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Abstract

We develop a novel computational method, NucHMM, to identify functional
nucleosome states associated with cell type-specific combinatorial histone marks and
nucleosome organization features such as phasing, spacing and positioning. We test
it on publicly available MNase-seq and ChIP-seq data in MCF7, H1, and IMR90 cells
and identify 11 distinct functional nucleosome states. We demonstrate these
nucleosome states are distinctly associated with the splicing potentiality of skipping
exons. This advances our understanding of the chromatin function at the
nucleosome level and offers insights into the interplay between nucleosome
organization and splicing processes.
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Background
A nucleosome is the fundamental structural unit of eukaryotic chromatin and nucleo-

some core is formed by the wrapping of 146-bp DNA in 1.75 left-handed superhelices

around a histone octamer [1–3]. Nucleosome organization, described as nucleosomal

phasing, spacing, and positioning, is determined by the interplay among nucleosome,

nucleosome-binding factors such as DNA-binding factors, histone chaperones, and

ATP-dependent chromatin remodelers [4, 5]. Several models, supported by substantial

experimental findings, have been proposed for determining nucleosome organization:

(1) DNA-binding factors or ATP-dependent chromatin remodelers forcing nucleosome

depletion in certain genomic regions [6–8]; (2) the intrinsic DNA sequence patterns

preferring histone binding [9–11]; and (3) a barrier statistically favoring deposition of a

well-positioned nucleosome and forcing the periodic positioning of all other nucleo-

somes [12]. Despite of these elegant models, there still lacks a quantitative model to
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determine the combinational effects of the different influencing factors on nucleosome

organization. For example, can nucleosome organization be quantitatively classified into

distinct nucleosome states? How many nucleosome states are there in an epigenome?

How many characteristic features are there in a particular nucleosome state? What are

the relationships among these features? Are nucleosome states cell type-specific and/or

genomic regional-specific?

Many studies have revealed that nucleosome organization plays a key role in the

regulation of gene expression [4, 5, 13–15]. Genome-wide nucleosome mapping has

also provided structural and mechanistic links among nucleosome, wrapped DNA, and

nucleosome-binding factors [16–18] and elucidated novel functionalities of organized

nucleosomal arrays in an unbiased way [19–21]. Recent studies have found that chro-

matin structure, in terms of nucleosome organization and specific histone modifica-

tions, acts as key regulators of alternative splicing. These studies provided evidence that

there exists crosstalk between chromatin and splicing [22–24]. Among these studies,

genome-wide mapping of nucleosomes has clearly illustrated the enrichment of nucleo-

somes at intron-exon junctions [25–27]. Other works, including ours, has revealed a

strong correlation between several histone modifications across the alternatively spliced

regions and splicing outcome [28, 29]. However, these findings are mostly correlative

and observational. Therefore, it is imperative to develop a computational model to

examine their relationship quantitatively.

Although many computational methods were developed to determine epigenetic

states [30–60], several limitations include that (1) some supervised learning methods

such as ChromaSig [60] cannot find de novo information, and (2) some unsupervised

learning methods such as HMMSeg [31], ChomHMM [35], Segway [39], and T-cep

[59] cannot optimally capture spatial patterns of the epigenetic marks on the nucleo-

somes, and they were not designed with modeling nucleosome organization. Thus,

none of the above methods can define functional nucleosome states, i.e., states encod-

ing combinatorial histone marks and nucleosome organization features that perform

specific functions and respond to the different environment and intercellular signaling.

Our knowledge at the quantitative aspect is very limited about the phasing of a nucleo-

some array, the spacing between two dyads of the nucleosomes, the degree of nucleo-

some positioning, as well as the extent to which the combinatorial epigenetic pattern

influences nucleosome organization. There is a lack of quantitative measures on the as-

sociation of functional nucleosome states with the splicing potentiality of skipping

exons (SEs).

In this study, we develop a novel computational method, NucHMM, which integrates

a hidden Markov model (HMM) with the characteristics of nucleosome organization

(phasing, spacing, positioning), to identify the nucleosome states associated with cell

type-specific combinatorial histone marks. We test it on publicly available MNase-seq

and ChIP-seq of H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K79me2, H3K9me3,

and H3K27me3 data in MCF7, H1, and IMR90 cells [61] and identify cell type-specific

functional nucleosome states. We further quantitatively measure the association of

functional nucleosome states with the splicing potentiality of SEs. Our work advances

our understanding of chromatin function at the nucleosome level and further offers

mechanistic insight into the interplay between nucleosome organization and splicing

process.
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Results
An overview of NucHMM

To quantitatively modeling the nucleosome organization, we have developed a novel al-

gorithm, NucHMM, to identify functional nucleosome states. NucHMM is composed

of three consecutive modules: (1) initialization, (2) training, and (3) functioning (Fig. 1

and the “Methods” section). Briefly, the initialization module pre-processes the raw se-

quencing data into the readable data input for the training module including converting

fastaq into bam, calling the peaks for ChIP-seq data by MACS2 [62] or EPIC2 [63],

identifying the positioned nucleosomes from MNase-seq by iNPS [64], and binning the

genome based on positioned nucleosomes where each nucleosome-bin is assigned with

an observation symbol from an alphabet list of 2n observations symbols representing

each possible combination of the number (n) of histone marks. The training module is

composed of two rounds of HMM training. The first round is to train multiple HMMs

for 300 iterations and to select the best HMM based on the smallest BIC score. The

second round is to retrain the best HMM for another 200 iterations (Additional file 1:

Fig. S1) after revising the input as aborting the states with very few bins (lower than

0.5% of the total nucleosomes or a user-defined cutoff) and evenly redistributing the

transition probabilities of the aborted states to the remaining states. The resulting

HMM further uses the Viterbi decoding algorithm to obtain the HMM states at the

Fig. 1 An overview of NucHMM workflow. A The initialization step combines several existing tools to
construct nucleosome-level HMM training sequences. B The training step includes a selection of the best
model and two rounds of HMM training for the best selected model. BW algorithm is applied to acquire
the transition probability matrix and the mark-state matrix derived from the emission probability matrix. C
The functioning step performs functional screening on the nucleosomes based upon the genomic location,
nucleosome array number, nucleosome spacing, phasing, and positioning and finally identifies the
functional nucleosome states
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nucleosome level. The functioning module defines the functional nucleosome states

(NucSs) by associating each of HMM states with genomic and nucleosome organization

features, including (1) genomic location—identifying the most enriched genomic re-

gions for each of HMM states; (2) an average number (Ave No.) of nucleosomes—iden-

tifying an average of the number of nucleosomes in a nucleosome array for each of

HMM states, where a nucleosome array is defined as a set of nucleosomes that have

the same state and the distance between two adjacent nucleosomes is less than 350 bp

(Additional file 1: Fig. S2); (3) nucleosome phasing and spacing—determining nucleo-

some phasing score and average (Ave) spacing for each of HMM states by filtering out

those nucleosomes if their spacing is out of a defined range (see the “Methods” sec-

tion—Eq. 6); and (4) nucleosome positioning—determining nucleosome positioning

score for each of HMM states by firstly building the group containing all nucleosome

positioning scores for each state and then filtering out the nucleosomes with user-

defined nucleosome positioning cutoff (by default, NucHMM will use 0.05 and 0.95

quantile values of the group as the cutoff).

Selecting the best HMM and determining the genomic location

We tested NucHMM in publicly available MNase-seq and ChIP-seq of H3K4me1,

H3K4me3, H3K27ac, H3K9me3, H3K27me3, H3K36me3, H3K79me2 data in MCF7,

H1, and IMR90 cell types (Additional file 1: Tables S1-2). We used iNPS to identify

11.6, 11.9, and 12.7 million genome-wide positioned nucleosomes in MCF7, H1, and

IMR90 cell types, respectively. Since the functional nucleosomes are likely located in

close to 5′transcription start site (5TSS), we chose a gene-centric genomic region for

training HMM ranging from − 100Kb upstream to 5TSS (Upstream-TSS), gene body

(Gene-body), and + 10Kb downstream of transcription terminal site (TTS) (Down-

stream-TTS) (Additional file 1: Suppl. Notes). Thus, only around 7.2, 7.4, and 7.3 mil-

lion positioned nucleosomes for MCF7, H1, and IMR90 cell types were used for the

first round training. We trained a total of 50 HMMs with five initial states ranging from

15 to 25 each repeated by five times and selected the best model with 20 initial states

based on its smallest BIC score, 4.91E+07 (Fig. 2A and Additional file 1: Tables S3-5).

We found seven states in the best model that are redundant (Fig. 2B) and thus removed

them before the second round of training (Additional file 1: Suppl. Notes and Fig. S3).

We finally achieved a model with 13 HMM states with a transition matrix showing the

transition probabilities among states (Fig. 2C) and a mark-state matrix showing the

emission probabilities for each of the seven marks in each of the 13 HMM states (Add-

itional file 1: Fig. 2D and Fig. S4). We compared our HMM states to ChromHMM/Seg-

way states and confirmed that our HMM is capable of capturing the chromatin states

with the improved nucleosome level (Additional file 1: Suppl. Notes and Figs. S5-8).

We further performed genomic location analysis and observed state 2 with H3K9me3

mark, state 4 with H3K4me1, and state 10 with H3K27me3 mark were highly enriched

in the Upstream-TSS, particularly in Distal/Proximal (− 100Kb to − 1Kb upstream to

5TSS), and state 5 with H3K27me3/K4me1 marks, state 7 with H3K4me1/K36me3/

K79me2/K9me3/K27me3 marks, and state 9 with H3K4me1/K4me3/K27ac marks were

modestly enriched in the same region (Fig. 2E). As expected, states with H3K36me3 or

H3K79me2 marks including state 1 with H3K79me2, state 3 with H3K36me3, state 6
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with H3K4me1/K36me3 marks, state 11 with H3K36me3/K79me2 marks, and state 13

with H3Kme1/K4me3/K27ac/K79me2 were highly enriched in the Gene-body and

Downstream-TTS (Fig. 2F and Additional file 1: Figs. S9-11). States 8 and 12 were not

enriched with any known marks, thus not included for further functional

characterization.

Determining nucleosome phasing and spacing

Nucleosome phasing and spacing are two main features to characterize nucleosome

organization (Fig. 3A). We mathematically defined the nucleosome phasing score and

spacing value based on the distribution signals of the nucleosome arrays (see the

“Methods” section). We first plotted nucleosome array frequency and clearly observed

distinct coverage patterns associated with each of HMM states (Fig. 3B). We then cal-

culated the phasing score for each of HMM states by Welch’s method and found that

states 5, 9, and 10 have the highest phasing score (Fig. 3C and Additional file 1: Fig.

S12), suggesting that H3K4me1 and H3K27me3 marks may be capable of imposing a

better organized nucleosome array. We then derived the average of nucleosome spacing

for each of HMM states after averaging four nucleosome spacing values within the 1Kb

nucleosome array (Fig. 3D). Interestingly, we found states 2, 3, and 10 with two repres-

sive marks H3K9me3 and H3K27me3 and one elongation mark H3K36me3 tend to

have larger nucleosome spacing values, while states 5, 6, and 9 associated with active

marks H3K4me1 and H3K27ac have smaller spacing values. We further verified the re-

liability of our methods for calculating the phasing score and spacing value by using a

simulated nucleosome array coverage signal (Additional file 1: Suppl. Notes and Fig.

Fig. 2 Selecting the best HMM and defining genomic regions for each of HMM states. A We trained 50
HMM models (other 25 models were shown in Additional file 1: Table S4) with different numbers of initial
states and select the best model with the smallest BIC score (the highlighted model). B A line plot showed
seven states are redundant in the current “best” model. We applied the second round HMM training by
removing those seven redundant states. C The transition probabilities of the final 13-states HMM. The
transitions were from states on y-axis to the x-axis. D The mark-state probabilities that derived from the
emission probabilities. Each column represents a histone mark and each row represents a HMM state. E A
distribution of each of HMM states in 100Kb Upstream TSS. F A distribution of each of HMM states in the
gene body
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S13). Taken together, our results strongly suggest nucleosome phasing and spacing are

intimately correlated with distinct functionality of different histone marks.

Determining nucleosome positioning and defining functional nucleosome states

Nucleosome positioning is the most important characteristic of nucleosome

organization and is often qualitatively classified as well-positioned or fuzzy (Fig. 4A—

upper). We first defined a reference nucleosome positioning (rNP) score based on the

pile-up of raw reads (see the “Methods” section—Eq. 7 and Fig. 4A—lower). We then

tested nine empirical equations (Additional file 1: Suppl. Notes) on the positioned nu-

cleosomes by the Pearson correlation with rNP to derive a final equation to determine

the NP score or the degree of nucleosome positioning (see the “Methods” section—Eq.

8 and Fig. 4B, Additional file 1: Fig. S14). We found the distributions of the nucleosome

positioning scores showed a slightly difference among HMM states (Fig. 4C) and de-

fined the mean of each distribution as the nucleosome positioning score. An IGV

visualization of a genomic region for the nucleosome reads distribution and the posi-

tioning score calculated by Eq. 8 was shown in Fig. 4D.

After examining the HMM states with four genomic regions and nucleosome

organization features, we defined 11 functional nucleosome states (NucSs) (Table 1) with

a detailed description and visualization of each of 11 NucSs in Additional file 1: Suppl.

Notes and Fig. S15. Cell type-specific NucSs-genes analysis and the lists were found in

Additional file 1: Suppl. Notes, Fig. S16 and Additional files 2, 3 and 4, respectively.

Fig. 3 Nucleosome phasing and spacing of each of HMM states. A A schematic diagram shows the
definition of nucleosome phasing and spacing. The upper nucleosome array has a higher phasing score
than the bottom nucleosome array does. Nucleosome spacing is the distance between two dyads of the
nucleosomes. B A nuc-array-coverage plot showed the normalized nucleosome array frequency coverage of
each state in the 1 kb range. 0 is the start position of the array with a certain HMM state. C A bar plot
showed the phasing score of each HMM state calculated by Welch’s method. D A line plot of nucleosome
spacing. The interval is the distance between two peaks in panel B which is also the nucleosome spacing.
We averaged 4 nucleosome spacing in the 1Kb nucleosome array as the nucleosome spacing value. The
final nucleosome spacing values for each state were shown next to the legend
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Determining the splicing potentiality of SEs

H3K79me2 mark has been reported to be functionally associated with elongation and spli-

cing processes [28, 29]; we were thus particularly interested in understanding the func-

tional relationship of SEs with NucS1 (elongation accelerator), NucS7 (elongation

processor), NucS10 (elongation speeder,) and NucS11 (elongation initiator), four nucleo-

some states enriched with H3K79me2 mark in the gene body. Interestingly, we observed

NucS10 with both H3K79me2 and H3K36me3 marks showed the highest enrichment in

exons for all three cell types (Fig. 5A). We then defined a NucS-SE affinity, a ratio of SEs

associated with a NucS vs randomized SEs associated with that NucS, to semi-

quantitatively determine the association between nucleosome states and SE events. We

found that NucS10 again showed a higher SE affinity among all three cell types (Fig. 5B).

To further determine the splicing potentiality of SEs, we also developed an empirical

equation to quantify the splicing potentiality for each of four nucleosome states, where we

assessed the splicing potentiality from three following aspects: (1) Fréchet distance be-

tween the nucleosome distribution of reliable SE (rSE) and unreliable SE (urSE) (Add-

itional file 1: Fig. S17); (2) the difference of nucleosome positioning between nucleosomes

in rSE and urSE (Additional file 1: Fig. S18); and (3) the normalized counts coefficient of

each H3K79me2 related NucS (see the “Methods” section and Eq. 9). Remarkably, we

found the potentiality score of NucS10 is the highest among all four H3K79me2 related

NucSs (Fig. 5C). Together, our results suggest nucleosomes modified with H3K36me3

and H3K79me2 histone tails might play an important role in influencing the skipping

exon processing due to its lowest phasing and a higher degree of positioning.

Fig. 4 Nucleosome positioning of each of HMM states. A The illustration of nucleosome positioning
definition and reference positioning score calculation. The upper panel showed the definition of well-
positioned as well as fuzzy nucleosome. The bottom panel schematically drew the elements that were used
to calculate the reference nucleosome positioning: width at half height restricted by fitted boundary, the
number of reads and the variance of the reads centered by the identified dyad. B The correlation between
each iNPS-derived positioning equation and reference positioning score equation in MCF7 cell type.
Equation 8 showed the best correlation with the reference positioning score. C The violin plots showed the
distribution of the nucleosome positioning score of each HMM states. D IGV visualized the nucleosome
reads distribution and the positioning score calculated by Eq. 8. Green box shows the well-positioned
nucleosome with a high positioning score, and red box shows the fuzzy nucleosome with a low
positioning score
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Discussion
Despite several existing computational methods for determining epigenetic states, none

of them is able to quantitatively examine the relationship of nucleosome organization,

histone marks, and genomic regions at a finer nucleosome resolution level. To the best

of our knowledge, our NucHMM is the first computational algorithm and tool to iden-

tify functional nucleosome states associated with cell type-specific combinatorial his-

tone marks and nucleosome organization. We rigorously trained and tested it on all

publicly available MNase-seq and ChIP-seq data of various histone marks in MCF7, H1

and IMR90 cells. We were able to identify 11 cell type-specific functional nucleosome

states, each encoded with specific biological meanings (Table 1). Importantly,

NucHMM is applicable to train MNase-seq and ChIP-seq of various histone marks in

many different cell types.

To test the reliability of NucHMM results, we first compared “Training” module of

NucHMM with ChromHMM and Segway to evaluate its performance. We found that

both NucHMM “Training” module and ChromHMM/Segway produced similar results

in terms of HMM states with distinct combinatorial histone marks (Additional file 1:

Figs. S5-6). We then used a simulated nucleosome array coverage signal to verify the fi-

delity of our methods for calculating the phasing score and spacing value (Additional

file 1: Fig. S13). Remarkably, the spacing value calculated directly from the simulation

sine function is consistent with the one calculated from NucHMM. The phasing score

from the simulated signal is also in line with our knowledge. Finally, we constructed

Table 1 The definition of functional nucleosome states

Functional
nucleosome states
(HMM states)

Histone marks Ave. no. of
nucleosomes

Genomic
location

Ave.
spacing

Positioning
score

Phasing
score

Elongation accelerator
NucS1 (S1)

K79me2 3.99 5′-gene
body

185.00 7.97 5.84

Compacting organizer
NucS2 (S2)

K9me3 8.49 Distal 195.00 8.48 10.82

Elongation stabilizer
NucS3 (S3)

K36me3 5.82 3′-gene
body

192.50 8.06 2.93

Accessible booster
NucS4 (S4)

K4me1 4.13 Distal 181.75 8.47 10.96

Primed intermediator
NucS5 (S5)

K4me1/K27me3 4.56 Distal/
promoter

183.25 8.75 11.58

Elongation terminator
NucS6 (S6)

K4me1/K36me3 3.74 3′-gene
body

180.00 8.61 1.46

Elongation processor
NucS7 (S7)

K4me1/K36me3/
K79me2/K9me3/
K27me3

5.32 Gene body 183.25 8.90 2.04

Transcriptional
stimulator
NucS8 (S9)

K4me3/K4me1/
K27ac

2.09 Promoter 175.00 6.07 21

Crowding controller
NucS9 (S10)

K27me3 7.37 Distal 196.75 8.82 16.4

Elongation speeder
NucS10 (S11)

K36me3/K79me2 4.55 Gene body 185.00 8.72 1

Elongation initiator
NucS11 (S13)

K4me3/K4me1/
K27ac/K79me2

4.67 Promoter/
5′-gene
body

183.25 7.81 7.39
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the equation for measuring nucleosome positioning with the validation by reference po-

sitioning score (Fig. 4) and Nucleosome Dynamics [65] (Additional file 1: Suppl. Notes

and Figs. S19-20).

There are several notable strengths of NucHMM. Firstly, we built directional

nucleosome-based observations in the “Initialization” module and used it for the uni-

variate HMM “Training” module. The nucleosome-level observations allow us to anno-

tate the combinatorial histone modifications on the nucleosomes (Additional file 1:

Suppl. Notes and Figs. S6A, S7B-D, S8A and S8C) and also to capture the 5′ TSS more

accurately (Additional file 1: Fig. S8B). While univariate HMM enumerates each pos-

sible combination of histone marks as the possible output of HMM, it more straightfor-

wardly determines whether a particular histone mark occurs in a state compared to a

multivariate HMM, which also enhances NucHMM ability to precisely annotate HMM

states on a nucleosome. Furthermore, the directionality information provides a more

realistic model of the underlying epigenetic patterns and their transitions. Secondly, we

employed the “Functioning” module to convert HMM states to functional nucleosome

states (NucSs), which are associated with not only combinatorial histone modifications,

but also with nucleosome organization features, including nucleosome phasing, spacing

Fig. 5 The functional nucleosome states associated with the splicing potentiality of SEs. A H3K79me2-
related NucSs signals center on exons. NucS10 showed the highest enrichment in exons. B A bar plot
showed different SE affinity of each H3K79me2-related NucSs in each cell type. Briefly, we counted the raw
number of SE events for each H3K79me2-related NucSs in each cell type and then assumed SE event was
randomly associated with NucSs to get the predicted SE events. Finally, we used the ratio of raw vs
predicted number as the SE event affinity for each H3K79me2-related NucS. NucS10 showed a higher SE
affinity among all three cell types. C Semi-quantifying the SE potentiality of each H3K79me2-related NucSs.
The NucS10 consistently had the highest SE potentiality score. We assessed SE potentiality from three
aspects: the Frechet distance between the nucleosome distribution of SE and no-SE; the nucleosome
positioning difference between nucleosomes in SE and no-SE region; the normalized SE events of
each NucS
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and positioning (Additional file 1: Fig. S21). This extra layer of nucleosome

organization information expands the features space of genomic states from one di-

mensional (traditional chromatin states) into two dimensional (functional nucleosome

states), which, for the first time, offers an opportunity to genome-wide study the inter-

play of epigenetic marks-nucleosome organization. But there are few limitations of

NucHMM: (1) the initial number of HMM states needs to be estimated at the begin-

ning of NucHMM training, (2) the increased number of states and number of nucleo-

somes requires more computational and memory resources, (3) the initial assignment

of a histone mark within a nucleosome bin may not be very accurate since the overlap-

ping criteria between a nucleosome bin and a histone mark peak is a little bit subject-

ive, and (4) the cutoff threshold of the emission probability in the mark-state matrix is

arbitrary for determining whether the histone marks should be included into a state.

To mitigate these limitations, future improvements may be focused on implementing a

parallel computing framework, optimizing the assignment of histone marks and using a

statistical method to devise the initial number of HMM states and to define a cutoff

threshold of the emission probability.

Importantly, we were able to associate gene body functional nucleosome states with

publicly available RNA-seq to quantitatively measure the splicing potentiality. Our

quantitative comparison of the influence of four gene body nucleosome states on SE

events revealed that NucS10 has the highest SE potentiality (Fig. 5C). This might due

to its higher distribution at the middle gene body (Fig. 2F), its lowest nucleosome phas-

ing (Fig. 3C), and its higher degree of positioning (Fig. 4C), as well as its most enrich-

ment at internal exons (Fig. 5A). Most of the previous studies showed either

H3K79me2 or H3K36me3 has a role in regulating alternative splicing [28, 29, 66].

However, our analyses clearly showed that the nucleosomes with both H3K36me3 and

H3K79me2 marks might have the most effective influence in co-regulating the skipping

exon processing. Our finding may offer new opportunities to interrogate the mecha-

nisms of the functional crosstalk between H3K36me3 and H3K79me2 marked nucleo-

somes and the skipping exon processing.

Conclusion
In summary, we developed a novel computational method, NucHMM, for identifying

cell type-specific nucleosome states. With NucHMM, we identified 11 distinct func-

tional nucleosome states for MCF7, H1, and IMR90 cell types. We further demon-

strated that these functional nucleosome states can be used to quantitatively determine

the splicing potentiality of SEs. Our work advances our understanding of chromatin

function at the nucleosome level and further offers mechanistic insight into the inter-

play between nucleosome organization and splicing process.

Methods
NucHMM initialization

To remove background noises and decrease the false positive rate of called positioned

nucleosomes positioning and peaks of histone marks, we performed quality control

(QC) for both MNase-seq and ChIP-seq data by using trim-galore [67]. We used bowtie

or bowtie2 to uniquely map the reads to human HG19 reference genome. For MNase-
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seq data, we used Deeptools [68] to keep fragments within the range of 130–180 bp be-

cause of the length of the wrapped DNA of nucleosome plus the linker histone is

within this range. We applied iNPS, which smoothed the MNase-seq wave profile with

Laplacian of Gaussian convolution, to detect the borders of the nucleosome peaks, and

then use a Poisson approximation filtering process to locate the final nucleosomes. We

used MACS2 to identify narrow peaks for ChIP-seq of H3K4me1, H3K4me3, and

H3K27ac but used EPIC2 to identify broad peaks for ChIP-seq of H3K9me3,

H3K27me3, H3K36me3, and H3K9me3 with parameters -bin 100, -fdr 0.05, and -g 2

(or -g 5).

The entire genome was then binned based on detected nucleosomes. An alphabet of

128 (27) observation notations was built by enumerating each possible combination of

marks (Additional file 1: Table S5) including no marks. For example, observation 9

(0b0001001) corresponds to the presence of H3K4me3 (1 = 0b0000001) and

H3K79me2 (8 = 0b0001000) and the absence of all other marks. We then assigned the

converted notations to the bins based on the degree of overlapping between the histone

mark’s peak and the nucleosome position. We limited the trained genomic region ran-

ging from − 100Kb upstream to 5TSS (Upstream-TSS), gene body (Gene-body), and +

10Kb downstream of transcription terminal site (TTS) (Downstream-TTS) (Additional

file 1: Suppl. Notes) and compiled a set of 19,189 protein-coding genes with the unique

5′TSS from UCSC RefSeq Genes.

NucHMM training

NucHMM training included two rounds of HMM learning process. In the first round,

we empirically chose initial states ranging from 15 to 25 and ran five first-order HMMs

for each of them. Each HMM was trained for 300 iterations to ensure the convergence

using the Baum-Welch algorithm [69]. We then selected the HMM with the lowest

Bayesian Information Criterion (BIC) score. Before the second round training, we re-

moved those states with less than 0.5% of the total nucleosomes in the model from the

transition probability and emission probability matrices. To simplify the HMM and

maximize its states’ the descriptive power, we used the modified transition probability

and emission probability matrices for the second HMM learning process. The resulting

HMM was trained with the Baum-Welch algorithm (Additional file 1: Suppl. Notes) for

another 200 iterations to achieve the final HMM. The log-likelihood of HMM after

each iteration was calculated to ensure to reach the local minimum. We found that 200

iterations were sufficient for this second round HMM to approach the convergence.

The Viterbi algorithm was applied to decode HMM states on each nucleosome (Add-

itional file 1: Suppl. Notes). The probabilities of an individual histone mark were calcu-

lated by marginalization among all output combinations of marks probabilities. The

individual emission probability follows

Prid ¼
X2n

x¼1
P xð Þ x&id > 0ð Þ� �� 0 x&id ¼ 0ð Þg; ðEq:1Þ

where n is the number of histone marks, & is bitwise AND operator, and x is the out-

put number.

Fang et al. Genome Biology          (2021) 22:250 Page 11 of 17



Nucleosome phasing and spacing

We first processed the Gaussian smoothed nucleosome signals from iNPS to nucleo-

some state-specific nucleosome array signals. We then averaged nucleosome array sig-

nals by the sum of all nucleosome array signals within the nucleosome state divided by

the number of the nucleosome arrays. As the resolution of the Gaussian smoothed sig-

nal is 10 bp/point in the iNPS result, the initial sample rate of the nucleosome state

array signal is 100 (10 bp/point). In order to keep the fidelity and more precisely con-

vert the signals from the genome domain to the frequency domain, we first interpolated

the signals and increased the sample rate to 1000 (1 bp/point), and then implemented

Welch’s method [70] to make the conversion based on the periodogram spectrum esti-

mates, which was used to calculate the nucleosome phasing score.

For a detailed implementation, we firstly used the Hanning window function w(n) to

divide the nucleosome state array signal x into K available frames with M points in each

frame. Each frame is represented by

xm nð Þ≜w nð Þx nþmRð Þ; n ¼ 1; 2;⋯;M−1;m ¼ 1; 2;⋯;K−1 ðEq:2Þ

where R is the window hop size.

Then, the periodogram of the mth frame is given by

Pxm;M wkð Þ ¼ 1
M

FFTN ;k xmð Þ2�� ��≜ 1
M

XN−1

n¼0
xm nð Þe− j2πnk=N

���
���
2

ðEq:3Þ

We then averaged the periodograms across the genome. The Welch estimate of

power spectral density is given by

Ŝ
W
x wkð Þ≜ 1

K

XK−1

m¼0
Pxm;M wkð Þ ðEq:4Þ

The simplified conversion equation between the genome domain and the frequency

domain is given by:

freqc ¼ fs
genome length

ðEq:5Þ

where fs is the sample rate of the signal.

We finally focused on the power spectrum density within frequency 4–10 Hz, which

corresponds to the genome domain range 100–250 bp. We used the highest spectral

density value of each nucleosome state in the window and multiplied 1000 as the nu-

cleosome phasing score.

The calculation of the nucleosome spacing value utilizes the distribution of a nucleo-

some state-specific nucleosome array. We computed all local maxima of the array dis-

tribution by the following two rules: (1) for sharp peaks, the local maximum is defined

as any sample point whose two direct neighbors have a smaller amplitude, and (2) for

flat peaks, the middle point index is considered as the local maximum. We then calcu-

lated the average distances between the maxima of peaks as the nucleosome spacing

value. To determine the spacing range for a nucleosome within a NucS-specific nucleo-

some array, we used Eq. 6:
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SpacingNucS−Interval� 5þ Rank�Coefrange
� �

; SpacingNucS þ Interval� 5þ Rank�Coefrange
� �� �

ðEq:6Þ

where SpacingNucS is the average nucleosome spacing of a NucS; Interval is the order

of the nucleosome minus one, e.g., for the second nucleosome in the array, its Interval

is one; Rank refers to the rank for each of 11 NucSs based on their phasing scores; Coe-

frange is a user-defined parameter that used to adjust the range with 1 bp as the default.

Nucleosome positioning

We used two inter-correlated approaches, the “raw reads” reference approach and the

“iNPS-derived” approach, to determine the nucleosome positioning (NP) score. We de-

fined the well-positioned nucleosomes would have higher positioning score than fuzzy

nucleosomes in both methods. Both approaches were applied with the idea that nucleo-

some positioning is the geometric-mean of the nucleosome fuzziness and nucleosome

occupancy. In the “raw-reads reference” approach, we measured three features: (1) the

standard deviation of raw reads, (2) the enrichment of raw reads, and (3) the full width

at half maximum of reads peak. The equation of this approach can be described as:

rNPt ¼ norm enrichtð Þ
norm fwhmtð Þ þ norm stdtð Þ ðEq7Þ

where t ∈ {1, 2,⋯, T} = nucleosome population set, and norm represents the inter-

quartile range normalization.

For example, the numerator should be relatively small for a fuzzy nucleosome while

the denominator should be large and make the nucleosome positioning score small. In

the “iNPS-derived” approach, we first empirically created nine equations based on iNPS

results to calculate the nucleosome positioning. We then used the Pearson correlation

method to determine which equation has the highest correlation with the “raw-reads

reference” approach. The final determined equation is given by:

NPt ¼
heightþ log2 pvalpeak � pvalvalley þ 1

� 	
þ area

3� width
ðEq:8Þ

where height, width, area, pvalpeak , and pvalvalleyare all from iNPS. Generally, the nu-

merator in the Eq. 8 reflected the occupancy measurements and denominator reflected

the fuzziness measurement. Besides, we noticed that the pvalvalley is abnormally high at

the end of the nucleosome array regardless of the shape of the real nucleosome. Thus,

we manually replaced all pvalvalley of the last nucleosome in the array with the median

value of the whole pvalvalley set. All elements in Eq. 8 are also applied interquartile

range normalization.

Splicing potentiality of SE

We assessed SE’s the splicing potentiality associated with each of four NucSs with

H3K79me2 mark by measuring the difference of nucleosome organization between the

reliable SE group and the unreliable SE group. We first used MISO [71] to identify the

potential SE events. The reliable SE events result from applying two rules on the identi-

fied potential SE events. Rule 1: X + Y ≥N and Y ≥ 1, where X, Y are integer counts cor-

responding to the number of reads in each of these categories, (1,0):X, (0,1):Y. Class

Fang et al. Genome Biology          (2021) 22:250 Page 13 of 17



(1,0) are reads consistent with the first isoform in the annotation but not the second

while class (0,1) are reads consistent with the second but not the first. N was the cutoff

value derived from X + Y frequency distribution. Rule 2: CI-width > median of CI-

width, where CI is the confidence intervals outputted by MISO for each estimate of Ψ.

The rest of the potential SE events are then defined as unreliable SE group. We then

extracted nucleosome distribution from iNPS results based on the coordinates of the

rSE and urSE groups. The difference of nucleosome organization between rSE and urSE

groups was then measured by Fréchet distance [72] and nucleosome positioning popu-

lation (Additional file 1: Suppl. Notes—the pseudocode for calculating Fréchet dis-

tance). The following equation calculates splicing potentiality of SE (SPSE):

SPSESo ¼ norm frdistð Þ � normðabs diffnucpos
� �� coefevent−counts ðEq:9Þ

where norm means the results scaling to range [0, 1], frdist is the acronym of Fréchet

distance, abs is the acronym of absolute function, diffnucpos represents the difference of

median values of NucS rSE and urSE group, and coefevent − counts is the normalized event

count coefficient.

More specifically, the Fréchet Distance (norm(frdist)) is used to measure the differ-

ence of the averaged NucS array signal (containing both nucleosome spacing and phas-

ing measurements) between rSE and urSE group (Additional file 1: Fig. S17). The

norm(abs(diffnucpos) measured the different of the nucleosome positioning between rSE

and urSE group (Additional file 1: Fig. S18). The larger the Fréchet distance and nu-

cleosome positioning implied a higher SE potentiality of the NucS. The last

coefevent−counts ¼ normðnumber of NucSrSE
number of NucS Þ is used to measure the ‘abundance’ of the NucS

in the rSE group.
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