3)	0.013(2)	-0.010(3)
C4	0.027(3)	0.034(3)	0.039(3)	-0.003(2)	0.015(2)	-0.011(2)
C5	0.025(3)	0.034(3)	0.025(3)	0.003(2)	0.003(2)	-0.007(2)
C6	0.010(2) 0.021(2)	0.021(2)	0.025(3)	0.003(2)	-0.005(2)	-0.007(2)
C7	0.021(2) 0.030(3)	0.021(2) 0.031(3)	0.025(3) 0.034(3)	0.005(2)	-0.013(2)	-0.006(2)
C8	0.030(3)	0.031(3)	0.034(3)	0.013(2)	-0.015(2)	-0.000(2)
C0	0.040(3)	0.021(3)	0.045(3)	0.017(2)	-0.015(3)	0.001(2)
C10	0.032(3)	0.013(3)	0.030(3)	-0.002(2)	-0.002(2)	0.009(2)
C10	0.030(3)	0.013(2)	0.021(3)	-0.005(2)	0.002(2)	0.0003(19)
C12	0.032(3)	0.020(2)	0.019(2)	-0.016(3)	0.000(2)	0.001(2)
C12 C13	0.033(4)	0.029(3)	0.032(3)	-0.010(3) -0.025(3)	0.003(3)	0.000(2)
C13	0.037(4)	0.040(3)	0.030(3)	-0.023(3)	0.010(3)	-0.000(3)
C14	0.034(3)	0.040(3)	0.029(3)	-0.009(3)	0.013(2)	-0.000(2)
C15	0.030(3)	0.020(3)	0.024(3)	-0.007(2)	0.004(2)	-0.007(2)
C10 C17	0.022(2)	0.010(2)	0.023(2)	0.0000(18)	0.0027(19)	-0.0040(18)
C1/	0.027(3)	0.013(2)	0.023(2)	-0.0032(19)	0.004(2)	-0.0007(19)
C10	0.020(2)	0.024(3)	0.022(2)	-0.003(2)	-0.0007(19)	0.000(2)
C19 C20	0.017(2)	0.018(2)	0.020(2)	0.0017(18)	0.0021(19)	0.0007(18)
C20	0.018(2)	0.015(2)	0.016(2)	0.0019(18)	0.0028(18)	0.0000(18)
C21 C22	0.019(2)	0.016(2)	0.014(2)	-0.0002(18)	0.0062(18)	0.0001(18)
C22	0.020(2)	0.013(2)	0.014(2)	-0.0004 (17)	0.0060 (18)	0.0008(17)
C23	0.019(2)	0.020(2)	0.018(2)	-0.0009(19)	0.0044 (18)	0.0010 (19)
C24	0.023(2)	0.010(2)	0.019(2)	0.0019 (19)	-0.0014(19)	-0.0029(18)
C25	0.020(2)	0.029(3)	0.024 (3)	-0.004(2)	-0.002(2)	-0.004(2)
C26	0.023(3)	0.026 (3)	0.021 (2)	0.004(2)	-0.005(2)	-0.005(2)
C27	0.025 (3)	0.018 (2)	0.020 (2)	0.0075 (19)	0.003(2)	0.0008 (19)
C28	0.021 (2)	0.017(2)	0.024 (3)	0.0027 (19)	0.0024 (19)	0.0024 (19)
C29	0.019 (2)	0.019 (2)	0.018 (2)	0.0007 (18)	-0.0043 (18)	0.0033 (18)
C30	0.022 (2)	0.023 (2)	0.016 (2)	-0.0064 (19)	0.0024 (19)	-0.0014 (19)
C31	0.018 (2)	0.012 (2)	0.022 (2)	0.0019 (17)	0.0026 (18)	-0.0024 (18)
C32	0.016 (2)	0.017 (2)	0.017 (2)	0.0008 (18)	0.0026 (18)	-0.0034 (18)
C33	0.017 (2)	0.015 (2)	0.014 (2)	-0.0019 (17)	0.0043 (18)	0.0000 (18)
C34	0.017 (2)	0.014 (2)	0.017 (2)	-0.0034 (18)	0.0050 (18)	0.0020 (18)
C35	0.018 (2)	0.016 (2)	0.019 (2)	0.0001 (18)	0.0052 (18)	0.0004 (18)
C36	0.029 (3)	0.020 (2)	0.020 (2)	0.004 (2)	-0.001 (2)	0.000 (2)
C37	0.033 (3)	0.030 (3)	0.016 (2)	0.004 (2)	-0.001 (2)	0.002 (2)
C38	0.029 (3)	0.025 (3)	0.022 (3)	0.000 (2)	0.002 (2)	-0.006 (2)
C39	0.025 (3)	0.016 (2)	0.025 (3)	0.0071 (19)	0.002 (2)	-0.004 (2)
C40	0.026 (3)	0.020 (2)	0.023 (2)	0.000 (2)	-0.003 (2)	0.0002 (19)
C41	0.023 (3)	0.029 (3)	0.024 (3)	-0.004 (2)	0.000 (2)	0.001 (2)
C42	0.032 (3)	0.032 (3)	0.023 (3)	-0.014 (2)	-0.001 (2)	-0.005 (2)
C43	0.046 (3)	0.018 (2)	0.019 (3)	-0.009 (2)	-0.001 (2)	-0.003 (2)
C44	0.033 (3)	0.017 (2)	0.014 (2)	0.002 (2)	-0.0072 (19)	-0.0017 (19)

C45	0.034 (3)	0.014 (2)	0.022 (3)	0.006 (2)	-0.008 (2)	-0.0020 (19)
C46	0.047 (3)	0.014 (2)	0.031 (3)	0.003 (2)	-0.009 (2)	0.000 (2)
C47	0.048 (3)	0.015 (3)	0.040 (3)	0.012 (2)	-0.007 (3)	-0.004 (2)
C48	0.035 (3)	0.032 (3)	0.028 (3)	0.018 (2)	-0.005 (2)	-0.011 (2)
C49	0.030 (3)	0.023 (3)	0.016 (2)	0.012 (2)	0.001 (2)	-0.0050 (19)
C50	0.025 (3)	0.035 (3)	0.013 (2)	0.010 (2)	-0.0009 (19)	-0.007 (2)
C51	0.027 (3)	0.043 (3)	0.031 (3)	0.015 (2)	0.003 (2)	-0.006 (2)
C52	0.032 (3)	0.050 (4)	0.055 (4)	0.005 (3)	0.022 (3)	-0.003 (3)
C53	0.032 (3)	0.045 (3)	0.052 (4)	-0.002 (3)	0.018 (3)	0.002 (3)
C54	0.030 (3)	0.027 (3)	0.033 (3)	0.005 (2)	0.010 (2)	0.000 (2)
N13	0.080 (7)	0.039 (5)	0.082 (7)	0.021 (5)	0.000 (6)	-0.004 (5)
C55	0.066 (9)	0.032 (6)	0.069 (9)	0.016 (6)	0.012 (6)	-0.001 (6)
C56	0.092 (17)	0.027 (7)	0.077 (11)	-0.002 (8)	0.051 (10)	-0.009(7)
C57	0.020 (3)	0.036 (3)	0.046 (3)	0.007 (2)	0.004 (2)	0.006 (3)
N13′	0.23 (3)	0.056 (12)	0.038 (10)	0.041 (13)	-0.055 (13)	-0.011 (8)
C55′	0.118 (19)	0.050 (13)	0.046 (12)	0.039 (13)	0.025 (14)	0.018 (10)
C56′	0.054 (18)	0.10 (3)	0.11 (3)	0.00(2)	0.011 (17)	0.02 (2)
N14	0.033 (3)	0.048 (3)	0.047 (3)	0.004 (2)	0.005 (2)	-0.003 (2)
C58	0.042 (3)	0.034 (3)	0.079 (4)	-0.001 (3)	-0.006 (3)	-0.010 (3)
C59	0.077 (5)	0.030 (3)	0.041 (4)	0.014 (3)	0.012 (3)	-0.009 (3)
C60	0.107 (6)	0.044 (4)	0.043 (4)	0.014 (4)	0.018 (4)	-0.001 (3)
C61	0.073 (4)	0.047 (4)	0.036 (3)	0.009 (3)	0.015 (3)	-0.003 (3)
C62	0.066 (4)	0.048 (4)	0.059 (4)	-0.015 (3)	-0.012 (3)	0.019 (3)

Geometric parameters (Å, °)

Ru1—N5	1.960 (3)	C13—C14	1.382 (6)
Ru1—N2	1.979 (3)	C13—H13	0.9300
Ru1—N4	2.058 (3)	C14—C15	1.378 (6)
Ru1—N6	2.060 (3)	C14—H14	0.9300
Ru1—N3	2.071 (3)	C15—H15	0.9300
Ru1—N1	2.074 (3)	C16—C17	1.381 (5)
Ru2—N8	1.971 (3)	C16—H16	0.9300
Ru2—N11	1.989 (3)	C17—C18	1.370 (5)
Ru2—N9	2.051 (3)	C17—H17	0.9300
Ru2—N7	2.061 (3)	C18—C19	1.390 (5)
Ru2—N10	2.067 (3)	C18—H18	0.9300
Ru2—N12	2.074 (3)	C19—C20	1.379 (5)
P1—F3	1.592 (2)	C19—H19	0.9300
P1—F6	1.601 (2)	C20—C21	1.478 (5)
P1—F4	1.603 (3)	C21—C33	1.402 (5)
P1—F1	1.604 (2)	C22—C34	1.401 (5)
P1—F2	1.605 (2)	C22—C23	1.483 (5)
P1—F5	1.612 (2)	C23—C24	1.382 (5)
P2—F7	1.539 (6)	C24—C25	1.381 (5)
P2—F12	1.550 (6)	C24—H24	0.9300
P2—F10′	1.560 (10)	C25—C26	1.371 (6)
P2—F9′	1.574 (10)	С25—Н25	0.9300
P2—F12′	1.590 (10)	C26—C27	1.387 (6)
P2—F9	1.595 (5)	С26—Н26	0.9300

P2—F11	1 595 (3)	С27—Н27	0.9300
P2—F8	1 596 (3)	C_{28} C_{29}	1 379 (5)
P2—F7'	1 605 (8)	C28—H28	0.9300
P2—F10	1 608 (6)	C_{29} C_{30}	1 374 (5)
P3—F14	1 554 (3)	C29—H29	0.9300
P3—F18	1 564 (3)	C_{30} $-C_{31}$	1 384 (5)
P3—F16	1 584 (3)	C30—H30	0.9300
P3—F13	1 594 (3)	$C_{31} - C_{32}$	1 376 (5)
P3—F17	1 596 (3)	C31—H31	0.9300
P3—F15	1.602 (3)	C_{32} — C_{33}	1 468 (5)
P4—F23	1 573 (9)	C_{34} C_{35}	1.100(5) 1.473(5)
P4—F20	1 576 (8)	C35—C36	1.175(5) 1.370(5)
P4—F19	1 580 (8)	$C_{36} - C_{37}$	1.377 (6)
P4—F24	1 581 (9)	C36—H36	0.9300
P4—F22	1 584 (8)	C_{37} $-C_{38}$	1 389 (6)
P4—F21	1 587 (9)	C37—H37	0.9300
P4'F24'	1.587(5)	C_{38} C_{39}	1 367 (5)
P4'	1 585 (11)	C38—H38	0.9300
P4'F23'	1.587 (11)	C39_H39	0.9300
P4'F19'	1 589 (11)	C40-C41	1 382 (6)
P4'-F22'	1 589 (11)	C40 - H40	0.9300
P4'-F20'	1 590 (11)	C41-C42	1 364 (6)
N1-C1	1 339 (5)	C41 - H41	0.9300
N1—C5	1 373 (5)	C42-C43	1 382 (6)
N2-C10	1 341 (5)	C42 - H42	0.9300
N2—C6	1 352 (5)	C43-C44	1 384 (6)
N3—C15	1 334 (5)	C43—H43	0.9300
N3—C11	1 376 (5)	C44—C45	1 464 (6)
N4—C16	1.343 (5)	C45—C46	1.390 (5)
N4—C20	1.376 (5)	C46—C47	1.377 (6)
N5-C22	1.364 (5)	C46—H46	0.9300
N5—C21	1.366 (5)	C47—C48	1.378 (6)
N6-C27	1.332 (5)	C47—H47	0.9300
N6—C23	1.372 (5)	C48—C49	1.388 (5)
N7—C28	1.339 (5)	C48—H48	0.9300
N7—C32	1.383 (5)	C49—C50	1.470 (6)
N8-C34	1.352 (5)	C50—C51	1.382 (6)
N8—C33	1.369 (5)	C51—C52	1.367 (6)
N9—C39	1.354 (5)	C51—H51	0.9300
N9—C35	1.373 (5)	C52—C53	1.378 (6)
N10—C40	1.345 (5)	С52—Н52	0.9300
N10—C44	1.371 (5)	C53—C54	1.384 (6)
N11—C49	1.351 (5)	С53—Н53	0.9300
N11—C45	1.351 (5)	C54—H54	0.9300
N12—C54	1.338 (5)	N13—C55	1.100 (10)
N12—C50	1.374 (5)	C55—C56	1.484 (18)
N15—C59	1.132 (7)	С56—Н56А	0.9600
N16—C61	1.114 (7)	С56—Н56В	0.9600
C1—C2	1.379 (6)	С56—Н56С	0.9600

C1—H1	0.9300	C57—N14	1.124 (6)
C2—C3	1.378 (6)	С57—С58	1.478 (7)
С2—Н2	0.9300	N13'—C55'	1.105 (16)
C3—C4	1.367 (6)	C55′—C56′	1.47 (2)
С3—Н3	0.9300	C56'—H56D	0.9600
C4—C5	1.384 (5)	С56'—Н56Е	0.9600
C4—H4	0.9300	C56′—H56F	0.9600
C5—C6	1.474 (6)	C58—H58A	0.9600
C6—C7	1.382 (6)	C58—H58B	0.9600
C7—C8	1.370 (6)	C58—H58C	0.9600
С7—Н7	0.9300	C59—C60	1.449 (8)
C8—C9	1.369 (6)	C60—H60A	0.9600
С8—Н8	0.9300	C60—H60B	0.9600
C9—C10	1.393 (6)	С60—Н60С	0.9600
С9—Н9	0.9300	C61—C62	1.432 (8)
C10—C11	1.467 (6)	С62—Н62А	0.9600
C11—C12	1.386 (6)	С62—Н62В	0.9600
C12—C13	1.377 (7)	С62—Н62С	0.9600
С12—Н12	0.9300		
N5—Ru1—N2	176.41 (13)	C4—C5—C6	124.0 (4)
N5—Ru1—N4	79.19 (13)	N2—C6—C7	120.4 (4)
N2—Ru1—N4	104.39 (13)	N2—C6—C5	112.7 (3)
N5—Ru1—N6	80.12 (13)	C7—C6—C5	126.9 (4)
N2—Ru1—N6	96.29 (13)	C8—C7—C6	118.3 (5)
N4—Ru1—N6	159.28 (12)	С8—С7—Н7	120.9
N5—Ru1—N3	101.38 (13)	С6—С7—Н7	120.9
N2—Ru1—N3	78.91 (13)	C9—C8—C7	121.4 (4)
N4—Ru1—N3	89.18 (12)	С9—С8—Н8	119.3
N6—Ru1—N3	93.68 (12)	С7—С8—Н8	119.3
N5—Ru1—N1	100.95 (13)	C8—C9—C10	118.7 (4)
N2—Ru1—N1	78.93 (13)	С8—С9—Н9	120.7
N4—Ru1—N1	93.01 (12)	С10—С9—Н9	120.7
N6—Ru1—N1	92.11 (12)	N2—C10—C9	119.7 (4)
N3—Ru1—N1	157.57 (13)	N2—C10—C11	113.4 (4)
N8—Ru2—N11	178.32 (14)	C9—C10—C11	126.9 (4)
N8—Ru2—N9	79.26 (13)	N3—C11—C12	120.1 (4)
N11—Ru2—N9	99.13 (13)	N3—C11—C10	114.7 (4)
N8—Ru2—N7	79.21 (13)	C12—C11—C10	125.1 (4)
N11—Ru2—N7	102.40 (13)	C13—C12—C11	120.0 (5)
N9—Ru2—N7	158.45 (13)	C13—C12—H12	120.0
N8—Ru2—N10	100.63 (13)	C11—C12—H12	120.0
N11—Ru2—N10	78.89 (14)	C12—C13—C14	119.7 (4)
N9—Ru2—N10	90.55 (13)	С12—С13—Н13	120.1
N7—Ru2—N10	92.59 (12)	С14—С13—Н13	120.1
N8—Ru2—N12	101.72 (13)	C15—C14—C13	118.0 (5)
N11—Ru2—N12	78.74 (14)	C15—C14—H14	121.0
N9—Ru2—N12	92.80 (13)	C13—C14—H14	121.0
N7—Ru2—N12	92.36 (13)	N3—C15—C14	123.5 (4)

N10—Ru2—N12	157.63 (13)	N3—C15—H15	118.3
F3—P1—F6	179.39 (15)	C14—C15—H15	118.3
F3—P1—F4	90.49 (14)	N4—C16—C17	122.5 (4)
F6—P1—F4	89.79 (14)	N4—C16—H16	118.8
F3—P1—F1	90.57 (13)	C17—C16—H16	118.8
F6—P1—F1	89.14 (13)	C18—C17—C16	119.5 (4)
F4—P1—F1	178.79 (15)	C18—C17—H17	120.2
F3—P1—F2	90.07 (13)	C16—C17—H17	120.2
F6—P1—F2	90.47 (13)	C17—C18—C19	118.8 (4)
F4—P1—F2	90.58 (14)	C17—C18—H18	120.6
F1—P1—F2	90.00 (13)	C19—C18—H18	120.6
F3—P1—F5	89.60 (13)	C20—C19—C18	120.1 (4)
F6—P1—F5	89.85 (13)	С20—С19—Н19	120.0
F4—P1—F5	89.98 (14)	C18—C19—H19	120.0
F1—P1—F5	89.45 (13)	N4—C20—C19	120.7 (4)
F2—P1—F5	179.36 (16)	N4—C20—C21	113.8 (3)
F7—P2—F12	93.0 (5)	C19—C20—C21	125.0 (4)
F7—P2—F10′	129.4 (7)	N5—C21—C33	116.9 (3)
F7—P2—F9'	139.3 (7)	N5-C21-C20	112.4 (3)
F12—P2—F9'	127.3 (7)	C33—C21—C20	130.6 (4)
F10'—P2—F9'	90.0 (7)	N5—C22—C34	117.1 (4)
F10'—P2—F12'	90.3 (8)	N5—C22—C23	112.6 (3)
F9'—P2—F12'	168.2 (8)	C34—C22—C23	130.3 (4)
F7—P2—F9	90.7 (4)	N6—C23—C24	121.3 (4)
F12—P2—F9	171.6 (4)	N6—C23—C22	114.4 (3)
F10'—P2—F9	139.9 (7)	C24—C23—C22	124.0 (4)
F12'—P2—F9	129.7 (8)	C25—C24—C23	119.0 (4)
F7—P2—F11	87.6 (3)	C25—C24—H24	120.5
F12—P2—F11	87.2 (3)	C23—C24—H24	120.5
F10'—P2—F11	96.9 (5)	C26—C25—C24	119.7 (4)
F9′—P2—F11	98.7 (6)	С26—С25—Н25	120.2
F12'—P2—F11	93.0 (4)	С24—С25—Н25	120.2
F9—P2—F11	85.5 (2)	C25—C26—C27	118.8 (4)
F7—P2—F8	92.4 (3)	С25—С26—Н26	120.6
F12—P2—F8	94.0 (3)	С27—С26—Н26	120.6
F10'—P2—F8	84.1 (5)	N6—C27—C26	122.7 (4)
F9'—P2—F8	80.5 (6)	N6—C27—H27	118.7
F12'—P2—F8	87.8 (4)	С26—С27—Н27	118.7
F9—P2—F8	93.3 (2)	N7—C28—C29	122.7 (4)
F11—P2—F8	178.79 (18)	N7—C28—H28	118.6
F12—P2—F7'	145.0 (7)	C29—C28—H28	118.6
F10'—P2—F7'	168.2 (6)	C30—C29—C28	119.2 (4)
F9'—P2—F7'	87.0 (7)	С30—С29—Н29	120.4
F12'—P2—F7'	90.4 (8)	С28—С29—Н29	120.4
F11—P2—F7'	94.9 (4)	C29—C30—C31	118.8 (4)
F8—P2—F7'	84.2 (4)	С29—С30—Н30	120.6
F7—P2—F10	172.8 (4)	С31—С30—Н30	120.6
F12—P2—F10	88.6 (5)	C32—C31—C30	120.2 (4)
F12'—P2—F10	143.2 (8)	С32—С31—Н31	119.9

F9F2F10	86 9 (4)	C30-C31-H31	119.9
$F_{11} = P_{2} = F_{10}$	85.6 (3)	$C_{31} - C_{32} - N_7$	120 4 (4)
F8 - P2 - F10	944(3)	$C_{31} - C_{32} - C_{33}$	125.1(1) 125.3(4)
F7' - P2 - F10	1264(7)	N7-C32-C33	113.8(3)
F_{14} P_{3} F_{18}	92.9(2)	N8-C33-C21	117.0(3)
F14 P3 F16	89.06 (19)	N8_C33_C32	117.1(3) 112.9(3)
F18_P3_F16	89.84 (19)	C_{21} C_{33} C_{32}	112.9(3) 1300(4)
$F14_P3_F13$	90.81 (18)	N8-C34-C22	1173(4)
F18_P3_F13	91 75 (18)	N8-C34-C35	117.5 (4)
F16_P3_F13	178 40 (19)	C^{22} C^{34} C^{35}	112.8(3) 129.8(4)
$F_{10} = F_{10} = F_{10}$	176.7(2)	$C_{22} = C_{34} = C_{35}$	129.0(4)
$F_{14} = 1.5 = 1.17$	170.7(2)	$C_{30} = C_{33} = C_{34}$	120.9(4)
$F_{10} = F_{10} = F_{10} = F_{10}$	90.30 (19) 80.05 (17)	N0 C35 C34	123.1(4) 113.8(3)
$\Gamma 10 - \Gamma 5 - \Gamma 1 /$ E12 D2 E17	09.93(17)	$N_{9} = C_{35} = C_{34}$	113.8(3)
$F_{13} - F_{13} - F_{17}$	90.09(10)	$C_{35} = C_{30} = C_{37}$	120.1 (4)
$\Gamma 14 - \Gamma 5 - \Gamma 15$	90.5(2)	$C_{33} = C_{30} = H_{30}$	120.0
F18—P3—F15	1/0.8(2)	$C_{3}/-C_{30}$ -H36	120.0
F10 - P3 - F15	89.83 (17)	$C_{36} = C_{37} = C_{38}$	119.3 (4)
F13—P3—F15	88.58 (16)	$C_{30} = C_{37} = H_{37}$	120.4
F1/-P3-F15	86.48 (18)	C38—C37—H37	120.4
F23—P4—F20	1/8.1 (8)	$C_{39} = C_{38} = C_{37}$	118.5 (4)
F23—P4—F19	88.6 (7)	C39—C38—H38	120.8
F20—P4—F19	92.7 (6)	C37—C38—H38	120.8
F23—P4—F24	90.0 (7)	N9—C39—C38	122.9 (4)
F20—P4—F24	91.3 (7)	N9—C39—H39	118.5
F19—P4—F24	91.5 (7)	С38—С39—Н39	118.5
F23—P4—F22	90.0 (6)	N10—C40—C41	122.3 (4)
F20—P4—F22	88.6 (6)	N10—C40—H40	118.9
F19—P4—F22	177.3 (8)	C41—C40—H40	118.9
F24—P4—F22	90.8 (7)	C42—C41—C40	118.9 (4)
F23—P4—F21	91.6 (8)	C42—C41—H41	120.6
F20—P4—F21	87.1 (6)	C40—C41—H41	120.6
F19—P4—F21	89.0 (8)	C41—C42—C43	119.8 (4)
F24—P4—F21	178.3 (9)	C41—C42—H42	120.1
F22—P4—F21	88.7 (8)	C43—C42—H42	120.1
F24'—P4'—F21'	177.5 (11)	C42—C43—C44	119.8 (4)
F24'—P4'—F23'	89.7 (9)	C42—C43—H43	120.1
F21'—P4'—F23'	88.2 (10)	C44—C43—H43	120.1
F24'—P4'—F19'	89.9 (9)	N10—C44—C43	120.2 (4)
F21'—P4'—F19'	88.7 (9)	N10—C44—C45	115.0 (4)
F23'—P4'—F19'	89.8 (8)	C43—C44—C45	124.8 (4)
F24'—P4'—F22'	88.7 (8)	N11—C45—C46	119.4 (4)
F21'—P4'—F22'	92.7 (9)	N11—C45—C44	113.3 (4)
F23'—P4'—F22'	91.0 (8)	C46—C45—C44	127.3 (4)
F19'—P4'—F22'	178.4 (11)	C47—C46—C45	119.2 (4)
F24'—P4'—F20'	90.9 (9)	C47—C46—H46	120.4
F21'—P4'—F20'	91.1 (9)	C45—C46—H46	120.4
F23'—P4'—F20'	179.1 (11)	C46—C47—C48	120.6 (4)
F19'—P4'—F20'	89.6 (8)	C46—C47—H47	119.7
F22'—P4'—F20'	89.7 (7)	C48—C47—H47	119.7

C1—N1—C5	117.9 (4)	C47—C48—C49	119.1 (4)
C1—N1—Ru1	128.1 (3)	C47—C48—H48	120.4
C5—N1—Ru1	113.9 (3)	C49—C48—H48	120.4
C10—N2—C6	121.5 (4)	N11—C49—C48	119.5 (4)
C10—N2—Ru1	119.0 (3)	N11—C49—C50	113.0 (3)
C6—N2—Ru1	119.2 (3)	C48—C49—C50	127.4 (4)
C15—N3—C11	118.7 (4)	N12—C50—C51	120.4 (4)
C15—N3—Ru1	127.5 (3)	N12—C50—C49	114.9 (4)
C11—N3—Ru1	113.8 (3)	C51—C50—C49	124.7 (4)
C16—N4—C20	118.4 (3)	C52—C51—C50	120.2 (4)
C16—N4—Ru1	126.4 (3)	C52—C51—H51	119.9
C20—N4—Ru1	114.7 (2)	C50—C51—H51	119.9
C22—N5—C21	123.1 (3)	C51—C52—C53	119.5 (5)
C22—N5—Ru1	118.0 (3)	С51—С52—Н52	120.3
C21—N5—Ru1	118.9 (3)	С53—С52—Н52	120.3
C27—N6—C23	118.3 (3)	C52—C53—C54	118.7 (5)
C27—N6—Ru1	127.7 (3)	С52—С53—Н53	120.7
C_2 N6-Rul	113.5 (3)	C54—C53—H53	120.7
$C_{28} = N7 = C_{32}$	118.2 (3)	N12-C54-C53	122.5 (4)
$C_{28} N_{7} R_{12}$	127.0(3)	N12-C54-H54	118 7
C_{32} N7 Ru2	1127.0(3)	C53-C54-H54	118.7
C_{34} N8-C_{33}	1232(3)	N13-C55-C56	170.6(17)
C_{34} N8 Ru2	1123.2(3) 1184(3)	N14-C57-C58	178.1 (6)
C_{33} N8—Ru2	118.4(3)	N13'	172(4)
$C_{39} N_{9} C_{35}$	118.4(3)	C55'-C56'-H56D	109 5
$C_{39} N_{9} R_{12}$	127.3(3)	C55'-C56'-H56E	109.5
C_{35} N9 Ru2	127.3(3) 1144(3)	H56D-C56'-H56E	109.5
$C40 \times 10 C44$	114.4(3) 1100(4)	$C_{55'}$ $C_{56'}$ H56E	109.5
$C40 - N10 - R_{11}2$	126.8 (3)	H56D_C56'_H56F	109.5
C44 N10 Ru2	120.0(3) 114.2(3)	H56E C56' H56E	109.5
C40 N11 $C45$	114.2(3) 122.2(4)	C57 C58 H58A	109.5
C49 = N11 = C43 $C40 = N11 = P_{11}2$	122.2(4) 1101(3)	C57 C58 H58P	109.5
C45 = N11 = Ru2	119.1(3) 118.7(3)	U58A C58 U58D	109.5
C43 - N11 - Ku2	116.7(3)	138A - C38 - 138B	109.5
C54 = N12 = C50	110.0(4)		109.5
C50 = N12 = Ru2	127.2(3)	H_{50} C_{50} H_{50} H_{50} C_{50} H_{50} H	109.5
C30—N12—Ru2	114.1(5)	HJ8B-C58-HJ8C	109.3
	122.9 (4)	N13-C39-C60	1//.3 (/)
NI-CI-HI	118.0	C59—C60—H60A	109.5
C2—C1—HI	118.6	C59—C60—H60B	109.5
$C_3 = C_2 = C_1$	119.0 (4)	H60A - C60 - H60B	109.5
$C_3 = C_2 = H_2$	120.5	C59—C60—H60C	109.5
C1 - C2 - H2	120.5	H60A—C60—H60C	109.5
C4 - C3 - C2	119.1 (4)	H60B—C60—H60C	109.5
C4—C3—H3	120.4	N16—C61—C62	178.7 (7)
С2—С3—Н3	120.4	C61—C62—H62A	109.5
$C_3 - C_4 - C_5$	120.1 (4)	C61—C62—H62B	109.5
C3—C4—H4	119.9	H62A—C62—H62B	109.5
C5—C4—H4	119.9	C61—C62—H62C	109.5
N1C5C4	120.9 (4)	H62A—C62—H62C	109.5

supplementary materials

N1—C5—C6	115.0 (4)	H62B—C62—H62C	109.5