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Rho GTPases in endoderm development and differentiation
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The embryonic foregut of the mouse
embryo is lined by a layer of

endoderm cells whose architecture
changes during development. The trans-
ition from a squamous to columnar
epithelial morphology is accompanied
by the upregulation of an atypical Rho
GTPase, Rhou. Subsequently, multi-
layering of the epithelium at the site of
organ bud formation is associated with
the downregulation of Rhou. Rho-related
small GTPases are known to play multi-
ple roles in establishing and maintaining
epithelial polarity, cytoskeletal organiza-
tion, morphogenesis and differentiation
of epithelial tissues, but their role in the
early development of the endoderm in
mammals is largely unexplored. Our
recent study has shown that Rhou is
required for maintaining F-actin polar-
ization, epithelial morphogenesis and
differentiation of the endoderm. Rhou
expression responds to canonical WNT
signaling and its activity influences the
cytoskeletal organization and differenti-
ation of endodermal cells, possibly via
activation of JNK-mediated pathways. In
this context, Rhou provides a possible
link between β-catenin dependent WNT
signaling and cellular processes normally
associated with WNT/PCP pathways.

Introduction

Many of the internal organs of the body,
including the liver, pancreas and thyroid,
as well as the epithelial linings of the
respiratory and digestive tract are derived
from the definitive endoderm, which
together with the ectoderm and mesoderm
constitute the three primary embryonic
germ layers. In mouse embryos, the

endoderm is initially a monolayered epi-
thelium that lines the primitive gut tube
(Fig. 1A). It is polarized in an apical-basal
orientation, with actin microfilaments
concentrated in a shroud beneath the
apical (luminal) surface of the cell
(Fig. 1B) and with actin-rich microvilli
on its apical surface. Tight junctions
(marked by expression of ZO-1) form at
the apical interfaces between cells, and
adherens junctions form laterally, charac-
terized by E-cadherin localization
(Fig. 1C). The endoderm layer is separated
from the underlying mesoderm-derived
cells by a specialized extracellular matrix,
the basement membrane (Fig. 1B)

Rho GTPases play multiple roles in
regulating the cytoskeletal organization
and polarity of epithelial cells, which
impact on tissue morphogenesis and
cellular differentiation (Fig. 1D). In early
Drosophila embryos, binding of Cdc42
to Par6 is essential for the apical locali-
zation of Par6 and aPKC in epithelial
cells.1 Cdc42 plays a similar role in
establishing the epithelial architecture of
the epiblast layer in early post-implanta-
tion mouse embryos.2,3 In Xenopus
embryos, Rho-related proteins are involved
in the morphogenesis of the endoderm as
this tissue transforms from a solid rod into
an epithelial tube. Inhibiting Rho GTPase
activity disrupts epithelialization and sub-
sequently the elongation of the gut tube.4

The role of Cdc42 or other related Rho
GTPases in the morphogenesis and differ-
entiation of the endoderm in mammalian
embryos has not been fully established.
Our recent study5 has offered a glimpse
of the potential role of a Cdc42-related
protein, Rhou, in maintaining the epithe-
lial structure and in differentiation of the
foregut endoderm.
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Rhou: An Atypical GTPase
in the Endoderm

In a microarray analysis of the transcrip-
tome of embryonic foregut endoderm,
Rhou was identified among the genes that
are expressed at a higher level in the
foregut endoderm than other tissues. The
expression of Rhou in the endoderm is
initiated at a time when the foregut pocket
is being formed from this tissue in a
process involving extensive morphogenetic
tissue movement. Within this region, cells
in the ventral and lateral regions change in
appearance from a flattened, squamous
epithelium to a polarized columnar epi-
thelium that displays apical polarization of
the F-actin (Fig. 1A–C). In these cells, the
distribution of GFP-tagged Rhou protein

overlaps with that of F-actin and like
F-actin, Rhou is enriched in the apical
domain (Fig. 1E and F).

Rhou and its close relative Rhov are
atypical Rho GTPases. Rhou has a higher
GTP exchange rate than “classical” Rho
GTPases, suggesting that it exists primarily
in the active, GTP bound form. Rhou and
Rhov have unique N-terminal sequences
that regulate their activity and bind to
adaptor proteins,6,7 and C-terminal motifs
that are involved in protein localization.8

Previous work has shown that, when
expressed in various types of cultured cells,
Rhou can influence F-actin distribution,
cell adhesion, cell motility and inter-
cellular junction formation.9,10 Of parti-
cular relevance to tissue morphogenesis,
knockdown of Rhou in MDCK cells, an

epithelial cell model, impairs their ability
to form epithelial cysts.10

Rhou Functions in Endoderm
Differentiation

We investigated the function of Rhou in cell
differentiation and embryonic development
using embryonic stem (ES) cell lines in
which Rhou activity was stably knocked
down. The ability of these Rhou-knock-
down ES cells to differentiate was examined
by monitoring their differentiation in vitro
as embryoid bodies (EBs). In parallel,
embryos were directly derived from these
cells by tetraploid complementation,11

allowing us to examine the consequences
of reduced Rhou activity for development
of the foregut and the embryo as a whole.

Figure 1. Rho GTPase functions in epithelial development. (A) Rhou is expressed in the foregut (fg) endoderm (en) of mouse embryos at embryonic day
9.5. Expression is downregulated in the ventral midline where the thyroid bud (t) emerges. (B) The foregut endoderm consists of polarized columnar
epithelial cells with F-actin (red, visualized with phalloidin) concentrated beneath the apical surface, and a basement membrane containing fibronectin
(green, visualized by immunofluorescence). (C) The foregut endoderm forms tight junctions apically (red, visualized by ZO-1 immunofluorescence) and
adherens junctions (green, visualized by E-cadheren immunofluorescence) laterally. (D) Rho GTPases have multiple functions in epithelia. Rho GTPases
interact with effector proteins to influence cell polarity, actin localization and cell junction formation. In turn, this affects tissue organization and lineage
differentiation. (E and F) Electroporation of a construct encoding GFP-tagged Rhou (green) into the foregut endoderm reveals that its subcellular
distribution overlaps with that of F-actin (red). (D) Merged image of GFP and phalloidin staining. (E) Phalloidin staining only. (B and C; E and F) Apical
aspect is at the top of the figure, basal is at the bottom.
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Our results show that in the Rhou knock-
down embryos, endoderm cells in the
foregut lost their proper columnar epithelial
organization and the gut acquired a
deflated shape. While tight and adherens
junctions appeared to form normally, the
distribution of F-actin was no longer
strongly apically polarized and the cells
were depleted of microvilli on their apical
surface. In embryos, the liver and thyroid
buds were still able to form but were
morphologically abnormal. Genes that are
expressed specifically in the foregut endo-
derm or the liver bud (Pyy, Igfbp5, Pax9 and
Apom) showed reduced expression. In the
EBs, the expression of endoderm-derived

hepatic (Hhex, Mug1, Ttr) and pancreatic
(Iapp, Pdx1) lineage markers was reduced.
Therefore, Rhou is required for regulating
epithelial morphogenesis and endoderm
differentiation.

Rhou has previously been shown to be
capable of activating JNK,12 which could
mediate its effects on the actin cytoskele-
ton and migration of cultured cells. The
influence of Rhou on differentiation could
therefore be, at least in part, mediated by
its effects on JNK activity (Fig. 2A). In
our in vitro differentiation experiments
Ttr, Nrp1 and Wnt5a, which are all trans-
criptional targets of the AP-1 transcription
factor complex or its constituent protein

c-Jun, were expressed at a lower level in
Rhou knockdown EBs. Activated of c-Jun
requires JNK-dependent phosphorylation.
Complete loss of JNK1 and JNK2 activity
by genetic knockout of the Mapk8 and
Mapk9 genes results in embryonic lethality
with defective neural tube development,
although the effects on endoderm differ-
entiation and endodermal organ develop-
ment have not been investigated.13,14

In our study, reduction of JNK activity
during embryoid body differentiation by
a small molecule inhibitor reduced the
expression of the endoderm lineage
markers Pyy and Mug1 compared with
controls;5 and in a previous study15 in
which both Mapk8 and Mapk9 were
knocked out, expression of Sox17, a
marker of the early definitive endoderm,
was reduced in embryoid bodies. This
raises the possibility that Rhou-dependent
JNK activity is critical for endoderm
lineage differentiation, possibly due to
the downstream effects of loss of AP-1
transcriptional activity (Fig. 2A). Indeed,
Ttr, which is expressed in the liver and
is downregulated in Rhou knockdown
embryoid bodies, is a direct transcrip-
tional target of AP-1.16

Also possible is that the defects in
F-actin localization, cell shape and tissue
architecture in Rhou deficient embryos
contribute to the reduced capacity for
differentiation to endodermal lineages
(Fig. 2A). These defects may be down-
stream of impaired JNK activation, or due
to the loss of interactions with other
effector proteins. Defects in cytoskeletal
polarity caused by Rho-related GTPase
deficiency have previously been shown to
affect differentiation. In Ciona intestinalis,
altered Cdc42 expression affects the
formation of polarized, invasive cell pro-
trusions and the induction of cardiac
progenitor differentiation.17 Cdc42 also
influences the choice of erythroid vs.
myeloid differentiation of hematopoietic
stem cells18 and tissue-specific knockout of
Cdc42 activity interferes with pancreatic
tubulogenesis and differentiation.19

WNT Regulation of Rhou and
Endoderm Development

Rhou was originally identified in a screen for
genes that are upregulated in response to

Figure 2. Rhou expression influences epithelial morphogenesis, differentiation and organ budding
in the endoderm. (A) Rhou influences the localization of F-actin in the cell, possibly via interactions
with unidentified effector proteins (dotted arrow) and/or by promoting JNK activity. JNK activates
c-Jun, a part of the AP-1 transcription factor complex, which could directly affect the expression of
endodermal genes, and also influences the actin cytoskeleton which may indirectly affect the cell’s
response to signaling. (B) When Rhou is expressed in the endoderm, the apical shroud of F-actin
that it colocalizes with (red) helps to stabilize the cell against compressive forces (arrows, top).
When Rhou is downregulated, there is less F-actin apically (orange cell), reducing the cells
resistance to compressive forces which could result in an apical constriction of the cell, forcing
the cell away from the apical surface (bottom). This is a possible mechanism for the initiation of
organ budding from the endoderm.
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WNT1.12 Consistent with this we found
that embryos carrying mutations that
increased β-catenin-dependent (canonical)
WNT signaling activity resulted in upregu-
lation of Rhou expression. We also observed
upregulation of Rhou in cells cultured in
the presence of Wnt3a, which is thought
to act via the β-catenin-dependent path-
way, and following transfection with a
construct encoding constitutively active
β-catenin. In contrast Wnt5a, which acts
primarily via β-catenin-independent means,
did not cause upregulation of Rhou.
Although Rhou expression is influenced
by the level of canonical WNT signaling,
it is not entirely dependent on β-catenin-
mediated signaling since knockdown of
Ctnnb1, which encodes β-catenin, had no
significant effect on Rhou expression. On
the other hand overexpression of Sox17,
which can interfere with canonical WNT
signaling through its interaction with
β-catenin,20 caused a reduction in Rhou
expression.

β-catenin-dependent WNT signaling
influences cell proliferation, fate and dif-
ferentiation21 and in this context WNT
signaling could play critical roles at
multiple stages of foregut endoderm
development. Deletion of Ctnnb1 early
in post-implantation development results
in a change of cell morphology of the
endoderm from epithelial to mesenchymal
and biases the cell fate toward heart
mesoderm.22 Consistent with this, WNT
signaling is required for the differentia-
tion of ES cells into foregut endoderm.23

WNT signaling is later required for the
development of the exocrine pancreas,24

lung25 and liver.26

Our work further suggests a link
between the regulation of gene expression
by canonical WNT signaling and the
cellular effects more commonly associated
with WNT-regulated planar cell polarity
(PCP), which occurs via β-catenin-
independent pathways. Expression of
Rhou in the endoderm influences the
actin cytoskeleton, cell shape and epithelial
morphogenesis. This may occur through
its effects on JNK activity, which could
influence the expression of transcriptional

targets of AP-1/c-Jun and also directly
affect the cytoskeleton. Of particular
interest is that one of the AP-1 targets
that is downregulated in Rhou knock-
down EBs is Wnt5a.5,27 Wnt5a functions
in the PCP pathway in mice28 and can
regulate the actin cytoskeleton in polarized
cell types, including podocytes in mouse
kidneys.29 Components of the WNT/PCP
pathway regulate planar polarity (direc-
tional polarity within the plane of a layer
of cells) and also apical-basal polarity,30

which suggests that changes in Wnt5a
expression in Rhou knockdown cells could
contribute to the abnormal apical-basal
polarity of the actin cytoskeleton.

Implications for Organ Bud
Formation

The thyroid bud develops from a patch
of cells in the ventral midline of the
foregut endoderm, forming a pseudostra-
tified epithelium into which surrounding
cells are recruited, to form a multi-layered
epithelium that grows into an elongated
bud which extends into the surrounding
mesenchyme.31 The cells in the early
thyroid bud continue to express the
epithelial marker E-cadherin, but not
N-cadherin which is expressed in sur-
rounding mesenchymal cells.32 A similar
process of pseudostratification preceding
multilayering and outgrowth occurs dur-
ing the formation of the liver, in a process
that depends on the homeobox gene
Hhex.33 In vitro experimental work sug-
gests that the formation of a bud involves
cell shape changes which could involve
alterations to the cytoskeleton.34

During normal development, Rhou is
downregulated in the ventral midline
endoderm at the point where the thyroid
primordium is beginning to form (Fig. 1A)
and we observed that knocking down of
Rhou in individual cells by electroporation
of shRNA constructs into the foregut
endoderm, or in chimeras between Rhou-
knockdown ES cells and wild-type host
embryos, resulted in a greater tendency
for the Rhou-deficient cells to withdraw
from the apical domain of the epithelium

and be relocated toward the basal side of
the epithelium. This may mirror the
normal cellular behavior of endoderm
cells in the foregut as they downregulate
Rhou and engage in the formation of
organ buds. It may be that downregula-
tion of Rhou is a key step in the
formation of organ buds in from the
endoderm.

Apical constriction resulting from
increases in cortical tension inside the cell
and mediated by actin and myosin is an
important mechanism in tissue folding
and invagination.35 Our study suggests an
additional mechanism of apical compres-
sion may be involved in the initiation of
the epithelial multilayering that heralds the
start of organ budding. Localized reduc-
tions in Rhou expression, either during
normal development, or experimentally
induced, causes changes in the actin
cytoskeleton in those cells, including
reducing the apical F-actin content.
F-actin plays an important role in elasticity
and resistance to compressive forces in
cells,36 and so a reduction in apical F-actin
will weaken the resistance of a cell to
compressive forces from a surrounding
cell, resulting in a compression of the
apical domain and forcing the cell away
from the luminal surface (Fig. 2B). The
organ bud expands partly by recruitment
of surrounding cells, so any cells surround-
ing the nascent primordium that down-
regulate Rhou will also become part of
the multilayered structure. We propose
that Rhou has a critical function in the
regulation of the induction of budding
from a single layer epithelium and could
also be involved controlling the expansion
of the bud.
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