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Abstract. During the mating reaction in Chlamydo- 
monas reinhardtii mating type plus and mating type 
minus gametes adhere to each other via adhesion mol- 
ecules on their flagellar surfaces. This adhesive inter- 
action induces a sexual signal leading to release of a 
cell wall degrading enzyme, lysin, that causes wall 
release and degradation. In this article, we describe 
the preparation of a polyclonal antibody against the 
60,000-M~ lysin polypeptide excised from SDS-PAGE 
gels. After absorption of the IgG with cell walls to re- 
move antibodies against a carbohydrate epitope com- 
mon to several Chlamydomonas glycoproteins, the im- 
mune IgG reacted with the 60,000-M, polypeptide, and 
a 47,000-Mr species that we show here was immuno- 
logically cross-reactive with the 60,000-Mr molecule. 
By use of several fractionation methods including ion 
exchange and molecular seive chromatography, sucrose 
gradient centrifugation, and affinity chromatography, 
we showed that the 60,000-/14, antigen copurified with 
lysin activity, thereby demonstrating that the antibody 

was indeed directed against the enzyme. 
Immunoblot experiments on suspensions of nonmat- 

ing and mating gametes showed that the 60,000-Mr an- 
tigen was missing in the nonmating gametes. Instead, 
they contained a 62,000-Mr antigen that was not pres- 
ent in suspensions of mating gametes that had under- 
gone sexual signalling. Furthermore, nonmating ga- 
metes whose walls were removed with exogenously 
added lysin did not contain either form of the antigen. 
We also found that the 62,000-M, form of the antigen, 
which could be released from gametes by freeze- 
thawing, did not have wall degrading activity. These 
results indicate that lysin in gametes is stored in the 
periplasm as a higher relative molecular mass, inactive 
precursor and also that sexual signalling induces con- 
version of this molecule to a lower relative molecular 
mass, active enzyme. This may be a novel example of 
processing of an extracellular protease induced by cell 
contact. 

I 
N the biflagellated alga, Chlamydomonas reinhardtii, 
fertilization is initiated when mating type plus (mt+) ~ 
and mating type minus (rot-) gametes adhere to each 

other via their flagella. This specific cell-cell recognition 
event induces a sexual signal that leads to several subsequent 
events including release of an enzyme, lysin, that causes wall 
shedding and degradation (10, 36, 40). Although the flagellar 
surface molecules responsible for the initial adhesive inter- 
action have been identified (1), until recently there has been 
little information available about the mechanism of sexual 
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1. Abbreviations used in this paper: HC, Hepes-Ca 2+ (10 mM Hepes, 
1 mM CaCI2, pH 7.2); m t - ,  mating type minus; mt+,  mating type plus; 
r-lysin, released lysin; s-lysin, stored lysin. 

signalling. Our laboratory has shown that the local anes- 
thetic, lidocaine, blocks signalling without interfering with 
flagellar adhesion (37), and others have shown that trifluo- 
perazine has similar effects (8). Bloodgood and Levine (3) 
have shown that the mating reaction is accompanied by a rise 
in the rate of calcium release from cells and Kaska et al. (17) 
have shown mating-dependent changes in intracellular Ca 2+. 
The van den Ende laboratory (30) reported that there is a 
transient rise in the concentration of intracellular cyclic 
AMP during mating. And more recently Pasquale and Good- 
enough (29) made the exciting observation that cyclic AMP 
in combination with phosphodiesterase inhibitors was able 
to induce sexual signalling in gametes of a single mating type 
of Chlamydomonas reinhardtii. 

To learn more about the molecular details of sexual sig- 
nalling we have decided to characterize one of the earliest 
signalled events, release of the cell wall degrading enzyme, 
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lysin. This enzyme appears in the medium within 1-2 min 
after mixing gametes of opposite mating types at about the 
same time that the interacting gametes shed their walls into 
the medium. Presumably, when lysin is first activated or 
released, it acts on the intact wall to cause wall shedding. Af- 
ter the wall has been shed, the activated lysin appears in the 
medium (6, 18, 31, 34). 

Jaenicke et al. (15) and Schlosser (31) have also described 
a separate lysin, sporangial lysin, that is responsible for 
degrading the sporangial cell wall and releasing the daughter 
ceils arising during division. In contrast to the lysin released 
during mating, the sporangial lysin works only on the 
sporangial cell wall and is not released during the mating 
reaction. The sporangial lysin has a Mr of ~40,000 (15). 

Recently, more information has become available about 
the lysin released during mating and its mode of action on 
the cellulose-deficient cell wall of Chlamydomonas. Millikin 
and Weiss (22) and Matsuda et al. (20) have presented evi- 
dence that the enzyme is stored outside of the plasma mem- 
brane, possibly in the periplasm. These workers showed that 
cells without walls do not contain lysin. Other studies on the 
enzyme indicate that the enzyme is a metaUoendoprotease 
that acts upon several highly insoluble molecules in the wall 
(13, 14, 19, 23), one of which is in the flagellar collar (13, 
35). Matsuda et al. (18) reported that lysin was a molecule 
of 'x,60,000 Mr, and our laboratory (4) and Jaenicke et al. 
(15) obtained similar results using independent purification 
and assay methods. 

Subsequent analysis by our laboratory (4) and Jaenicke et 
al. (15) of the nondenatured enzyme demonstrated that it was 
a monomer. Having developed these new methods for 
purification of the enzyme, it became possible to learn more 
about the molecular basis of its release during the mating 
reaction. In the present report we describe the preparation 
and characterization of an antibody against the 60,000-Mr 
enzyme released into the medium by mating gametes. By use 
of the antibody we made the surprising observation that the 
enzyme is stored as an inactive, higher relative molecular 
mass precursor in the periplasm. This may be one of the few 
examples of a zymogen in a eucaryotic microorganism (26). 

Materials and Methods 

Cell Culture and Preparation of Lysin 
Methods for cell culture were essentially as previously described (33). 
Gametogenesis was induced by transferring cells grown in acetate-supple- 
mented medium to nitrogen-free medium diluted to 3/4 strength and aerating 
in continuous light for 14-20 h. The resulting gametes were harvested by 
allowing them to accumulate at the bottom of the boules by negative pho- 
totaxis/positive geotaxis (2, 14) without aeration, and the supernatant was 
removed by siphoning. The gametes were further concentrated by centrifu- 
gation at 4,600 g for 3.5 min and then they were washed into Hepes-Ca 2+ 
buffer (HC; 10 mM HEPES, 1 mM CaCI2, pH 7.2). A hemocytometer was 
used to determine cell density. 

To induce gametes to release lysin into their medium, rot+ and m t -  ga- 
metes were mixed together at a concentration of 3 x l0 s ceUs/ml in HC 
buffer and incubated in bright fluorescent light for 30 min at 25°C. After 
30 rain the percentage of ceils forming zygotes was determined as previously 
described (37). Only preparations showing >70 % fusion were used. The cell 
suspensions were centrifuged at 4°C for 3.5 rain at 4,600 g, the sedimented 
cells were discarded, and the supernatants were centrifuged at 4°C at 20,000 
g for 30 min to remove cell debris and wall fragments. The lysin-containing 
supernatant was kept on ice or at 4°C until use. Samples not used immedi- 

ately were divided into smaller portions and stored at -20°C. Lysin activity 
was measured as previously described (4). 

Antibody Production and Preparation 
Partially purified lysin was concentrated in dialysis bags with Aquacide II 
(Calbiochem-Behring Corp., La Jolla, CA) and subjected to electrophoresis 
on preparative 4-16% polyacrylamide gels containing a three to eight molar 
gradient of urea (16). After staining with Coomassie Brilliant Blue, the band 
migrating at 60,000-Mr was excised, equilibrated with PBS (10 mM sodium 
phosphate, 150 mM sodium chloride, pH 7.2), and homogenized with a 
glass-teflon homogenizer. The homogenate was emulsified by sonication in 
an equal volume of Freund's complete adjuvant and injected intradermally, 
intramuscularly, and subcutaneously into six to nine pound New Zealand 
white rabbits. Antisera were obtained from clotted blood by centrifugation 
at 3,000 g for 10 min. 

To prepare the IgG fraction, antiserum was brought to 45 % saturation 
with ammonium sulfate at 25°C, stirred for 20 min, and centrifuged 10,000 
g for 30 min at 4°C. The precipitate was washed once with 45 % ammonium 
sulfate and dialysed against phosphate buffer (17.5 mM, pH 6.3). The IgG 
fraction was further purified either by ion exchange chromatography or pro- 
tein A affinity chromatography. 

Preparation of Cell WaUs for Antibody Absorption 
Cell walls obtained from mechanically disrupted Chlamydomonas gametes 
as previously described (14) were used to absorb unwanted antibodies from 
the immune IgG. Sedimented walls were stored in 0.1% sodium azide in HC 
at 4°C. The preparation of immune IgG was absorbed by incubating 4 rag 
antibody protein with Img wall protein in I ml of PBS. The walls and bound 
antibodies were removed by centrifugation. 

Preparation of a Substrate Affinity Column 
A substrate affinity column was prepared by derivntizing Biogel A-15M 
(Bio-Rad Laboratories, Richmond, CA) with cell wall frameworks, which 
we have shown contain the substrate for lysin (13, 14), prepared from 
mechanically isolated cell walls. To do this, walls obtained from '~2 x 
10 I~ cells were extracted by incubating them in 20 ml of SDS-PAGE sam- 
ple buffer for 1 h at room temperature. This treatment removed all of the 
peripheral wall proteins but left the framework of the wall (13). The suspen- 
sion was then centrifuged at 20,000 g for 20 min at 4°C and the sample was 
reextracted and harvested again. The sedimented frameworks were resus- 
pended in HC and washed three times by centrifugation. Any SDS as- 
sociated with the frameworks was removed by washing twice with 100% 
ethanol. Frameworks were washed back into 7 rnl of HC and sonicated for 
3.5 min on ice with the maximum setting ofa  Sonifier cell disrupter (model 
W185; Heat Systems-Ultrasonics, Inc., Farmingdale, NY). The sonicated 
suspension was coupled to 50 ml of Bio-gel A-15 agarose beads by the 
method of Nilsson and Mosbach (25) for 10 h at 4°C with agitation. Un- 
reacted groups were blocked by washing the beads into 0.2 M Tris, pH 8.0, 
followed by incubation in the same buffer at 4°C for 10 h. The gel was 
washed twice with HC and stored at 4°C with 0.02 % sodium azide until use. 

Electrophoresis and lmmunoblotting 
SDS-PAGE was carried out according to the method of 5arvik and Rosen- 
baum (16). The running portion of the gels consisted of either 4-16% gra- 
dients of acrylamide or straight 8 or 10% acrylamide. Gels were stained 
with silver (21) or Coomassie Brilliant Blue (9). Mr were obtained by re- 
gression analysis from plots of log~o percent acrylamide concentration vs. 
logt0 molecular mass for marker proteins (11). Antigens were transferred 
from SDS polyacrylamide gels onto nitrocellulose paper at 300-400 mA for 
2 h by the method of Towbin et al. (39). Antigen-antibody complexes were 
visualized with peroxidase-conjugated goat anti-rabbit second antibody 
(Cappel Laboratories, Malverne, PA). 

In some experiments rabbit antibodies were eluted from pieces of 
nitrocellulose blots by the method of Olmstead (T/), neutralized with so- 
dium hydroxide, diluted with PBS, and concentrated with millipore CX-30 
filters. For staining blot strips, concentrates were redilnted with blocking 
buffer containing 10 mM Tris, pH 7.2, 150 mM NaCI, 0.2% NP-40, and 
5 % BSA (5). 
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Results 

Preparation of  Anti-Lysin Antibodies 

Recently, using entirely different purification methods, we 
and others (4, 15, 20) have found that lysin is a polypeptide 
of '°60,000 Mr. Fig. 1, a preparative SDS-PAGE gel of ly- 
sin purified by ion exchange chromatography (4), shows 
that the 60,000-Mr polypeptide was the primary constituent 
of lysin purified by our method. This band was excised from 
the gel and used as immunogen in a rabbit as described in 
Materials and Methods. 

Initial immunoblots were done with a preparation of crude 
lysin to determine the number of polypeptides that would re- 
act with the IgG fraction of the antiserum. Fig. 2, lane A 
shows a silver-stained gel of crude lysin. Lysin, at 60,000 
Mr, was a minor constituent of this preparation. The major 
constituents of the sample were cell wall proteins, which are 
also released into the medium during the mating reaction. 
Immunoblot analysis of the crude lysin showed that there was 
no staining with an irrelevant IgG (Fig. 2, lane B), whereas 
the immune IgG gave a complex staining pattern with many 
polypeptides reacting with the antibodies (lane C). The 
staining of multiple bands with the immune IgG was not an 
unexpected result, since we and others (1, 32, 41) have found 
that a carbohydrate determinant common to many Chlamyd- 
omonas reinhardtii glycoproteins is highly immunogenic in 
several species. To remove the antibodies against this com- 
mon epitope the IgG preparation was absorbed (see 
Materials and Methods) with isolated cell walls, which are 
enriched with glycoproteins containing the epitope (32, 41). 
Fig. 2, lane D shows that the absorption yielded a highly 
specific antibody that stained polypeptides of 60,000 and 
47,000 Mr in a sample of crude lysin. 

Previously, we had found that some lysin preparations con- 
tained a 47,000-Mr species (4) that varied in amount from 
experiment to experiment. Because we suspected that the 
47,000-Mr polypeptide was a proteolytic fragment of the 
60,000-Mr species, we wanted to determine if antibodies 
raised against the two polypeptides were cross-reactive. To 

Figure 2. Absorption of the 
anti-lysin antibody with cell 
wails. Crude lysin was sub- 
jected to electmphoresis on a 
preparative SDS-PAGE gel and 
the polypeptides were trans- 
ferred onto nitrocellulose pa- 
per. (Lane A) An untransferred 
portion of the SDS-PAGE gel 
was stained with silver to show 
the polypeptide composition of 
crude lysin. Most of the poly- 
peptides in this heavily loaded 
gel were cell wall glycoproteins 
shed into the medium during the 
mating reaction. (Lanes B-D) 
For immunoblot analysis the 
nitrocellulose paper was cut 
into strips and incubated with 
(lane B) irrelevant IgG, (lane 
C) immune IgG from the rabbit 
immunized with the 60,000-Mr 
polypeptide, and (lane D) im- 
mune IgG absorbed with cell 
walls (see Materials and Meth- 
ods), and then stained with a 
peroxidase-conjugated second 
antibody. Relative molecular 
mass markers are indicated on 
the right; the arrow indicates 
the 60,000-Mr lysin polypeptide. 

Figure 1. Preparative SDS-PAGE of carboxymethyl cellulose- 
purified lysin stained with Coomassie Brilliant Blue. The arrow in- 
dicates the 60,000-Mr lysin polypeptide that was excised from this 
and similar gels and used as immunogen in the preparation of the 
anti-lysin antibody. Relative molecular mass markers are indicated 
on the right. 

do this we used the method of Olmstead (27) to examine if 
antibodies that bound to the 60,000-Mr would also bind to 
the 47,000-Mr molecule and vice versa. Two pools of anti- 
bodies were obtained by incubating blot strips of crude lysin 
with the absorbed, immune antibody and then separately ex- 
cising the 60,000- and 47,000-Mr regions from the nitrocel- 
lulose strips as described in Materials and Methods. The 
antibodies eluted from each of the excised pieces of nitrocel- 
lulose were then incubated with fresh blot strips of crude ly- 
sin. As shown in Fig. 3 antibodies that initially bound to ei- 
ther the 60,000- or the 47,000-Mr polypeptides were each 
capable of rebinding to both polypeptides. Fig. 3, lane A 
shows a blot strip of lysin stained with an irrelevant antibody 
and lane B shows the staining pattern with the absorbed IgG. 
Lane C is a lysin blot stained with antibodies eluted from the 
60,000-Mr band and lane D is an identical blot stained with 
antibodies eluted from the 47,000-Mr band. These results 
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Figure 3. Immunocross-reactivity of the 60,000- and 47,000-Mr 
polypeptides. The absorbed, anti-lysin IgG was incubated with 
nitrocellulose blots of lysin and a portion of the blot was stained 
as described in Materials and Methods to localize the 60,000- and 
47,000-Mr bands. Lane A shows a strip stained with an irrelevant 
antibody and lane B shows the staining with the anti-lysin antibody. 
The 60,000- and 47,000-M~ regions of the remainder of the blot, 
containing the bound antibody, were separately excised and the 
bound antibodies were eluted. The antibodies eluted from each 
band were then used to immunostain fresh nitrocellulose strips of 
lysin. Lane C shows the staining pattern with the antibodies eluted 
from the 60,000-Mr band and lane D shows the staining pattern 
with the anti-47,000-Mr antibodies. Antibodies eluted from each 
band reacted with both bands on the fresh strips. 

deed lysin, it should be released into medium during the mat- 
ing reaction between mt+ and m t -  gametes. Fig. 4 shows 
that the antigen was released into the medium during mating 
(lane B) and was not present in the medium of nonmating 
gametes (lane A). 

Several biochemical methods were also used to confirm 
the identity of lysin activity and the 60,000-Mr antigen. Fig. 
5 demonstrates that the antigen and lysin activity coeluted in 
fractions obtained from a carboxymethyl cellulose ion ex- 
change column. Fig. 6 shows the sedimentation pattern of ly- 
sin and the 60,000-Mr antigen in 5-20% sucrose gradients. 
The antigen and activity had identical sedimentation values. 
It should be noted that in this gel the 60,000-MT antigen ap- 
peared as a doublet (see below). Fractionation with an 
HPLC molecular sieve column also showed that the antigen 
and lysin activity copurified (not shown). 

To further evaluate the specificity of the antibody for lysin, 
a method was used that took advantage of the activity of the 
enzyme. Our laboratory has previously shown that a highly 
insoluble portion of the Chlamydomonas cell wall, called the 
framework, contains substrates for lysin (13, 14). Although 
this portion of the wall represents only 10% of the protein 
of the wall, it is the only part of the wall that is acted upon 
by lysin. The outer or peripheral portion of the wall contains 
several soluble glycoproteins, but these molecules do not ap- 
pear to be lysin substrates (13, 19, 34). With this in mind, 
frameworks prepared from walls isolated from mechanically 
disrupted gametes were coupled to Biogel A-15M, as de- 
scribed in Materials and Methods, and used as an affinity 
matrix. 

Lysin prepared by ion exchange chromatography was 
loaded onto the column, followed by washing with HC. The 
bound material was then eluted with NaCI, which has been 
shown by Matsuda (18) to inhibit lysin activity. The resulting 
fractions were dialyzed, tested for activity in the lysin assay, 
and immunoblotted. The results shown in Fig. 7 indicated 
that both lysin and the 60,000-Mr eluted as a sharp, coinci- 
dent peak. The simplest interpretation of these results that 
lysin activity and the 60,000-MT antigen could not be sepa- 
rated in any of the several indpendent methods described 
above was that the 60,000-Mr antigen was indeed lysin. 

suggested that the 47,000-Mr species was a proteolytic frag- 
ment of the 60,000-Mr molecule. In the experiments shown 
below, the 47,000-Mr fragment rarely appeared, probably 
because most samples were boiled in SDS-PAGE buffer im- 
mediately after preparation. 

Lysin Activity Copurifies with the 60,O00-M, Antigen 
The specificity of the IgG for lysin was evaluated by compar- 
ing the behavior of lysin activity with the behavior of the 
60,000-M~ antigen both in cell suspensions and in several 
fractionation methods. For example, if the antigen were in- 

Figure 4. Release of the 
60,000-Mr antigen during mat- 
ing. Mt+ and rot- gametes 
were mixed together and the 
supernatant was collected and 
immunoblotted with the anti- 
iysin antibody (lane B). Lane 
A shows an immunoblot of a 
mixture of supernatants of 
mt+ and mt- gametes before 
mating. The arrowhead indi- 
cates the 60,000-Mr antigen. 
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boiled after mixing would contain the released form of the 
enzyme. The immunoblot results are shown in Fig. 8. Lane 
A, containing the sample boiled before mating, showed a 
band of slightly higher relative molecular mass than the sam- 
ple that was boiled after mating (lane B). These results indi- 
cated that stored lysin (s-lysin), the form found in unmated 
gametes, was of slightly higher relative molecular mass than 
released lysin (r-lysin), which appeared in the medium dur- 
ing mating. 

A separate suspension of mating gametes was centrifuged 
to separate the cell bodies from the mating supernatant, 
which contained released lysin. Analysis of these samples by 
immunoblotting showed that the r-lysin was in the medium 
(Fig. 8, lane C), and that the mated cells no longer contained 
detectable s-lysin (lane D). These results, which were con- 
sistent with previous results from our laboratory (34) that 
showed that mating gametes released all of their lysin activity 
within the first few minutes of mating, also demonstrated that 
release of active lysin during mating was accompanied by a 
reduction in its relative molecular mass. 

Although the 4-16% gels used in these experiments re- 
solved s-lysin from r-lysin, we occasionally noticed that 
r-lysin appeared as a doublet (s~e Fig. 6). When samples 
were run on straight 10% gels, however, their doublet nature 

Figure 5. Cofractionation of lysin activity with the 60,000-Mr anti- 
gen on ion exchange chromatography. Crude lysin (100 ml; see 
Materials and Methods) was loaded onto a 50-ml carboxymethyl 
cellulose column equilibrated with HC, washed through with I0 ml 
of HC, and eluted with 100 ml of HC containing 0.2 M NaCI. Frac- 
tions (3.45 ml) were collected, and, after dialysis against HC, sam- 
pies were assayed for lysin activity (bottom, o; the solid line shows 
the conductivity of the fractions). Lysin activities are plotted as a 
percentage of loaded activity per fraction. (/bp) Samples from each 
fraction were immunoblotted onto nitrocellulose and stained with 
anti-lysin antibody. The 60,000-Mr antigen copurified with activity. 

Even though the anti-lysin antibody had been made against 
an SDS-DTT denatured form of the antigen, it was possible 
that the antibody would react with the native form. Several 
approaches were used to test this with the following results: 
The anti-lysin antibody did not inhibit lysin activity; affinity 
columns prepared with the antibody did not bind the native 
antigen; and dot blot experiments also showed that only the 
denatured form of the antigen was recognized by the anti- 
body (data not shown). 

Stored Lysin Has a Higher Mr Than Lysin Released 
during Mating 

Having characterized the antibody it became possible to 
learn more about the stored form of the enzyme. To do this, 
dense suspensions of mr+ and m t -  gametes were prepared 
and mixed together either before or after being boiled in 
SDS-PAGE sample buffer. The sample boiled before mixing 
the gametes would contain stored lysin, whereas the sample 

Figure 6. Copurification of lysin activity and the 60,000-Mr anti- 
gen on sucrose gradients. Lysin (20 ml) purified by carboxymethyl 
cellulose chromatography, as described in Materials and Methods, 
was concentrated to 0.2 ml and loaded onto a 2.0-ml 5-20% linear 
sucrose gradient. The gradient was centrifuged 5 h at 75,000 g and 
fractionated into 0.1-ml fractions that were dialysed, assayed for ac- 
tivity, and immunoblotted. (Top) Immunoblot showing the 60,000- 
Mr antigen. The fraction numbers are indicated in the bottom sec- 
tion. (Bottom) Lysin activity (as a percentage of loaded activity) in 
each of the fractions. 
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Figure 7. Copurification of lysin activity and the 60,000-Mr anti- 
gen on a substrate affinity column. Carboxymethyl cellulose-puri- 
fied lysin was loaded onto an affinity column prepared with the 
framework fraction of Chlamydomonas cell walls as described in 
Materials and Methods. After washing the column with HC, it was 
eluted with HC containing 0.2 M NaCI and fractions were analysed 
for activity (bottom) and the 60,000-Mr antigen (top). The solid 
line indicates the conductivity of the fractions. Almost all of the ac- 
tivity and the 60,000-Mr antigen coeluted in fraction 17. 

became clearer. Fig. 9 presents the results of an immunoblot 
experiment in which samples containing either s-lysin or 
r-lysin (prepared as described for Fig. 8) were loaded in sep- 
arate lanes (Fig. 9, lanes A and C, respectively) and as a mix- 
ture (Fig. 9, lane B). The results indicated that both s-lysin 
(lane A) and r-lysin (lane C) were doublets. (The closed cir- 
cles indicate the members of  the s-lysin doublet, and the 
asterisks indicate those of  the r-lysin doublet.) Lane B shows 
the mixture of  the two samples and indicates that all four 
polypeptides were distinguishable. 

Since the samples used as a source of  s-lysin and r-lysin 
in this experiment contained a mixture of mt+  and m t -  ga- 
metes, we wanted to learn i f m t +  and m t -  gametes each had 
a unique form of s-lysin. The other possibility was that cells 
of each mating type contained s-lysin doublets. To resolve 
this issue, immunoblots were done on unmated gametes of 

Figure 8. The stored form of lysin is of higher relative molecular 
mass than the released form. Suspensions of mt+ and mt -  gametes 
(1 ml each; 8 × 108 cells) were mixed together either before or af- 
ter being boiled in SDS-PAGE sample buffer in preparation for elec- 
trophoresis on 4-16% gradient gels. The samples mixed together 
for 30 min before being boiled would have the released form of lysin 
(r-lysin). The samples mixed together after being boiled would have 
the stored form of lysin (s-lysin). Lane A shows an immunoblot with 
the anti-lysin antibody of the stored lysin. Lane B shows the sample 
with the released lysin. The stored lysin was of slightly higher rela- 
tive molecular mass than the released lysin. An identical sample of 
mt+ and mt -  gametes that had been mating for 30 rain was cen- 
trifuged at 10,000 g for 60 s, and the sedimented cells and the super- 
natant were immunoblotted with the anti-lysin antibody to deter- 
mine the location of the antigen after mating. Lane C shows the 
mating supematant and lane D shows the sedimented mated cells. 
The cells had released all of their lysin in to the medium as r-lysin 
and no longer contained s-lysin. 

each mating type. The results, shown in Fig. 9 (lanes D and 
E),  indicated that each gamete contained a single form of ly- 
sin and that the s-lysin in mr+ gametes (lane D) was of  
slightly higher relative molecular mass than that present in 
m t -  gametes (lane E). 

S-Lysin Is Stored in the Periplasm and Is Inactive 

To learn more about the cellular site for storage of  s-lysin we 
wanted to determine if it were stored intracellularly or in an 
extracellular site such as the periplasm or associated with the 
wall as had been reported by Millikin and Weiss (22) and 
Matsuda et al. (20). To do this we removed the walls from 
mt+  gametes with exogenously added lysin and then used 
immunoblot analysis with the anti-lysin antibody to deter- 
mine if the de-walled cells still contained s-lysin. A control 
sample of cells was incubated in buffer instead of lysin. The 
results, shown in Fig. 10, indicated that whereas the control 
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Figure 10. S-lysin is removed 
from cells when their walls 
are removed. Mt+ gametes 
were incubated with r-lysin 
until the wall loss assay showed 
the >90% of the cells had lost 
their walls. The suspension 
was then centrifuged and the 
sedimented cells were evalu- 
ated for the presence of s-lysin 
by immunoblotting with the 
anti-lysin antibody. A control 
sample of gametes was incu- 
bated with HC buffer for the 
same amount of time. Lane 1 
shows the immunoblot of the 
de-walled gametes and lane 2 
shows the control sample. 
Only the control gametes (lane 
2) contained the antigen. 

Figure 9. The s-lysin in mt+ gametes is of slightly higher relative 
molecular mass than that in mt -  gametes. Suspensions of gametes 
mixed either before or after being boiled in SDS-PAGE sample 
buffer as described in the legend for Fig. 8 were subjected to elec- 
trophoresis on straight 10% gels and transferred to nitrocellulose 
paper. Lane A, the sample boiled before mixing, contained s-lysin. 
Lane C, the sample mixed before boiling, contained r-lysin. Lane 
B is a mixture of the two samples showing that both s-lysin (o) and 
r-lysin (*) were each doublet polypeptides. The lowest band in each 
of the lanes was a band of unknown origin and significance that 
sometimes appeared in these heavily loaded gels of intact cells. 
Mt+ and rot- gametes were also separately analyzed on these 10% 
gel immunoblots. Lane D is the mt+ gametes and lane E is the mt -  
gametes. The s-lysin in mt+ gametes was of slightly higher relative 
molecular mass than that in m t -  gametes. 

periplasm, and that freeze-thawing released it into the 
medium 

We then wanted to learn more about the biological sig- 
nificance of the two forms of lysin. Because of the apparently 
intimate association of s-lysin with its substrate, we sus- 

gametes contained s-lysin (Fig. 10, lane 2), the de-walled ga- 
metes did not ( lane/) .  Thus, s-lysin is stored outside of  the 
plasma membrane. 

We also determined that substantial amounts of  s-lysin 
could be released from cells by freeze-thawing. To do this mt+ 
gametes were harvested from their medium as described 
above, washed into HC to a final concentration of 3 x 108 
cells/ml, and frozen at -20°C.  The sample was then thawed, 
frozen again, re-thawed, and centrifuged at 315,000 g (85,000 
rpm; Beckman TL-100 Tabletop Ultracentrifuge, TLA-100.2 
rotor; Beckman Instruments Inc., Palo Alto, CA) for 10 min. 
Immunoblot analysis of the supernatant showed that s-lysin 
was released in a soluble form by this treatment (Fig. 11, lane 
/). Fig. 11, lane 2 shows a blot of r-lysin for comparison. 
About half of the cellular s-lysin was released by two cycles 
of freeze-thawing (data not shown). These results indicated 
that s-lysin was stored in a soluble form, probably in the 

Figure 11. Freeze-thawing releases 
s-lysin from gametes. Mt+ gametes 
were frozen and thawed twice and 
then centrifuged as indicated in the 
text. The supernatant was evaluated 
by immunoblotting using the anti- 
lysin antibody (lane 1). Lane 2 
shows a sample of r-lysin for com- 
parison. 
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pected that s-lysin would be inactive. To determine this, sam- 
ples of s-lysin prepared by the freeze-thawing method de- 
scribed above were evaluated in the standard lysin assay. This 
assay is sensitive enough to be able to detect r-lysin released 
from "~1.5 x 106 mating gametes (4). Using several differ- 
ent preparations we have been unable to detect any lysin ac- 
tivity in s-lysin, even in assays that contained s-lysin pre- 
pared from 6 × 107 ceils. These results indicate that s-lysin 
is stored as an inactive precursor, and during sexual signal- 
ling it is converted to r-lysin concomitant with activation. 

Discussion 

To learn more about the molecular mechanisms of sexual sig- 
nalling and lysin release during the mating reaction in 
Chlamydomonas reinhardtii our laboratory has purified lysin 
and prepared a polyclonal antiserum against it. Antibodies 
directed against a common carbohydrate epitope found on 
several extracellular polypeptides were removed by absorp- 
tion with cell walls, which are enriched in proteins that bear 
this epitope. The resulting antisera was shown by several 
criteria to be directed against the 60,000-Mr polypeptide 
that we (4) and others (15, 18) have previously shown is lysin. 
As expected, the antigen was released by gametes only dur- 
ing the mating reaction and was not detected in the medium 
of nonmating gametes. The antigen copurified with lysin ac- 
tivity in each of several different fractionation methods 
tested, including molecular seive chromatography, velocity 
sedimentation in sucrose gradients, ion exchange chroma- 
tography, and chromatography on an affinity column pre- 
pared with the endogenous lysin substrate. 

The result that mt+ and ro t -  gametes contained s-lysins 
of different relative molecular mass was somewhat unex- 
pected. One explanation is that the difference is a conse- 
quence of strain-specific posttranslational modifications. 
For example van den Ende's group has shown that in Chla- 
mydomonas eugametos there are strain differences in some 
O-methylated sugars on flagellar glycoproteins (12). The 
ability to O-methylate specific sugars in this species was in- 
herited independently of mating type and presumably is due 
to different methyltransferase alleles (12). Future experi- 
ments should help to establish if the difference in relative 
molecular mass of s-lysins we show here for Chlamydo- 
monas reinhardtii is linked to mating type. 

The availability of the antibody made it possible to learn 
more about the cellular mechanisms for storage and release 
of lysin during the mating reaction. Immunoblot analysis of 
unmated gametes showed that the stored form of lysin, s-ly- 
sin, was of slightly higher relative molecular mass than the 
released form of lysin, r-lysin. S-lysin was 62,000 Mr, 
whereas, r-lysin was 60,000 Mr. In experiments to identify 
the cellular site for storage of s-lysin, we found that s-lysin 
was missing in cells whose walls had been removed by treat- 
ment with exogenously added r-lysin. This result, coupled 
with the fact that s-lysin could be recovered in a 315,000 g 
supernatant from frozen and thawed rot+ gametes, was con- 
sistent with the idea that s-lysin is stored in the periplasm of 
gametes. Future immunolocalization experiments at the 
electron microscopic level will be important to identify 
directly the storage site for s-lysin. 

The result that this wall degrading enzyme appeared to be 
stored in such close proximity to its endogenous substrate 
suggested that the storage form of the enzyme might be inac- 

tive. We were able to test this possibility by assaying prepara- 
tions of s-lysin for lysin activity. We found that preparations 
of s-lysin, obtained by freeze-thawing cells, contained no 
lysin activity detectable in our standard lysin assay. Only 
r-lysin was active. Thus, lysin is stored as an inactive proen- 
zyme that is converted to the active enzyme as a consequence 
of sexual signalling. 

Although they did not interpret their data in this way, other 
Chlamydomonas workers have presented evidence that is 
consistent with the idea that the stored enzyme is inactive. 
Claes (7) reported that the lysin present in cells disrupted by 
freezing and thawing was inactive and could be detected only 
after sonication. Recently, Matsuda et al. (20) obtained simi- 
lar results. They showed that only extremely low levels of ly- 
sin could be detected in cells disrupted by freezing and thaw- 
ing, even though that treatment released another enzyme, 
acid phosphatase. These workers found that sonication or 
homogenization by the French press was required to yield an 
active enzyme. The interpretation suggested by this group 
was that the enzyme is stored either in a sedimentable form, 
for example, a membrane-bounded vesicle or bound to an in- 
hibitor. Consistent with this observation was the result of 
Matsuda et al. (20) that the form isolated from freeze- 
thawed, French-pressed gametes and the form that appeared 
in the medium during mating were indistinguishable on their 
7.5-15.0% gradient SDS-PAGE gels. 

The results presented here suggestan alternative explana- 
tion for the observation that the stored form of the enzyme 
cannot be detected without homogenization or sonication. 
As indicated above, the 62,000-Mr precursor is inactive un- 
til it is converted to the 60,000-Mr form. We would propose 
that this conversion is a consequence of sexual signalling. 
Possibly a separate converting enzyme is activated or se- 
creted through the action of one of the second messengers, 
such as Ca 2. (3) or cAMP (29, 30), reported to appear dur- 
ing signalling. Since Matsuda apparently isolated the 60,000- 
Mr form from homogenized ceils, the process of homog- 
enization or sonication might lead to the conversion that 
normally accompanies mating. For example, homogeniza- 
tion or sonication could activate the molecule that normally 
is activated as a consequence of signalling, or at least 
homogenization could permit the coming together of the 
putative converting enzyme and s-lysin. The idea that there 
is a molecule, possibly a protease, that converts s-lysin to 
r-lysin is currently being tested in our laboratory. 

There are several noteworthy aspects of a Chlamydomonas 
periplasmic zymogen that is activated as a consequence of 
cell contact. First, the lysin activation that we have described 
has many striking functional similarities to the proacro- 
sin-acrosin system in mammalian sperm (28). Acrosin, a 
protease that is thought to be required for penetration of the 
sperm through the outer vestments of the egg is stored as in- 
active proacrosin in the acrosome. Interactions between the 
sperm and egg during fertilization induce the acrosome reac- 
tion, leading to conversion of proacrosin to acrosin. Future 
experiments should reveal if there are molecular similarities 
underlying these functionally analogous processes. Second, 
to our knowledge there are only a few examples of zymogens 
in lower eucaryotes or in organisms containing chloroplasts 
(24, 26). Thus, studies on lysin activation might yield new 
information about the evolution of proenzymes and their pro- 
cessing. 

Finally, it is possible that lysin plays a somewhat different 
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role in vegetative cells compared to gametes. Matsuda et al. 
(20) have reported that vegetative cells also contain lysin, 
and preliminary, unpublished immunoblotting experiments 
in our laboratory have shown that vegetative cells contain the 
lysin antigen. Although, the function and location of lysin in 
vegetative cells are unknown, it is likely that the enzyme 
plays some role in expansion of the cell wall during vegeta- 
tive growth. Cells undergo dramatic changes in size during 
growth, and unless the wall is flexible, it is likely that growth 
of the wall occurs by localized lysis followed by insertion of 
new wall components as has been suggested for bacterial wall 
growth (38). Moreover, Matsuda et al. have reported that ly- 
sin is stored in different cellular compartments in vegetative 
cells and gametes (19). It will be interesting to learn how in- 
tracellular targeting and activation of this molecule is regu- 
lated as vegetative cells differentiate into gametes. 
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