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Automated segmentation 
of macular edema for the diagnosis 
of ocular disease using deep 
learning method
Zhenhua Wang1,6, Yuanfu Zhong1,6, Mudi Yao2,6, Yan Ma2,6, Wenping Zhang1, Chaopeng Li3, 
Zhifu Tao4, Qin Jiang2* & Biao Yan5*

Macular edema is considered as a major cause of visual loss and blindness in patients with ocular 
fundus diseases. Optical coherence tomography (OCT) is a non-invasive imaging technique, which 
has been widely applied for diagnosing macular edema due to its non-invasive and high resolution 
properties. However, the practical applications remain challenges due to the distorted retinal 
morphology and blurred boundaries near macular edema. Herein, we developed a novel deep learning 
model for the segmentation of macular edema in OCT images based on DeepLab framework (OCT-
DeepLab). In this model, we used atrous spatial pyramid pooling (ASPP) to detect macular edema at 
multiple features and used the fully connected conditional random field (CRF) to refine the boundary 
of macular edema. OCT-DeepLab model was compared against the traditional hand-crafted methods 
(C-V and SBG) and the end-to-end methods (FCN, PSPnet, and U-net) to estimate the segmentation 
performance. OCT-DeepLab showed great advantage over the hand-crafted methods (C-V and 
SBG) and end-to-end methods (FCN, PSPnet, and U-net) as shown by higher precision, sensitivity, 
specificity, and F1-score. The segmentation performance of OCT-DeepLab was comparable to that 
of manual label, with an average area under the curve (AUC) of 0.963, which was superior to other 
end-to-end methods (FCN, PSPnet, and U-net). Collectively, OCT-DeepLab model is suitable for the 
segmentation of macular edema and assist ophthalmologists in the management of ocular disease.

Macular edema is clinically defined as the accumulation of serous fluid within retina with increased central 
retinal thickness. It is the dominant sign of several ocular diseases including diabetic retinopathy, age-related 
macular degeneration, and retinal vein  occlusion1,2. Clinical diagnosis, etiology identification, and treatment of 
macular edema have been greatly improved with the development of modern imaging technologies, especially 
optical coherence tomography (OCT). Fluid accumulation can be noninvasively observed and located in a clini-
cal setting by OCT  technology3.

The use of optical coherence tomography (OCT) enable the physicians to identify macular edema in its 
early or subtle manifestations, which can assist disease management and design of future trials. OCT is a non-
invasive diagnosing tool, which can enabled fast, non-invasive, high-resolution visualization of ocular  structure4,5. 
However, these are still several limitations existed in its application. Continuous hardware improvements have 
been achieved since OCT inception, but no significant progress has been made in the software analysis of OCT 
 images6. Increasing number of patients required disease management based on OCT images in the clinical 
practices. However, the great number of OCT images and poor reproducibility between OCT assessors have 
often been reported.

Interpretation of OCT image is still a laborious, time-consuming, and challenging work for ophthalmologists. 
Currently, manual segmentation of macular edema by the highly trained physician is considered as the gold 
 standard7,8. However, the potential fatigue of human experts lead to segmentation errors. Several computer-aided 

OPEN

1College of Information Science, Shanghai Ocean University, Shanghai 201306, China. 2The Affiliated Eye Hospital, 
Nanjing Medical University, Nanjing 200025, China. 3Department of Ophthalmology, The First People’s Hospital of 
Huai’an City, Huai’an 223001, China. 4Department of Ophthalmology, The Firstirst Affiliated Hospital of Soochow 
University, Suzhou 215006, China. 5Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan 
University, 83# Fen Yang Road, Shanghai 200030, China. 6These authors contributed equally: Zhenhua Wang, 
Yuanfu Zhong, Mudi Yao and Yan Ma. *email: jiangqin710@126.com; yanbiao1982@hotmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-92458-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13392  | https://doi.org/10.1038/s41598-021-92458-8

www.nature.com/scientificreports/

methods have been used in the segmentation of macular edema, including threshold-based, graph-based, active 
contours-based, and region-based  approaches9–12. However, these methods were designed based on the hand-
crafted features, which was highly dependent on the quality of OCT images and crafted based on domain 
knowledge.

Deep learning is a form of machine learning using the convolutional neural network, which has been used 
for healthcare and image  analysis13. In deep learning, convolutional neural network (CNN) is a class of deep 
neural network, which is the most commonly applied to image analysis. CNN has been used for the segmenta-
tion of subretinal fluid, pigment epithelium detachment, and classification of retinal  vasculature14–16. Due to the 
low computational efficiency and weak multi-scale feature extraction ability, improved CNNs were proposed 
including fully convolutional network (FCN), Pyramid scene parsing network (PSP-net) and U-net. FCN adds 
the full-connected layer in CNN network as convolution layer and connects the deconvolution layer to enhance 
the computational  efficiency17. Pyramid scene parsing network (PSP-net) uses the pyramid level to separate 
the feature map into different sub-regions and form pooled representation for different locations to improve 
multi-scale feature extraction  ability18. U-net is modified with up-sampling operators and a large number of 
feature channels to improve computational efficiency and multi-scale feature extraction  ability19. Although these 
improved CNNs have better segmentation efficiency than convolutional neural network (CNN). However, there 
are still some challenges, such as fault-segmentation problem, over-segmentation problem, and multi-scale 
feature extraction problem caused by the limited depth of the convolutional network.

In this study, we proposed a deep learning method based on the DeepLab model for the segmentation of 
macular edema in OCT images (OCT-DeepLab). Atrous spatial pyramid pooling (ASPP) was used to segment the 
objects at multiple features to enhance the multi-scale feature extraction  ability20. The fully connected conditional 
random field (FC-CRF) was then used to refine the boundary of macular edema to reduce the fault-segmentation 
and over-segmentation21. The segmentation performance of OCT-DeepLab was finally estimated by compar-
ing against the hand-crafted methods (C-V and SBG) and the end-to-end methods (FCN, PSPnet, and U-net).

Experimental principle of the propose method. The flowchart of the proposed method, OCT-Deep-
Lab, was shown in Fig. 1, including the pre-processing of OCT images by wavelet transform, the coarse segmen-
tation of macular edema by DeepLab framework, and the boundary optimization by FC-CRF.

Figure 1.  Flowchart of OCT-DeepLab method.
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Pre-processing of OCT images. Speckle noise can result in granular appearance, limit the contrast, and 
reduce the signal-to-noise ratio (SNR) of OCT images, which can pose great difficulties to identify the detailed 
features of OCT  images22,23. In the pre-processing step, wavelet transform can reduce the speckle noises of OCT 
 images24. OCT images are decomposed by two-level wavelet transform (Fig. 2). At the first level, OCT images 
( LL0 ) is decomposed into a low frequency band ( LL1 ) and three high frequency band ( HH1 , LH1 and HL1 ). At 
the second level, LLi is split into an approximation LLi+1 and three detail channels LHi+1 , HLi+1 and HHi+1 for 
horizontally, vertically, and diagonally oriented details, respectively. The noise threshold (NT) of each low fre-
quency band LLi+1 can differentiate between target signal and speckle noise.

NT is calculated by:

where i and j is the horizontal and vertical pixel coordinates of OCT images respectively;pij is the pixel value.α 
is the hyperparameter, which can be used for rescaling denominator.

The process of reducing speckle noise is shown below:

p′ij is the pixel value after reducing noise. If pij ≤ NT , it denotes that the pixel is speckle noise and should 
be reduced. If pij > NT , it denotes that the pixel is the target signal and should be retained. OCT images are 
decomposed by 2-level wavelet transform (Fig. 3).

The threshold of speckle noises (NT) for each OCT image is calculated by Eq. (1). Then, the speckle noises are 
reduced by Eq. (2). Figure 4 is the denoising flowchart of original image and the re-construction of new image.

Coarse segmentation of macular edema in OCT images by Deeplab framework. At this step, 
macular edema is segmented by Deeplab framework. DeepLab is a deep learning model for image segmentation 
with deep convolutional nets, atrous spatial pyramid pooling (ASPP), and fully connected  CRFs20. DeepLab uses 
the Resnet-101 with atrous convolutions as the main feature extractor and uses ASPP for extracting multiple 
scales features.

Resnet-101 encoder addresses the degradation problem based on the residual learning  block25, which is 
computed as shown below:

where f  denotes the residual function; xl denotes the input feature to the l-th residual block; wl denotes a set of 
weights associated with l-th residual block. The operating principle of residual learning block is shown in Fig. 5A.

ASPP can extract the multiple scale features of OCT images by atrous convolution operation, which can 
enlarge the field of view of the kernel without suffering the increasing number of parameter’s  problems26. Macular 
edema has different scales in OCT images. ASPP can account for different scales of macular edema which can 
improve the accuracy of segmentation.

Taking the re-constituted OCT images as the input dataset, the coarse segmentation of macular edema is 
conducted by OCT-Deeplab. Here, the learning rate of Deeplab neural network is set as 0.007, and then the 
value of learning rate is updated dynamically by the ‘poly’ optimization method. The value of momentum and 
weight decay is set as 0.9 and 5e−4,  respectively27. Then, the coarse boundary of macular edema in OCT image is 
obtained (Fig. 5). Compared with the segmentation of macular edema by manual labels, the boundary of coarse 
segmentation of macular edema is smoother and fails to show the smaller scale of macular edema. Thus, the 
boundary of macular edema is required to be further optimized and refined.
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Figure 2.  Flowchart of 2-level wavelet transform. (A) First level wavelet transform. (B) Second level wavelet 
transform.
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Refine the coarse segmentation result of macular edema by FC-CRF. At this step, the coarse 
boundary of macular edema is optimized by a probabilistic graphical model, FC-CRF. In the FC-CRF model, the 
segmentation of OCT image boundary is abstracted as an energy minimization problem.

The pixels of OCT image ( I ) are denoted as X = {X1, . . . ,XN } . The conditional random field (I ,X) is calcu-
lated by Gibbs distribution.

Figure 3.  Decomposing process of OCT image by 2-level wavelet transform.

Figure 4.  Denoising flowchart of OCT image. (A) Original OCT image. (B) Low-frequency band of OCT 
image. (C) Low-frequency band of OCT image by reducing speckle noises. (D) Reconstitution of OCT image.
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where Z(I) is a normalization constant; ς is a graph associated with I ; c is a set of cliques Cς in ς , each inducing 
a potential �c

28. The conditional probability of X is caculated by Eq. (4). Gibbs energy function of X is

The maximum posteriori X is obtained by minimizing the corresponding energy:

After minimizing E(X|I) , a binary segmentation of macular edema is obtained. Given a graph ς on I , its 
energy is obtained by summing its unary and pairwise potentials ( ψu and ψp , respectively):

(4)P(X|I) =
1

Z(I)
exp



−
�

c∈Cς

�c(Xc|I)





(5)E(X|I) =
∑

c∈Cς

�c(Xc|I)

(6)X∗ = argmin
X∈L

E(X|I)

(7)E(X|I) =
∑

i

ψu(Xi)+
∑

i<j

ψp(Xi ,Xj)

Figure 5.  Principle for coarse segmentation of macular edema in OCT image. (A) Operating principle of 
residual learning block. (B) The workflow of conventional convolution and atrous convolution. Conventional 
convolution operation with 3 × 3 kernel size and 1 stride. Atrous convolution operation with 3 × 3 kernel size, 1 
stride, and 2 rate. (C) Coarse segmentation of macular edema in OCT image.
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where i and j range from 0 to N. The unary potential ψu(Xi) defines a log-likelihood over the label assignment 
Xi . ψu(Xi) is computed by a classifier.

ψu(Xi) is the coarse segmentation result of macular edema. The pairwise potentials is calculated as shown 
below:

where µ(Xi ,Xj) is a label compatibility function; ω(m) is a linear combination weight; k(m)
(

f
(m)
i , f

(m)
j

)

 is a Gauss-
ian kernels, which determines the similarity between connected pixels by means of f (m).

were the vectors fi and fj are the feature vectors for pixel i and j in an arbitrary feature space; pi and pj are the 
coordinate vectors of pixel i and j . θα and θβ are used to control the degrees of nearness and similarity between 
pixel i and j . The proximity in distance ( θα ) and the similarity with the adjacent pixels ( θβ ) are the scale param-
eters of Gaussian kernel, which can refine the boundary of macular edema. Taking the parameter θα as the fixed 
values, the changing curve of the parameter θβ with respect to F1-score is shown in Fig. 6A, where θα and θβ 
range from 1 to 20, the step size is 1. When θα = 16 and θβ = 8, F1-score reach the peak value. FC-CRF can obtain 
the optimal result of segmentation. The refined result is shown in Fig. 6B. Compared with the coarse segmenta-
tion result, the refined segmentation results show more detail features of macular edema, which is close to the 
segmentation result of macular edema by manual labels.
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Figure 6.  Refine the segmentation results of macular edema by FC-CRF. (A) Sensitivity test for FC-CRF model. 
(B) Refined segmentation result of macular edema in OCT images.
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Results
Compared the segmentation performance against with Deep lab with different setting. In 
order to evaluate the effect of wavelet transform and fully connected conditional random field on the segmenta-
tion performance, the proposed method against the Deeplab with different setting, including traditional Dee-
plab, Deeplab with wavelet transform (Deeplab + WT), Deeplab with fully connected conditional random field 
(Deeplab + FC-CRF).The different segmentation results of macular edema were shown in Fig. 7.

Table 1 showed the results of evaluation metrics for macular edema segmentation by Deeplab with different 
settings. Compared with the original Deeplab method, the Deeplab + WT method improved the scores of preci-
sion, specificity, F1-score of segmentation results, which were 94.73(2.92↑), 95.87(1.16↑), 92.82(0.95↑) respec-
tively. And Deeplab + FC-CRF method improved the scores of precision, sensitivity, specificity and F1-score of 
segmentation results, which were 92.52(0.71↑), 96.56(4.25↑), 96.31(1.6↑), and 94.69(2.82↑) respectively. While 
our proposed OCT-DeepLab method achieved higher scores of precision, specificity, and F1-score than other 
methods, including Deeplab, Deeplab + WT and Deeplab + FC-CRF. While the segmentation results by OCT-
DeepLab achieved higher scores of sensitivity than that of Deeplab and Deeplab + WT, and similar scores of 
sensitivity with that of Deeplab + FC-CRF.

Compared with traditional hand-crafted methods. We compared our proposed method against 
other traditional hand-crafted methods, including C–V29 and  SBG9, to evaluate the segmentation performance 
of macular edema. The segmentation results of macular edema were shown in Fig. 8.

As shown in Fig. 8, the red line is the initial contour curve of segmentation algorithm, while the green line is 
used to mark the segmented result of macular edema region. By the C-V model, a small part of macular edema 

Figure 7.  Different segmentation results of macular edema by Deeplab with different setting.

Table 1.  Performance comparison between Deeplab with different setting.

Model

Performance measures

Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

Deeplab 91.81 ± 0.64 92.31 ± 1.07 94.71 ± 1.29 91.87 ± 0.75

Deeplab + WT 94.73 ± 0.18 90.37 ± 1.88 95.87 ± 1.03 92.82 ± 1.12

Deeplab + FC-CRF 92.52 ± 0.23 96.56 ± 1.09 96.31 ± 0.92 94.69 ± 0.54

OCT-Deeplab 95.79 ± 0.11 95.16 ± 1.81 97.31 ± 1.32 95.43 ± 1.02
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region was identified. Several macular edema regions were omitted, especially for the precise segmentation of 
anomalous boundaries. By the SBG model, a part of retinal tissue was identified. OCT-DeepLab could accurately 
segment the region of macular edema. The segmentation results of OCT-DeepLab method showed great consist-
ency with the segmentation results by manual labels. Table 2 showed the results of evaluation metrics. OCT-
DeepLab achieved higher scores of precision, sensitivity, specificity, and F1-score than that of other traditional 
hand-crafted methods, including C–V and SBG.

Precision is a measure of relevance of results, and high precision attributes a method to yield accurate results. 
The advantage of OCT-DeepLab can be observed in the metric of precision, where OCT-DeepLab could achieve 
higher scores than C–V and SBG. The advantages of OCT-DeepLab can be also observed in the metrics of sen-
sitivity, specificity, and F1-score. Sensitivity and specificity measure the proportion of relevant results. A high 
sensitivity means that the majority of all positive samples are truly detected. A high specificity means that the 
majority of all negative samples are truly detected. The sensitivity of OCT-DeepLab was greater than that of other 
methods. The higher score of sensitivity demonstrates that OCT-DeepLab can recognize more macular edema 
compared with the other two models. As for the specificity, OCT-DeepLab substantially exceeded C-V and SBG. 
F1-score is utilized to find the match between two similarities in the images. Its value also ranges between zero 
and one. The metric of F1-score in OCT-DeepLab was significantly greater than that in C-V and SBG, suggesting 
that the segmentation results of OCT-DeepLab is greatly consist with the segmentation results by manual labels.

Comparison with other end-to-end methods. In this section, we compared the proposed OCT-Dee-
plab method with the end-to-end methods, including FCN, PSPNet and U-net. The segmentation results of 
macular edema by different models were shown in Fig. 9.

In the FCN and PSPNet models, a part region of macular edema was misclassified and a small scale of macular 
edema were not correctly segmented. In the U-net model, the segmentation results of macular edema became 
clearer than FCN and PSPNet models, especially in small-scale macular edema regions. However, limited by the 
network structure of U-net, the input image size of U-net must be 32 or a multiple of 32. The segmentation result 
of our proposed is in agreement with the result of manual labels.

In order to reduce the influence of test data selection on experimental results, we use fivefolds cross-validation 
method to evaluate the performance of different methods. Table 3 shows the values of 4 different metrics for 
the segmentation of macular edema by different methods. OCT-DeepLab had better precision compared with 
FCN, PSPNet, or U-net. The precision of OCT-DeepLab was 95.79 which is over 84.30, 88.27, or 89.48 in FCN, 
PSPNet, or U-net by a large margin. The advantages of OCT-DeepLab were also observed in the metrics of sen-
sitivity, specificity, and F1-score. The sensitivity of OCT-DeepLab was greater than that of other methods. The 
higher score of sensitivity demonstrates that OCT-DeepLab can recognize more macular edema compared with 
the other two models. As for the specificity, OCT-DeepLab substantially exceeded FCN, U-Net, and PSPNet. 
F1-score can determine the degree of similarities match between two images. OCT-DeepLab achieved higher 

Figure 8.  Segmentation results of macular edema by different methods. Red line is the initial contour curve of 
segmentation; Green line is the segmentation result of macular edema.

Table 2.  Performance comparison between different segmentation models.

Model

Performance measures

Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

C–V 72.18 ± 4.68 78.01 ± 4.36 83.37 ± 3.28 89.13 ± 5.13

SBG 81.65 ± 3.34 81.47 ± 1.79 88.13 ± 2.25 87.43 ± 3.72

OCT-Deeplab 95.79 ± 0.11 95.16 ± 1.81 97.31 ± 1.32 95.43 ± 1.02



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13392  | https://doi.org/10.1038/s41598-021-92458-8

www.nature.com/scientificreports/

scores than CN, PSPNet, or U-net, suggesting that OCT-Deeplab can obtain the closest results of macular edema 
segmentation to the results of manual labels.

Receiver operating characteristics (ROC) analysis was then used to evaluate the performance for the seg-
mentation of macular edema. The ROC curves for by different methods were shown in Fig. 10. Based on ROC 
curves, we computed the area under the curve (AUC). AUC represents the degree of separability between target 
regions and non-target regions. Higher the AUC, better the model is at distinguishing between macular edema 
and other retinal region. The performance of OCT-DeepLab was comparable to that of manual label, with an 
average area under the curve (AUC) of 0.963. Moreover, OCT-DeepLab had the greater value of AUC compared 
with that of other methods, suggesting that OCT-DeepLab shows better performance on distinguishing between 
macular edema and other retinal regions.

Conclusion
A novel method based on DeepLab-based deep learning (OCT-DeepLab) was proposed to segment macular 
edema in OCT images, including: pre-processing of OCT images via speckle de-noising, coarse segmentation of 
macular edema based on atrous spatial pyramid pooling (ASPP), and refine the segmentation result of macular 
edema by FC-CRF. Compared with conventional CNNs or improved CNNs, OCT-DeepLab had better preci-
sion, sensitivity, specificity, and F1-score. OCT-DeepLab method can enhance the multi-scale feature extraction 
ability and reduce fault-segmentation and over-segmentation. This method will assist ophthalmologists for the 
detection of edema region and enhance the diagnosis efficiency.

In OCT-DeepLab method, atrous convolution is a powerful tool for the segmentation. Atrous convolution 
allows us to explicitly control the resolution and effectively enlarges the view field of filters to incorporate larger 
context without increasing the number of parameters or the amount of computation. Atrous spatial pyramid 
pooling (ASPP) can segment objects at multiple scales. ASPP probes a convolutional feature layer with filters at 
multiple sampling rates, thus capturing objects and image context at multiple scales. Moreover, the use of wavelet 
transform denoising further enhances the model’s ability to segment small-scale lesions. In addition, the use of 
FC-CRF as a post-processing tool can refine the boundaries of macular edema and enhanced the accuracy of 
segmentation results.

Figure 9.  Segmentation results of macular edema by different methods.

Table 3.  Performance comparison between different segmentation models.

Model

Performance measures

Precision (%) Sensitivity (%) Specificity (%) F1-score (%)

FCN 84.30 ± 1.61 88.87 ± 1.81 93.35 ± 1.13 86.38 ± 0.96

PSPnet 88.27 ± 1.93 89.63 ± 0.52 93.50 ± 0.94 88.75 ± 0.98

U-net 89.48 ± 1.56 93.17 ± 2.01 94.53 ± 0.89 91.06 ± 0.53

OCT-Deeplab 95.79 ± 0.11 95.16 ± 1.81 97.31 ± 1.32 95.43 ± 1.02
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In conclusion, we provide a deep learning method based on DeepLab framework to segment macular edema 
in OCT images. Due to its precision, reliability, and objectivity, it is a promising tool in the individual and the 
large-scale management of patients with ocular  disease30. However, there are some limitations for this model. 
Due to the limited number of training samples in the given datasets, the segmentation results are comparatively 
not as high as the detection. As more data is accumulated in future, further improvements in the accuracy for 
macular edema segmentation in OCT images can be achieved.

Methods
Dataset. The large scale OCT image cohort was constructed with the collaboration of Eye Hospital (Nanjing 
Medical University), Suzhou First People’s Hospital, and Huai’An First People’s Hospital. The patients of diabetic 
macular edema who presented to the hospital between May 1, 2019 and June 30, 2020 were included. Exclusion 
criteria include recent pan-retinal photocoagulation, history of focal or grid laser, and other ophthalmologic 
diseases which may affect the accuracy of results. OCT images were centered on the macula with an axial reso-
lution of 10 μm and a 24-bit depth and acquired in 2 s, covering a 4 × 4-mm area captured by Cirrus HD-OCT 
(Carl Zeiss Meditec, Inc., Dublin, CA, USA).Three medical students manually screened the data and removed 
unclassifiable images (i.e. signal-shielded and off-center). Three retinal specialists with more than 10-year clini-
cal experience worked individually to label OCT images as ground truth. A senior expert was consulted in case 
of disagreement. The final dataset consists of 8676 volumetric OCT images from 6230 subjects. This study was 
approved by Ethics Committee of Eye Hospital (Nanjing Medical University) and followed the tenets of the Dec-
laration of Helsinki. The written informed consent was obtained from all subjects.

Evaluation experiments. To evaluate the performance on the segmentation of macular edema, three com-
parison experiments were conducted. In experiment 1, the proposed method was compared against Deeplab 
with different setting, including traditional Deeplab, Deeplab with wavelet transform (Deeplab + WT), Deeplab 
with fully connected conditional random field (Deeplab + FC-CRF). In experiment 2, the proposed method was 
compared against the traditional hand-crafted methods, including C-V and SBG. In experiment 3, the proposed 
method was compared against other end-to-end methods, including FCN, PSPNet, and U-net.

Evaluation metrics. Four different metrics, including precision, sensitivity, specificity, and F1-score, were 
calculated to estimate the performance of segmentation as shown below:

(10)Precision =
tp

tp+ fp

(11)Sensitivity =
tp

tp+ fn

Figure 10.  ROC curves from the segmentation of macular edema by different methods.
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where tp , fp and fn denote the true positive region, false positive region and false negative region, respectively. 
F1-score is a balanced metric and determined by precision and sensitivity simultaneously.

Receiver operating characteristic (ROC) curves were then plotted to evaluate the overall segmentation per-
formance. On the basis of ROC curves, we computed the area under the curve (AUC). AUC can be interpreted 
as the mean sensitivity value for all possible specificity values, or equivalently, as the mean specificity value for 
all possible sensitivity values. The possible AUC value ranges from 0.50 (discriminative performance equal to 
chance) to 1.00 (perfect discriminative performance).

Implementation. In the evaluations of this paper, subsets of 3460, 1163 and 1053 images were randomly 
selected for training, validation and testing, respectively. The random sampling was at patient level so as to 
prevent leakage and biased estimation of testing performance. The validation stage is used to select and save the 
network parameters, and the test stage is used to test the generalization performance of the network. In this case, 
the proposed method can be compared with the state-of-theart methods. In terms of the hyper-parameters, the 
SGD optimizer is used to optimize the models with a learning rate that is initialized to 0.007 empirically. In the 
training stage, the number of epochs is 200 and the mini batch size is 8. All experiments were carried out on 
the Ubuntu 16.04 computer with 2 Intel Xeon CPUs, using a NVIDIA Tesla P100 16 GB GPU, and 256 GB of 
RAM. In addition, four different metrics are calculated to show the performance of the segmentation, which is a 
commonly-used metric in biomedical image segmentation.
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