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Brain disorders, such as neurodegenerative diseases (NDs) and tumors (more than
600 pathologies), are a serious health problem, resulting in brain dysfunctions that limit
normal activities, with a significant economic impact [1]. The major difficulty for the
treatment of brain diseases is the presence of biological barriers (the blood–brain barrier
(BBB) and blood–cerebrospinal fluid barrier) limiting brain accessibility and reducing the
efficacy of therapies, with a number of side effects due to the dispersion of the drugs
which fail to enter the central nervous system (CNS) [2,3]. Furthermore, it is important
to administer therapeutic agents to the brain lesions present in different regions of the
CNS without affecting other normal CNS tissues in order to avoid further damage. In
addition, at the cellular level, it is very important that formulations may selectively target
the specific brain cells (neuron, microglia, oligodendrocytes or astrocytes) involved in
different brain pathologies.

In this context, the nanobiotechnology approach should offer unique opportunities to
(i) improve drug bioavailability (the protection of a drug from degradation); (ii) overcome
physiological barriers; (iii) enable targeted delivery and controlled release; and, conse-
quently, (iv) reduce the doses and frequency of administration by limiting potential adverse
effects. All of these advantages would allow an increase in the efficacy of therapies for the
treatment of brain disorders. Several studies have focused on developing drug delivery
systems (DDSs) for the brain, such as nanoparticles, dendrimers, liposomes, vesicles and
nanogels [3–7], as a potential approach to contrast NDs.

Moreover, magnetic nanoparticles have received much attention as systems for the
treatment of cerebral pathologies. In particular, they have been chosen for their ease of
preparation and their advantageous properties such as composition, size, surface mor-
phology, functionalization and ability to cross the BBB, which could be very promising for
future clinical applications [8,9].

Recently, brain delivery systems capable of transporting organelles such as mitochon-
dria have also been designed [10,11].

Extracellular vesicles (EVs), in particular, the exosomes (EXOs), have been explored
as important tools for brain therapy [12,13]. Specifically, EXOs are emerging as DDSs due
to their characteristics such as stability, biocompatibility, low immunogenicity (invisibility
when circulating in the bloodstream), ability to overcome natural barriers and intrinsic
targeting ability. EXOs are also promising for future clinical applications in the diagnosis of
NDs and are being studied for their usefulness in detecting and predicting disease prior to
the emergence of symptoms [12,13]. The diagnostic potential of EXOs is due to the fact that
nanovesicles have a specific biomolecular profile represented by proteins, nucleic acids and
lipids that can form a “fingerprint” of the mother cells, and therefore reflect pathological
conditions when cellular changes occur. In addition, EXOs are readily present in almost
all body fluids (blood, urine, breast milk, saliva, sperm, amniotic fluid, cerebrospinal fluid
(CSF) and lymph) [12,13].

Recent work on EXOs has pointed out various aspects related to their roles in the
pathogenesis, diagnosis and treatment of Alzheimer’s disease (AD) [14]. EXOs can carry
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different cargoes, ranging from drugs such as quercetin and curcumin to enzymes such
as neprilysin and insulin-degrading enzyme, as well as miRNA [14], for the purpose of
counteracting AD. Moreover, EXOs could act as Aβ scavengers, i.e., one of the main actors
involved in AD [15]. In fact, through the molecules present on the surface (glycans on
glycosphingolipids), the EXOs might bind to Aβ and play an important role in Aβ brain
clearance [14].

The mechanisms by which EVs regulate the neuro-inflammation processes of the
microglia remain largely unexplored. Recently, the action of EVs derived from human
exfoliated deciduous teeth stem cells (SHEDs) (EVs-SHEDs) on human microglial cells
has been investigated [16]. In particular, EVs-SHEDs encourage a rapid increase in the
intracellular Ca2+ level, and promote ATP production and microglial migration. The results
demonstrate that EVs-SHEDs have an immunomodulatory effect and induce microglial
motility through P2X4R/MFG-E8-dependent mechanisms [16].

Nanotechnologies have been used for the development of new therapies for multiple
sclerosis (MS) [17]. In particular, natural and artificial vesicles and nanoparticles have been
proposed as valid nanotherapeutic approaches. In this context, nanovectors have been
investigated for use as DDSs and as vectors for antigen-specific immunomodulation [17] or
a drug-conjugated antigen approach which combines two therapeutic strategies: antigen-
specific immunotherapies and immunomodulatory agents [17].

Currently, plant virus nanoparticles (NPs) represent an innovative solution as DDSs
for Shh-Dependent Medulloblastoma (MB). In particular, Tomato Bushy Stunt Virus (TBSV)
nanoparticles have been proposed as an effective vehicle for the targeted delivery of
chemotherapeutics to MB in order to reduce toxicity [18].

Selenium nanoparticles showed a protective effect in the neuroglial networks of
the cerebral cortex in ischemia/reoxygenation conditions. Such nanoparticles suppress
ischemia-induced increases in cytosolic Ca2+ and necrotic cell death by the activation of
neuroprotective A2 astrocytes [19].

The set of scientific discoveries illustrated in this Special Issue highlights the great
potential of nanotechnologies for the development of new therapies for CNS pathologies.
In the future, greater interaction between the fields of materials science, bioengineering,
biology and medicine will certainly allow a more applicative use of nanotechnology.
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