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Background: Malignant pleural mesotheliomas (MM) are known for their heterogenous

histology and clinical behavior. MM histology reveals three major tumor cell populations:

epithelioid, sarcomatoid, and biphasic. Using a dissecting approach, we showed that

histochemical gradients help us better understand tumor heterogeneity and reconsider its

histologic classifications. We also showed that this method to characterize MM tumor cell

populations provides a better understanding of the underlying mechanisms for invasion

and disease progression.

Methods: In a cohort of 87 patients with surgically excised MM, we used hematoxylin

and eosin to characterize tumor cell populations and Movat’s pentachrome staining to

dissect the ECMmatrisome. Next, we developed a computerized semi-assisted protocol

to quantify and reconstruct the ECM in 3D and examined the clinical association between

the matricellular factors and patient outcome.

Results: Epithelioid cells had a higher matrix composition of elastin and fibrin, whereas,

in the sarcomatoid type, hyaluronic acid and total collagen were most prevalent. The

3D reconstruction exposed the collagen I and III that form channels surrounding the

neoplastic cell blocks. The estimated volume of the two collagen fractions was 14% of

the total volume, consistent with the median estimated area of total collagen (12.05 mm2)

for epithelioid MM.

Conclusion: Differential patterns in matricellular phenotypes in MM could be used in

translational studies to improve patient outcome. More importantly, our data raise the

possibility that cancer cells can use the matrisome for disease expansion and could be

effectively targeted by anti-collagen, anti-elastin, and/or anti-hyaluronic acid therapies.
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INTRODUCTION

Malignant mesothelioma (MM) is a rare malignancy
characterized by its aggressive growth, local invasion, and
strong etiologic relationship to asbestos exposure. MM arises
from serosal mesothelial cells, mesodermal derivative cells
that exhibit both epithelial and mesenchymal features (1).
Different clinical trials have investigated the striking differences
in behavior and response to therapy in MM patients, some
often suggest that this heterogeneity may emerge from the
presence of different cell populations in a single tumor (2). The
heterogeneous and aggressive nature of this tumor often lead
to a poor prognosis for these patients. Therefore, it is crucial
that we improve our comprehension of MM heterogeneity in
its several aspects to develop new therapeutic protocols that can
improve survival.

Tumor heterogeneity can be investigated at the intra-tumor
and inter-tumor levels and contemplates not only tumor
cell populations but also their microenvironments. There are
currently threemajor histologicalMM types: epithelioid, biphasic
(epithelioid-sarcomatoid), and sarcomatoid. The nonmalignant
cells in the tumor microenvironment are, in turn, called the
stroma and include blood vessels, immune cells, fibroblasts,
signaling molecules, and the extracellular matrix (ECM) (3).
Regarding the latter, it is worth noting that the ECM core
matrisome can be broken down into fibrillar collagen types
(such as types I), proteoglycans (such as hyaluronic acid), and
glycoproteins (such as elastin) (4).

Previous histological observations made by pathologists
identified two juxtaposed tumor cell populations (epithelioid
and sarcomatoid) in MM. To further explore this question,
our group adopted a dissecting approach to decompose each
bulk MM histochemistry profile into a combination of these
two cell populations. This novel approach quantifies different
cell populations in a single tumor and avoids a strict subtype
signature based on subjective hierarchical classifications that fail
to take into account intermediate phenotypes and show intrinsic
limitations when investigating intra-tumor heterogeneity. We
also used bioinformatics to decompose and reconstruct MM
profiles. This new method to classify the pathology is a
step forward toward an improved comprehension of the
underlying behavior of MM when different cell populations
coexist in the same tumor. Moreover, this technique can have
critical clinical applications and implications for prognosis and
therapeutic strategies.

PATIENTS AND METHODS

Patient’s Selection and Clinicopathologic
Review
This retrospective study was conducted using data from
institutions linked to the Hospital das Clínicas Complex of
the Faculty of Medicine of the University of São Paulo
(HC-FMUSP)–including the Central Institute (Division of
Pathological Anatomy, DAP), the Heart Institute (InCOR,
Laboratory of Pathological Anatomy) and the Cancer Institute of

the State of São Paulo (ICESP)–and was approved by their Ethics
Committees (protocol number: 2,394,571).

A search for the word “mesothelioma” led our group
to 246 cases treated between 2008 and 2018 in the three
institutions−75 at InCOR, 59 at HC-FMUSP, and 112 at
ICESP. However, not all cases identified in the search were
MM cases, since the word “mesothelioma” was sometimes used
in the comments section of differentiated diagnoses, as well
as in reports related to benign mesotheliomas, their variants
(papillary, well-differentiated cystic), and cytological exams.
Other cases were dismissed due to their blocks not being found
or having been removed for external review or because they
did not meet the proposed inclusion criteria. The final sample
totaled 87 cases (35.4% of the initial search), as shown in
Supplementary Figure 1.

All blocks and slides of the cases initially found (246)
were requested from the pathology files for review by two
experienced pathologists in Thoracic and Pulmonary Pathology
(VLC and MLB). The review compared the diagnosis and
findings reported in the anatomopathological reports, including
the immunohistochemical test, with the original slides. When
the slides were lightened or showed preservation artifacts
due to temporal wear, they were considered unsuitable for
reassessment, and new cuts or immunohistochemical reactions
were performed.

Moreover, these reviews used the diagnostic criteria reported
in the World Health Organization (WHO) update of 2021 (5).
MM cases were histologically classified by their predominant
tumor cell population – epithelioid or sarcomatoid. The
nuclear features, as described by Kadota et al. (6), are
illustrated in Supplementary Figure 2. All cases had their
immunohistochemical profile reviewed–and expanded when
necessary–to ensure a minimum of two positive and two negative
markers for MM, as proposed by the WHO (7, 8). Positivity
was expected to fall between 80 and 100% for D2-40 and
between 70 and 93% for WT1, whereas negativity was expected
to fall between 95 and 100% for both D2-40 and MOC31. In
case of any remaining uncertainty, the pathologists expanded
the panel, evaluated it with the BAP1, and individualized each
characterization according to the clinical context on a case-by-
case basis.

We extracted clinical data from the original
anatomopathological reports, imaging examination reports,
surgical reports, and patient charts. Asbestos exposure was
inferred from indirect data such as residential location and
registered employment history. We also used search engines
to search for each patient’s name online, looking for indexing,
litigations, or any association with groups of former workers in
the asbestos industries. Next, we staged pleural mesotheliomas
according to the clinical-pathological model of the 8th edition
of the AJCC/UICC (8), whereas extrapleural cases were staged
according to the patient’s medical record. Overall survival
(OS) was defined as the time interval between the date of
histopathological diagnosis and the outcome event (death or
end of segment, if alive) and was obtained from death records
at a registry office or at a death verification service. If no death
records were identified, the time of the last follow-up was
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TABLE 1 | Clinical characteristics of patients with malignant mesothelioma.

Characteristic Number (%)

Age (years)*

Median (range) 60 (35–92)

Sex, n (%)

Male 59 (67.8%)

Female 28 (32.2%)

Asbestos exposure, n (%)

No 43 (49.4%)

Yes 44 (50.6%)

Stage
†
III/IV 87 (100%)

Treatment, n (%)

Surgery 62 (71.3%)

Chemotherapy 25 (28.7%)

Overall Survival, median* 21.6 months

Status*

Alive 35 (41.7%)

Died 52 (58.3%)

*Some cases lacked follow-up information: Age [3]; Overall Survival [16]; Status [3]. †Per

International Association for the Study of Lung Cancer (IASLC) criteria (7).

calculated based on the last consultation or laboratory tests in
the computerized hospital system.

Table 1 summarizes the clinical-pathological and
epidemiologic data of these patients.

Morphological Sample Assessmeny
Construction of Tissue Microarray (TMA)
We chose the TMA investigation model based on the currently
available literature, including studies of immune response (9–
11). Before to construct the model, we carefully examined the
hematoxylin and eosin (HE) stained slides to assure that areas
epithelioid and sarcomatoid were present. Then, three cylinders
of 1.0mm in diameter containing the epithelioid areas and
three cylinders containing sarcomatoid areas, were noted on the
original corresponding HE slides and paraffin blocks (named as
“donor” blocks) and then extracted and transported to receiver
paraffin blocks using the precisionmechanized equipmentMTA1
(Manual Tissue Microarrayer, Beecher Instruments, USA). Each
cylinder was positioned in the receiver block according to
a previously prepared map, with a 0.3mm spacing between
samples (Supplementary Figure 3). Each case produced six
cylinders distributed in duplicate in the receiver block, aiming to
minimize a possible sampling bias resulting from physical losses
and/or representativeness inherent to the TMA technology. Next,
the TMA blocks were submitted to serial 3 µm-thick cuts in a
manualmicrotome (Leica Instruments, Germany), each cutmade
in a single session to avoid losses with trimming. As a result,
each block produced 70 sections that were then distributed on
a marked slide embedded in paraffin and stored in a dark box
at−20◦C to preserve the antigenicity of the samples. The built
TMAs are illustrated in Supplementary Figure 4.

Histochemistry
Each MM TMA had one of its sections stained using the
Modified Russell-Movat’s pentachrome stain adopted by the
FMUSP biotechnics sector (12). Supplementary Table 1 lists the
evaluable connective elements and their respective color tones.
Supplementary Figure 5 illustrates the elements of Movat’s
pentachrome stain under evaluation. We also subjected the
paraffin blocks with a representative surgical specimen to
a Picrosirius histochemical staining and visualized it under
polarized light under 90 degrees for indirect identification of type
I fibers (coarser in appearance, in shades ranging from yellowish
to reddish) and type III fibers (more delicate and greenish)
(13, 14).

Scanning and Image Capture of Histology Slides
Histology slides for brightfield viewing (HE, Movat, Picrosirius)
were scanned in a Pannoramic 250 scanner (3DHistech,
Budapest, Hungary), under a 40x objective (Plan-Apochromat,
40x/NA0.95, Zeiss, Germany), with a resulting pixel density
of 0.185 µm2. The resulting files, saved in mirax format,
were stored on an external hard disk with a 2 TB capacity,
with redundant copies on a secondary disk for data security.
For visualization, we used the proprietary software Panoramic
Viewer (3DHistech) and QuPath open platform, version 0.2.0-
m4 (Centre for Cancer Research & Cell Biology, University of
Edinburgh, Edinburgh, Scotland). For scientific documentation
and acquisition of microscopy images under polarized light,
we used Zeiss Axiocam 512 scientific camera (Zeiss, Germany)
coupled to a Zeiss Axioscope A1 optical microscope with x40
and x63 N-Planochromatic objectives (Zeiss) under the Zen 3.0
(Zeiss) software to acquire brightfield and polarized light images.

Computerized Semi-assisted Quantification
We used the QuPath analysis visualization software in a semi-
assisted manner. This platform had been previously validated in
other studies (15), and we followed the protocol suggested by
their authors (16). After the data was uploaded to the software,
QuPath normalized the slide vectors, “dissecting” epithelioid
and sarcomatoid areas, corrected them by automated sample
detection, delineating them (Supplementary Figure 6), and
computer them as cellularity (Supplementary Figures 7, 8). We
then quantified the Movat’s stain in epithelioid and sarcomatoid
areas associating the Trainable Weka Segmentation (TWS)
machine learning tool (“Waikato Environment for Knowledge
Segmentation”) (17) and the ImageJ software (National Institute
of Health, USA). Next, a training set was created by an
experienced pathologist (MLB) consisting of 18 images of 100
x 100 pixels extracted from the general sample. These images
are representative of “ideal” areas (ground truth), representing
the components highlighted in this coloration: fibrin, collagen
matrix, hyaluronic acid, elastic fibers (Supplementary Figure 9).
The correspondence of each of these elements was “taught”
to the system through slide annotations, algorithms, trial and
error, correction to its adequacy, and validation. Once the
training set had been validated, the algorithm grouped all spots
into separate images. This group segmentation resulted in 8-
bit colored images censored by the previously designated color
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codes. Next, these images were again validated by a pathologist
(MLB) and finally quantified by component under the optical
threshold in the ImageJ software. The final measurements of
cellularity, hyaluronic acid, fibrin, elastin, and total collagen in
epithelioid and sarcomatoid populations obtained from the three
cylinders in the TMA were averaged and directly calculated on
the QuPath software. A final single patient value was expressed
as the percentage per mm2, and then transferred to individual
patients to determine OS and risk of death as final endpoint.
Moreover, heterogeneity among the different cylinders from
a same patient occurred mimicking the scenario of MM, a
heterogeneous tumor. Albeit this heterogeneity, the predominant
histoarchitecture was considered.

Three-Dimensional Reconstruction and 3D Collagen

Printing
Type I and III collagen fibers were reconstructed using the
Picrosirius histological staining, a technique based on the azo
pigment Sirius Red F 3B in saturated picric acid, as described by
Junqueira et al. (18). The purpose of this reconstruction method
was to create a 3D visualization of the patterns found in collagen
networks made up of Col fibers type I and III. We chose not to
individualize them to better understand the spatial distribution
between the neoplastic cell blocks. Other collagen types that
could not be stained with Picrosirius were not reconstructed
because the method was chosen for its affordability. In this
coloration, when viewed under polarized light with a brightfield
optical microscope, Col I fibers are identified as thick, reddish,
or orange-colored fibers, whereas Col III fibers are thin and
greenish. Supplementary Figure 10 is a photomicrograph that
highlights the observed patterns of staining with or without
polarized microscopy. In the absence of polarization, all collagen
fibers had a reddish color, contrasting with the yellowish tones
of the cytoplasm and muscle tissue. It was only under the use of
polarized light that, as previously mentioned, the different fiber
refringence patterns, conformations, and color patterns between
Col I and III emerged. Also, lower magnification showed their
architectural distribution as ECM components, with different
patterns of fiber distribution: Col (I) was organized in thicker
orange and reddish fibers, whereas Col (III) fibers were thin
and greenish.

The collagen reconstruction involved the use of a destructive
microscopy technique (19) where ten 3µm sequential cuts are
made in the paraffin blocks of surgical specimens containing
viable tumor cell representation and ECM. All the block slices
are then stained using the Picrosirius red technique in a single
session to avoid technique variations. Next, their images are
captured using a brightfield optical microscope (Zeiss Axioscope
A1, Zeiss), with 4x (N-Achroplan NA: 0.15, Zeiss), 20x (N-
Achroplan, NA: 0.45, Zeiss) and 63x (Achroplan, NA: 0.56,
Zeiss) magnification, polarizer, and led light source. The camera
employed in this study was a scientific camera with a 12-
megapixel, 1-inch CCD sensor, Axiocam 512 (Zeiss). The images
were captured in multiple magnitudes, sequentially, at the same
point on all slides, and the image files were saved in the
proprietary format of the Zen 3.0 capture software (Zeiss)
“.czi” and exported in uncompressed “.tif ” format, with 100%

quality. For the collagen reconstruction, we used the images
captured under polarization and under 4 and 20x objectives.
The next step was to align the images digitally. First, an
image grouping (stack) was imported into the Fiji software and
transposed to 8-bit in grayscale. We then applied the optical
threshold (threshold) of the Otsui method to highlight Col I
and III fibers and aligned them using the TrakEM2 (20) plugin,
choosing the stack alignment option, without deformations,
in the proposed configurations, with the affine transformation
method. After a visual validation of the alignment, the resulting
images were exported in “.tif ” format. For the three-dimensional
visualization, we used the Fiji software’s 3D viewer and the 3D
Slicer software (version 4.10.2 r28257) (21). We first imported
the previously treated “.tif ” images into the 3D Slicer software
and defined a virtual spacing of 5mm in the voxel metadata
configuration for z-axis visualization. Then we established a
similar optical threshold to the one used for collagen fibers
through the threshold option, defined the plane filling, and
carried out the smoothing treatment. Finally, the Fiji software
viewer created the final 3D visualization and exported it to “.stf ”
format in 1.9 gigabytes files. Supplementary Figure 11 illustrates
the image resulting from the reconstructions by Fiji (A) and 3D
Slicer (B) software. With this file, the next step was to prepare
it for 3D printing, reducing the image’s vertices and triangles.
Since the original image had 30966169 vertices and 61915216
triangles, stored in 2.88 gigabytes, the resolution of the triangles
was reduced to achieve printability, without loss of quality in the
perception of the reconstruction. To do so, we used Autodesk
Meshmixer (Autodesk, USA) (22, 23) to create a “.stl” file of
18.8megabytes containing 116,147 vertices and 234,066 triangles,
with dimensions of 100.00 x 65,713 x 22.203mm. In addition, the
model was simplified by excluding loose stitches, that is, those
without connection to other stitches, and rounding of the ends
for printing, as illustrated in Supplementary Figure 12. Once
adjusted for printing, the model was submitted to the Craftcloud
website1 for printing on a resin printer with a resolution of
0.05 mm.

Data Analysis
The statistical analysis was performed using SPSS v18 (Chicago,
IL, USA) for Windows. We assessed the relationship between
quantitative variables using Student’s t-test and used an analysis
of variance to correlate the color patterns. The paired-sample t-
test and general linear model were used to test the relationship
between one continuous variable and several others. All patients
were clustered for similar expression levels between the five
morphometric variables (tumor cellularity, hyaluronic acid,
fibrin, elastic fibers, and total collagen) on an R statistical
software using the pvclust package which provides a bootstrap
agglomerative hierarchical clustering option. Clusters with
similar expressions of the five variables were analyzed for risk of
death and survival time. The risk of death was obtained by logistic
regression. The total accumulated survival time was calculated by

1www.craftcloud.com, Germany
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FIGURE 1 | Histological characterization of a malignant mesothelioma (MM) cohort. Epithelioid (A) and sarcomatoid (B) MM stained by HE. Input images (C), TMA

spot stained by modified Russell-Movat staining; (D,E) output of the Weka segmentation and of the threshold segmentation for data extraction by coloration. (F) Input

and output images of the Weka segmentation, showing areas of segmented fundamental truths.

the Kaplan-Meier method and analyzed by the log-rank test. A P-
value of two seams <0.05 was considered statistically significant
for all tests.

RESULTS

Table 1 summarizes the clinical characteristics of patients who
were mostly male (67.8%) at a median age of 60 years.

All patients were stage III/IV, 71.3% had undergone surgical
resection, and 28.7% had received chemotherapy. 50.6% of
patients reported prior exposure to asbestos. 58.3% of patients
died after disease progression.

Histological examinations found two contrasting tumor cell
populations (epithelioid and sarcomatoid) in the MM cohort
stained with Movat’s pentachrome for cellularity and overall
matrix characterization (Figure 1). The epithelioid population
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TABLE 2 | Differences in the decomposed extracellular matrix factors between the epithelioid and sarcomatoid cell populations in MM.

Epithelioid Cell Population Sarcomatoid Cell Population P-value*

Cellularity (mean cell number/mm2 ) 71.14 53.22 0.0001

Hyaluronic acid (area fraction/mm2 ) 6.57 10.73 0.05

Fibrin (area fraction/mm2 ) 4.13 1.29 0.0001

Elastin (area fraction/mm2 ) 6.08 2.30 0.0001

Total collagen (area fraction/mm2 ) 12.05 32.71 0.0001

*The t-test was used to detect differences in continuous variables between groups of the tumor cell population. P-value ≤ 0.05 was considered statistically significant.

showed a prominent tumor cellularity involvement in the dense
hyaluronic acid matrix. In contrast, the sarcomatoid tumor cell
population had modest tumor cellularity and hyaluronic acid
area fraction.

Table 2 brings the distribution of the matrix components
in the epithelioid and sarcomatoid tumor cell populations of
MM. A closer evaluation of the ECM through the elements
of Movat’s pentachrome stain showed two distinct profiles:
the epithelioid cell population had a higher mean cell density
(1.33 times higher than sarcomatoid), with higher matrix
composition of elastic fibers (2.64 times higher), and fibrin
(3.2 times higher). Conversely, hyaluronic acid, a non-fibrillary
element of ECM, and total collagen were predominant in
the sarcomatoid tumor cell population (1.63 and 2.71 times
higher, respectively). Figure 2 uses four plots to compare the
expression of matrix elements, including cellularity (Figure 2A),
hyaluronic acid (Figure 2B), fibrin (Figure 2C), and total
collagen (Figure 2D), between epithelioid and sarcomatoid
tumor populations. The box plots in Figure 2A demonstrate a
relatively strong relationship between cellularity and epithelioid
tumor cell population (P = 0.0001), whereas the boxes
in Figures 2B,D show a strong relationship between the
sarcomatoid tumor population and hyaluronic acid and total
collagen (P = 0.05 and P = 0.0001, respectively).

The three-dimensional reconstruction of the ECM based on
Picrosirius made Col I and III more visible; the estimated volume
of the two collagen fractions was 14% of the total volume in
the chosen block, consistent with the median estimated volume
of total Col (12.05) for epithelioid tumor population (Figure 3).
The digital model was simplified to allow for three-dimensional
printing and remove disjointed structures. As a result, Figure 4
shows features that were not observed by the two-dimensional
brightfield optical microscopy, such as channels formed by Col
fibers surrounding the neoplastic cell blocks. While the digital
model showed cellular channel areas between collagen fibers,
the printed model made ECM more tangible, as illustrated in
Figure 4B.

After the univariate analysis showed which morphometric
variables differed significantly between epithelioid and
sarcomatoid tumor cell population in MM (tumor cellularity,
hyaluronic acid, fibrin, elastic fibers, and total collagen),
we grouped these variables in hierarchical cluster analyses
independent of clinicopathological variables and identified
three clusters of patients: 24 subjects in cluster 1 (CL I), 13 in
cluster 2 (CL II), and 50 in cluster 3 (CL III). Figure 5 shows the

cluster dendrogram separating the three groups by dispersion
similarities. CL I included tumors with a high area fraction of
hyaluronic acid (13.03/mm2) and total collagen (25.48/mm2)
compared to CL II (1.97 and 3.30/mm2, respectively) and CL
III (5.43 and 11.90/mm2, respectively) (Figure 6); this cluster
coincided with sarcomatoid tumor cell population histology.
In contrast, CL II had tumors with a high area fraction of
fibrin (9.82/mm2), and elastin (15.37/mm2) than CL I (0.97
and 2.63/mm2, respectively), and CL III (3.36 and 4.41/mm2,
respectively); suggesting a biphasic tumor cell population in CL
II–that is, one that includes both epithelioid and sarcomatoid
cell types (Figure 6). Finally, CL III was made of tumors with a
high number of cells/mm2 (74.89 cells/mm2) compared to CL
I (57.89/mm²) and CL II (69.54/mm²) and coincided with the
epithelioid tumor cell population histology (Figure 6).

In Supplementary Table 2, Supplementary Figure 13 are
shown the association between the three clusters classification
with the final histotype (epithelioid, biphasic or sarcomatoid)
resulting from pathological classification. Interestingly, cluster
analysis recognizes with strong significance three different
subsets in epithelioid MM classified only by histology (X2; P
= 0.02).

Considering that BAP1 is a surrogate marker for the
presence of BAP1 gene alterations, clusters classification was
compared with BAP1 protein status. The distribution of
BAP1 protein was positive in 17 (22%) epithelioid-sarcomatoid
and 3 (3.9%) epithelioid histotypes (Supplementary Table 3,
Supplementary Figure 14; X2; P = 0.48).

Table 3 shows the independent association between these
clusters and survival probability in MM. CL II had three times
the probability for better overall response (OR = 3.462, 95% CI
= 1.115–10.746, P = 0.032).

Figure 7 shows overall survival data compared cluster
classification with those resulting from the histopathological
classification of the cases into the three major histotypes. The
median overall survival between the cases classification was
respectively 30.1 vs. 37.6 for CIII and epithelioid histotype, 44.4
vs. 34.4 for CII and epithelioid-sarcomatoid histotype and 23.3
into three major histotypes was 11.4 months for CL I, 5.5 months
for CL II, and 25.1 months for CL III. And 30.1 vs. 11.26
for CI and sarcomatoid histotype. Clearly, the clusters tended
to separate patients into three groups with distinctly different
average survival times compared to histological classification,
as illustrated by Kaplan-Meier curves in Figures 7A,B. CL III
appears as the top curve. By contrast, those in CL II and I
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FIGURE 2 | Boxplots of the distribution of matrix elements [cellularity (A), hyaluronic acid (B), fibrin (C) and total collagen (D)] between the epithelioid and sarcomatoid

groups.

FIGURE 3 | Collagen fiber patterns I and III stained with picrosirius red and observed under polarized light. Type I fibers (thick and reddish fibers) and type III (thin and

greenish fibers) are indicated by the arrows (red and green, respectively) (Picrosirius under polarized light, 630x).
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FIGURE 4 | Morphological characteristics observed under conventional microscopy and identified in the 3D model. (A) Simplified 3D model; (B) 3D printed model; (C)

2D microphotography–Picrosirius; (D) Features in the 3D model, such as the communicating channels pointed; (E,F) are the equivalent of the thick central septa of

(C), seen from different angles in the 3D model.

overlapped (bottom curves), respectively (P < 0.01; by Log
Rank test).

DISCUSSION

Our study described histologic studies of MM, the different
tumor cell populations in these samples, and their extracellular
matrix components. We then suggested a complementary way to
describe MM behavior using Movat’s pentachrome stain and the
TWS bioinformatics approach [IP1].

Movat’s pentachromewas described in 1955 as a histochemical
technique to highlight multiple components of the connective
tissue compartment (24); in 1972, it was modified by Russell
(12), who optimized the technique. The pentachrome adds
elements with different colors, such as Verhoeff, sodium
thiosulfate, acetic acid, alcian blue, Scarlet orcein with acid
fuchsin, and safro-alcohol solutions. This histochemistry staining
technique produces massive image datasets when observed
under an optical microscope. However, to quantitatively evaluate
the images, researchers frequently need to manually annotate
the components of interest, a time-consuming procedure. To

overcome this problem, the TWS works as a machine learning
tool that studies a restricted number of manual observations and
creates a list of classifier elements to slice the remaining data
automatically (17). The TWS approach breaks down different
MM profiles–each made of a distinct combination of tumor
features–and reconstructs them according to the different cell
populations found in the samples, as well as their non-tumoral
extracellular matrix. This approach also minimizes the number
of requirements assessed in various MM histological subtypes
and is driven by the occurrence of epithelioid and sarcomatoid
morphologies in different proportions within MM. TWS can
also cluster the samples through unsupervised segmentation
learning schemes and can be tailored to employ user-designed
image features or classifiers. Both Movat’s pentachrome stain and
the TWS depend on the premise that distinct morphological
phenotypes correspond to distinct molecular phenotypes.
Therefore, we infer that the dissecting approach may influence
the potential improvement of clinical management in terms of
prognosis or therapeutic plan.

Along these lines, our results highlight several crucial points,
namely: the combination of different tumor cell components,
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FIGURE 5 | A dendrogram of clusters with three distinct groups split by dispersion similarities in our MM cohort.

their relationship with their microenvironment, their association
with patient survival, and their possible contribution to defining
new therapeutic strategies. Using a similar approach, Mäkelä
et al. (25) reported the prognostic value of fibroblast foci
and inflammation in idiopathic pulmonary fibrosis. In an
elegant study, Jones and colleagues applied an integrated
micro-CT and Movat’s stain to dissect the morphology of
fibroblast foci in 3D and reveal a collection of heterogeneous
structures, suggesting previously unrecognized plasticity,
in contrast to the 2D tissue standard pathology of sections
(26). Blum et al. (27) employed WISP, a deconvolution
method, to show that different morphological phenotypes
in MM correspond to distinct transcriptome phenotypes.
More recently, Jargidar et al. (28) tested epithelioid, biphasic
and sarcomatoid MM cell types in vitro and found that
fibronectin (FN) and homologous cell-derived extracellular
matrix (hcd-ECM) treated substratum differentially affected
the above phenotypes; 3D MM spheroid invasion was higher
in fibronectin-collagen matrices in the epithelioid and biphasic
cells, while 3D cell cultures of epithelioid and sarcomatoid
MM cells in fibronectin-collagen showed a higher contractility
compared to hcd-ECM-collagen. Collectively, these results
support our findings that histological subtypes are remarkably
consistent with the MM-derived epithelioid-like, biphasic-
like, and sarcomatoid-like tumor cell populations. Using
thresholds to discriminate these populations, we can equally
recapitulate all former tumor classification systems. We
suggest that our method offers a more objective solution
for describing MM subtypes, in contrast with discrete
classification systems based either on morphology or molecular
parameters to modulate stratified clinical trials. We also
believe that precision medicine may benefit from the finely
tuned information provided here to establish, for instance,

drug combinations and dosages that target different tumor
cell compartments.

To understand the relationship between different tumor cell
populations and their matricellular factors in MM progression,
we used a three-stage design. First, we used histochemistry
and a computerized semi-assisted quantification system to
characterize the ECMmatrisome (fibrin, hyaluronic acid, elastin,
and collagen) in both epithelioid and sarcomatoid tumor cell
populations. Second, the components that showed significant
differences between epithelioid and sarcomatoid populations,
regardless of any clinicopathological variables, were grouped
according to the similarities produced in high-throughput
protein analyses and used to characterize different subgroups
of MM. Third, we examined the clinical association between
different tumor-matricellular factors in TMAs built from 87
patients with surgically excised MM. Finally, we showed that
this more subtle way of characterizing different tumor cell
populations and stroma context provides a better understanding
of the clinical behavior of MM.

However, some major points still require further
investigations. The first important question that remains
unanswered pertains to the significance of the high area fraction
of fibrin and elastosis found in the ECM of the epithelioid cell
population when compared to the sarcomatoid population. The
behavior of individual cells is dictated by the forces exerted
on them by the surrounding ECM (29), and the physical
attachments that connect the cell interior to the ECM (30).
During oncogenesis, the tumor stroma is changed, suffering
modifications in its biochemical and viscoelastic properties,
including elastic fibers (31). The ECM in solid tumors is
stiffened, and as the tumor mass grows, it induces tumor hypoxia
and cellular injury due to the increased interstitial pressure
(32) modulating tumor cell phenotype (33). It has also been
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FIGURE 6 | Boxplots with the distribution of matrix elements [cellularity (A), hyaluronic acid (B), fibrin (C), elastin (D) and total collagen (E)] in different clusters. (**)

was used when P ≥ 0.01.

established that the stiffened ECM is not an inactive bioproduct
of cellular dedifferentiation but rather a dynamic contributor of
tumor growth and progression (33). Augmented ECM stiffness
and increasing core matrisome factors also disrupt stroma
morphogenesis, thus helping develop a specific malignant
phenotype in tumor cell populations (34). To understand the
dynamic nature of the ECM and the functional consequences of
ECM changes as tumor tissues develop and remodel, we can use
the classic concept of tissue regeneration, repair, and remodeling
(3Rs) as an example (35). In the repair stage, edema, cytokines,
and growth factors originating from the opening of endothelial
cells’ tight junctions lead to a “fibrillar” network composed of

plasma proteins, such as fibrinogen and fibrin (36). These plasma
proteins intermingle to form a crossed-linked gel which works
as a temporary scaffold for cellular regeneration after injury
(37). Thereby, the provisional matrix confers a framework and
substrate for other cells, such as fibroblasts, which characterizes
the remodeling stage. In MM, this substrate modulates the
typical phenotype of the epithelioid tumor cell population in
contact with this matrix.

Among the components studied, elastin helps define the
rigidity and elasticity of the regular ECM, while fibrin forms
the scaffold to support neoplastic cells (38). Elastin, one of the
longest-lived proteins (39), is highly present in tissues subjected
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TABLE 3 | Unconditional logistic regression exploring the independent association of clusters categorization and survival risk.

B S.E. Sig. Exp(β) 95% C.I. for Exp(β)

Inferior Superior

Cluster 3 (Reference) 0.064

Cluster 1 0.143 0.684 0.834 1.154 0.302 4.406

Cluster 2 1.242 0.578 0.032 3.462 1.115 10.746

Constant −1.099 0.436 0.012 0.333

B, coefficient for survival; S.E, standard error; Sig., significance; Exp (β), risk of B coefficient; C.I., confidence interval.

FIGURE 7 | Kaplan-Meier curves showing different average survival times between the three clusters groups with those resulting from the histopathological

classification of the cases into the three major histotypes (B,A, Log rank, 5.1 vs. 2.52; P < 0.01 vs. P = 0.28).

to high mechanical stresses and demands recurrent cycles of
extension and contraction such as the skin, lungs, tendons,
or arteries (40). During oncogenesis, tropoelastin degradation
leads to the release of elastokines, bioactive elastin-derived
peptides. Elastokines modulate tumor cell phenotype by exciting
several properties of tumor cells, including a higher expression
and secretion of proteases that powerfully stimulate tumor
cell migration and matrix invasion (41). It has been reported
that elastokines have intense chemotactic activity on malignant
melanoma cells, and their presence in distant organs might
contribute to metastasis (42). Elastokines have also been shown
to promote in vitro proliferation of glioblastoma cells (43)
and astrocytoma human cell lines (44), as well as murine
melanoma cell lines (45). Using the Elastin van Gieson (EVG)
stain, Al Abri et al. (46) reported that the amount of elastosis
varied in different breast cancer cell populations and could
be considered a surrogate marker for estrogen positivity and
HER2/neu negativity in breast cancer patients. Using a similar
approach, Kardam et al. (47) quantitatively evaluated elastic
fibers stained by Verhoeff–Van Gieson in oral squamous cell
carcinoma and found different grades of elastosis involved in
disease progression.

The second question that should be further investigated
involves the hyaluronic acid (HA) and total collagen densely
present in the ECM of sarcomatoid tumor cell populations,
contrasting with only a minor area fraction in the stroma of
epithelioid populations. In short, HA is a ubiquitous connective
tissue glycosaminoglycan synthesized by HA synthase enzymes

(48) that supports matrix stability and tissue hydration. HA is
also known to self-associate to form fibers (cables), networks,
and stacks (36). At the cell surface, HA forms a huge pericellular
matrix or “coat” named “glycocalyx,” which plays several critical
roles, from morphology and mechanochemical functions to
cellular cycle regulation and motility (49). This cell coat
allows the cells to change shape and facilitates cell division
and migration (50), which explains why it was more highly
expressed in the sarcomatoid tumor cell population. It has
also been reported that ECM cytoskeleton components have
both tumor-suppressing and tumor-promoting capacities, and
depending on its molecular weight, HA may work as either
a tumor suppressor or a tumor promoter (49). As previously
demonstrated by Tian et al. (51), naked mole-rat’s tumor
resistance involves the presence of a unique HA with high
molecular mass as a major component in their ECM. This HA
with high molecular mass signals through the CD44 receptor
and triggers the expression of crucial tumor suppressor genes,
promoting a hypersensitive cell-cycle arrest, a usual mechanism
of tumor suppression (52). Conversely, high levels of small HA
oligosaccharides are associated with poor prognosis in several
tumors such as colorectal, breast, and prostate cancer (53–
55). Collectively, these data contribute to understanding our
findings of a greater amount of HA in MM sarcomatoid cell
populations. HA interactions are prominent in diseases such as
cancer and affect events that promote tumor cell phenotypes with
higher invasion and metastasis rates (56). In fact, changes in
cell shape are one of well-proved methods that cancer cells use

Frontiers in Medicine | www.frontiersin.org 11 April 2022 | Volume 9 | Article 871202

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Balancin et al. Decomposing Matrix in Malignant Mesothelioma

to overcome mechanical barriers and thus competently invade
restricted networks (57).

Interestingly, interactions between HA molecules and fibrillar
collagen types seem to modulate the mechanical function of the
collagen and modify the contractile forces produced by fusiform
sarcomatoid cells (58). Moreover, the release of mechanical
forces in collagen fibers, which seems to be dependent upon the
synthesis and secretion of HA, have been linked to myofibroblast
loss (59), suggesting that pericellular HA may thus promote
myofibroblast survival and, consequently, collagen synthesis. In
the current study, we observed inhomogeneities in 3D collagen
matrices that reflected the mechanical phenotype of the matrices.
We also observed an adjustment between pore size and stiffness,
a critical factor for invasion (60, 61). Therefore, we successfully
gained insights about structural cytoskeletons and mechanical
properties of the tumor stroma, as these support the invasion of
the sarcomatoid tumor cell population.

Finally, a third important question that should be addressed
in future research relates to the need of a more accurate
diagnosis of MM. MM has gained importance because of
its association with exposure to asbestos, which has become
more prevalent in recent years. However, the current fear
of litigation in MM diagnoses has implications in prognosis
and therapeutic protocols. The difficulties regarding MM are
also intensified beyond the usual problem of anaplasia by
its many subtypes and underlying substrate dimorphism (62).
While knowledge of the more frequent histologic patterns has
improved diagnosis precision, a great deal of inter observer
subjectivity remains necessary (63). In this context, the use of
a clustering method to collect more objective data is desirable.
When we compared how the three clusters correlated with the
final histotype (epithelioid, biphasic or sarcomatoid) resulting
from pathological classification, we found that cluster analysis
recognizes with strong significance three different subsets inside
of epithelioid MM classified only by histology. We also found
that the distribution of BAP1 protein was positive in 17
(22%) epithelioid-sarcomatoid, speculating a better behavior
for those patients? Moreover, comparison between survival
curves obtained with cluster and histopathological classification
showed that histochemistry evaluation of matrix refined the
prognostic information, suggesting that both procedures should
be combined in the routine practice. Interestingly, our cluster
analysis identified three groups of MM with prognostic
implications: CL II (low risk of death), CL I (intermediate risk
of death) and CL III (high risk of death). Overall, our results
showed that the decreased risk of death in CL II patients was
characterized by an epithelioid-sarcomatoid (biphasic) tumor
cell population. In fact, these patients had a three times higher
chance of survival than patients in CL I (epithelioid) and CL III
(sarcomatoid). The reasons for this difference may be linked to a
better balance between components that favor invasion (elastin,
HA and collagen) and those that act as a barrier (cellularity).

In summary, these developing mechanisms help investigators
to better characterize the phenotypes and functional mechanisms
of tumors that express different cell populations. The
characterization of distinct cell populations using specific
biomarkers, microdissection, or single cell analysis is an

incredibly exciting field with many questions that are yet to
be answered. To contribute to these efforts, our study tests
new methods of analyzing MM tumor cell populations and
complements the description of MM behavior by integrating
different tumor cells population and their extracellular matrix
components. Notably, our findings may help guide more
personalized treatments for MM patients and help develop novel
targeted therapies, while also highlighting new ways for other
researchers to investigate MM treatments.
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