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It is of great urgency to explore useful prognostic markers and develop a robust
prognostic model for patients with clear-cell renal cell carcinoma (ccRCC). Three
independent patient cohorts were included in this study. We applied a high-level neural
network based on TensorFlow to construct the robust model by using the deep learning
algorithm. The deep learning-based model (FB-risk) could perform well in predicting the
survival status in the 5-year follow-up, which could also significantly distinguish the
patients with high overall survival risk in three independent patient cohorts of ccRCC
and a pan-cancer cohort. High FB-risk was found to be partially associated with negative
regulation of the immune system. In addition, the novel phenotyping of ccRCC based on
the F-box gene family could robustly stratify patients with different survival risks. The
different mutation landscapes and immune characteristics were also found among
different clusters. Furthermore, the novel phenotyping of ccRCC based on the F-box
gene family could perform well in the robust stratification of survival and immune response
in ccRCC, which might have potential for application in clinical practices.

Keywords: deep learning, renal cell carcinoma, F-box family, immunotherapy, prognosis
INTRODUCTION

Renal cancer ranks sixth in terms of incidence rate among all male malignancies, accounting for
almost 5% of all male cancer patients (1). In China, there were about 74,000 new tumor cases
estimated in renal in 2015 (2). Renal cancer could be classified into different pathological subtypes
according to various histological features, among which clear-cell renal cell carcinoma (ccRCC)
accounts for about 80% of malignant cases in renal cancer (3). Prognosis of ccRCC mainly depends
on tumor characteristics, and some patients with ccRCC might suffer from quite poor prognosis
with the overall survival rate less than 25% in 5 years (4). Even for patients with localized ccRCC,
some of them could also be troubled by tumor recurrence after surgical intervention. Hence, it
becomes necessary to find out practical prognostic markers for patients with ccRCC.
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F-box proteins belong to a large family and consist of
ubiquitin ligase complexes of SKP1-CUL1-F-box, which can be
classified into different subtypes, including FBXL, FBXW, and
FBXO (5–7). The dual roles of F-box proteins had been identified
among various malignant tumors. For example, FBXW7 (F-box
and WD repeat domain-containing 7) could act as a tumor-
suppressor targeting various carcinogenic proteins for
degradation (8). The loss function of FBXW7 could induce
chromosomal instability and tumorigenesis. On the contrary,
the F-box protein SKP2 (S-Phase kinase-associated protein 2)
could function as a tumor oncoprotein through mediating the
ubiquitylation and degradation of multiple cell cycle regulators
(9). However, the prognosis value of F-box proteins in ccRCC is
rarely reported by now. In addition, some uncharacterized
biological functions of several F-box proteins are waiting to be
explored in ccRCC. Since the F-box proteins in tumorigenesis
could contribute to tumor suppression and tumorigenesis, it is
interesting to perform a comprehensive analysis of F-box
proteins for integrated utilization in clinical practices.

In this study, we performed deep learning-based analysis of
the F-box gene family (FBG) among three independent patient
cohorts to identify the important role of F-box proteins in
ccRCC. Furthermore, we developed and verified FBG-related
novel phenotyping of ccRCC for robust stratification of survival
and immune response in ccRCC.
MATERIALS AND METHODS

Patient Sources
We included 3 patient cohorts from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov), E-MTAB-1980 (10) and
Clinical Proteomic Tumor Analysis Consortium (CPTAC) (11)
in this study. The included patients should be pathologically
diagnosed as ccRCC and had complete follow-up information
and gene expression data. After eliminating patients with
incomplete information, 531 patients in the TCGA cohort, 101
patients in the E-MTAB-1980 cohort, and 98 patients in the
CPTAC cohort were included for the further analysis. The basic
Frontiers in Immunology | www.frontiersin.org 2
clinicopathologic characteristics of the patients are shown in
Table S1. In addition, the pan-cancer data of 32 types of
malignancies, including normalized RNA-seq data and survival
information of 10,003 patients, were also downloaded from the
TCGA database.

Robust Model Construction
In order to construct a robust model for the survival prediction
of patients with ccRCC, we applied a high-level neural network
(https://keras.rstudio.com) based on TensorFlow by using the
deep learning algorithm. FBGs were collected according to
previous reports (12–14). After eliminating genes with very
low expression abundance in ccRCC, 61 FBGs were selected
for further analysis (Table S2). The framework of the neural
network is illustrated in Figure 1, which comprised three dense
layers, with activation function of the rectified linear unit
(ReLU). The model was defined using the sequential
application programming interface. For the first dense layer
with units of 256 and activation of ReLU, the input shape was
defined as 61 since the input file contained the expressions of 61
FBGs. A dropping rate of 0.4 was set for the first dropout layer.
The second dense layer was defined with units of 128 and
activation of ReLU, which was followed by the second dropout
layer with a dropping rate of 0.3. The loss function was set as
sparse categorical cross-entropy, with an optimizer of RMSprop
and metrics of accuracy.

We also applied the Least Absolute Shrinkage and Selection
Operator (LASSO) (15), k-nearest neighbor (KNN) (16), XGBoost
(17), and random forest (18) based on the expressions of 61 FBGs to
construct machine-based prognosis prediction models for
comparison (Figure S1). The LASSO model was carried out via
the glmnet package in R to identify 7 ccRCC-related FBGs and
calculate their coefficients in the TCGA cohort. The lambda value
was set as 1,000 to ensure the robustness of the LASSO model. For
the KNNmodel, we used the psych package in R with 5 repeats. For
the XGBoost model, we used the xgboost package in R. The objective
was set as binary logistic, and the number of rounds was set as 25.
The randomForest package in R was used for the random forest
model, and the number of trees was set as 1,000.
FIGURE 1 | Framework of the deep neural network in this study.
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Novel Phenotyping of ccRCC
Based on FBG
Based on 61 FBGs in ccRCC of the C3 cluster defined by
Thorsson et al. (19), we performed unsupervised cluster
analysis via k-means (20) to explore novel phenotyping of
ccRCC, in which the consensus cluster was set as 2.

Tumor Immune Microenvironment Analysis
To identify the immune characteristics of ccRCC samples, the
abundances of various immune cells for each sample were
estimated through CIBERSORT (21). The expressions of
chemokines, interleukins, interferons, MHC molecules, co-
stimulators, coinhibitors, and other important cytokines were
compared among tumors of different immune subtypes. In
addition, key immune characteristics, including T-cell receptor
(TCR) evenness, Th1 cells, Th2 cells, Th17 cells, cancer testis
antigens (CTA) score, lymphocyte infiltration, macrophage
regulation, and aneuploidy score, were also retrieved from
previous research for subsequent analysis (19). The association
of response to immunotherapy was also explored in a cohort of
181 patients with ccRCC, who were treated with nivolumab
(anti-PD-1) and had complete clinical information (22).

Functional Enrichment Analysis
The gene set enrichment analysis (GSEA) (23) was performed to
explore potential enriched pathways, which was further
visualized by ClusterProfile and enrichplot package in R (24).
The number of permutations was set as 1,000. For cluster
analysis, we carried out biological process analysis of gene
ontology (GO) in R to find out potential enrichment pathways
of each immune subtype.

Somatic Variant Analysis
Whole-genome sequencing extracted from consensus coding
mutation data was acquired from the cBioPortal (25) for
somatic variant analysis. We performed the analysis via
maftools package (26) in R, and then the different mutation
landscapes of ccRCC in different immune subtypes were
exhibited. Finally, the mutation statuses of the top 10 genes
were visualized for each group.

Identification of Core FBGs Associated
With Response to Immunotherapy
Weighted gene co-expression network analysis (WGCNA) was
carried out to develop co-expression gene networks based on
FBGs via the WGCNA package in R. After identifying the
module of interest, we further performed Cox regression
analysis to pick out the core genes associated with the patients
with ccRCC who could benefit from immunotherapy.

Statistical Analysis
R-4.1.0 was used for statistical analysis in this study. We carried
out the Mann–Whitney U test to compare continuous variables
between two different groups, while variables among more than
two groups were compared through one-way analysis of
variance. Bonferroni was performed for adjusting the p value,
Frontiers in Immunology | www.frontiersin.org 3
and a p value less than 0.0167 was defined as significant for
multiple comparisons. Kaplan–Meier curve analysis was
performed to compare overall survival (OS) based on the log-
rank test. The receiver operating characteristic (ROC) curve with
an area under the curve (AUC) value was used for the prediction
effect evaluation.
RESULTS

Robust Deep Learning-Based Prognosis
Prediction Model for ccRCC
In order to construct a robust prognosis prediction model for
ccRCC, patients in the TCGA cohort were firstly randomly
divided into a training set (80%) and test set (20%). By
applying the deep neural network, we trained a 5-year
prognosis prediction model with an epoch of 100. The training
curve in the TCGA cohort is shown in Figure 2A. When the
cutoff value of FB-risk was set as 0.1247, the model achieved the
best prediction performance in the ROC curve analysis with
sensitivity of 0.71 and specificity of 0.68 (Figure 2B). External
validations of our model were carried out in the E-MTAB-1980
cohort (Figure 2C) and the CPTAC cohort (Figure 2D). ROC
curves in the E-MTAB-1980 cohort and the CPTAC cohort
revealed that our deep learning-based model (FB-risk)
performed better than some machine learning-based models in
external validation cohorts, including LASSO, KNN, XGBoost,
and random forest in predicting the survival status in a 5-year
follow-up.

With the cutoff value of 0.1247, patients in the TCGA cohort
and the E-MTAB-1980 cohort were grouped into a high- or low-
risk group, while the cutoff value in the CPTAC cohort was set as
the media value because all of the FB-risk values in this cohort
were less than 0.1247, which might be due to the better prognosis
of patients in this cohort. Kaplan–Meier survival analysis
revealed that our FB-risk could significantly distinguish
patients with high OS risk in the TCGA cohort (Figure 2E),
the E-MTAB-1980 cohort (Figure 2F), and the CPTAC
cohort (Figure 2G).

Applying the Prognosis Model for
Pan-Cancer
Next, we explored whether our prognosis model could be applied
in the pan-cancer cohort. Based on 32 types of different
malignancies from the TCGA database (10,003 patients), our
model could also significantly distinguish patients with different
survival risks with a cutoff value of 0.1247 (Figure 3A). Cox
regression analysis illustrated that FB-risk could act as an
independent risk factor for multiple types of tumors, including
adrenocortical carcinoma (ACC), ccRCC, kidney renal papillary
cell carcinoma (KIRP), brain lower-grade glioma (LGG), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), mesothelioma (MESO), sarcoma (SARC), skin
cutaneous melanoma (SKCM), and thyroid carcinoma (THCA)
(Figure 3B), exhibiting the robust efficacy of our deep learning-
based prognosis model.
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High FB-Risk Might Be Partially
Associated With Negative Regulation of
Immune System
In order to further explore the underlying mechanism of FB-risk,
we carried out GSEA in enriched genes associated with high FB-
risk (Figure 3C). The results showed that the genes associated
Frontiers in Immunology | www.frontiersin.org 4
with high FB-risk were mainly enriched in the negative
regulation of immune system processes. The negative
regulation of immune function had been widely proved to be
observably associated with the progress of malignancy (27).
Correlation analyses indicated that FB-risk was partially
positively correlated with regulatory T cells (Figure 3D).
A

B D

E F G

C

FIGURE 2 | Prognosis model based on the f-box family using deep learning for ccRCC. (A) The learning curves of the deep learning model in the training cohort
and test cohort. (B–D) Comparison of prognosis prediction in the 5-year follow-up using LASSO, KNN, XGBoost, RF, and deep learning methods in the TCGA
cohort, E-MTAB-1980 cohort, and CPTAC cohort, respectively. (E–G) Kaplan–Meier survival analysis of overall survival stratified by FB-risk for ccRCC in the
TCGA cohort, E-MTAB-1980 cohort, and CPTAC cohort, respectively. ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; CPTAC,
Clinical Proteomic Tumor Analysis Consortium; LASSO, Least Absolute Shrinkage and Selection Operator; KNN, k-nearest neighbor; RF, random forest; FB-risk,
f-box family-related risk.
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Novel Phenotyping of ccRCC Based on
f-Box Gene Family
The current immune subtype was proposed by Thorsson et al.
(19) in 2018, which was characterized by five immune signatures,
namely, macrophages/monocytes, lymphocyte infiltration, TGF-
b response, IFN-g response, and wound healing. All the patients
with ccRCC in the TCGA cohort could be grouped into six
clusters (C1–C6, Figure 4A), in which there existed significantly
discrepant prognosis among different clusters (Figure 4B).
However, most of the patients (83.4%) with ccRCC were
clustered into C3, which might be impractical for clinical
Frontiers in Immunology | www.frontiersin.org 5
practice. Thus, we performed unsupervised cluster analysis by
k-means based on FBG to subgroup the C3 cluster. As shown in
Figure 4C, two disparate subclusters, including C3A and C3B,
could be found. When we clustered C1, C2, C4, C5, and C6 into
“other cluster,” dramatically different survival outcomes could be
found among patients from the C3A cluster, C3B cluster, and
“other cluster” in the TCGA cohort (Figure 4D). Survival risk
stratification by novel phenotyping was also verified in the
CPTAC cohort (Figure 4E). Besides, Cox regression analysis
revealed that the novel phenotyping system (FB-cluster) could
act as an independent risk factor for ccRCC (Figure 4F).
A B

D

C

FIGURE 3 | Evaluation of the prognosis model in ccRCC. (A) Kaplan–Meier survival analysis of overall survival stratified by FB-risk for pan-cancer patients from the
TCGA dataset. (B) Cox regression analysis of deep learning-based FB-risk in different kinds of malignancies in the TCGA dataset. (C) Gene set enrichment analysis
of patients with high FB-risk. (D) Correlation analyses of FB-risk and different adaptive immune cells (left)/innate immune cells (right) in the TCGA cohort. ccRCC,
clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas; FB-risk, f-box family-related risk.
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Different mutation landscapes could also be observed among
these three clusters. As illustrated in Figure 5A, a higher proportion
of PBRM1-mutated tumors were found in the C3A cluster. The
biological process analysis of GO indicated that the C3A cluster was
memorably enriched in pathways related to metabolic transport,
including organic anion transport, organic acid transport, and
sodium ion transport. Meanwhile, the C3B cluster showed
enrichment in the pathway of immune regulation, including
regulationofTcell activationand lymphocytemigration (Figure5B).

Immune Characteristics in the C3A Cluster
The tumor immune microenvironment could play a vital role in
tumorigenesis (28). Since patients in the C3A cluster seemed to
have the most favorable prognosis, we next explored the immune
Frontiers in Immunology | www.frontiersin.org 6
characteristics of the C3A cluster. As shown in Figure 6A,
different abundances of immune cells could be found among
different clusters. The C3A cluster exhibited higher abundance of
macrophage M2 and T cell CD4+ memory resisting cells.
Immune-related genes, including CCR4, IL7R, IL17RD,
HAVCR1, and TNFRSF4, were most highly expressed in C3A
cluster (Figure 6B). In addition, ccRCC in the C3A cluster was
significantly associated with higher levels of Th2 cell, Th17 cell,
and TCR evenness (Figure 6C).

C3A Clusters Were Associated With
Increased Benefits of Immunotherapy
In the next step, we explored whether our novel phenotyping
could be used for prognosis prediction of patients treated with
A B

D

E F

C

FIGURE 4 | Novel phenotyping of ccRCC based on f-box family genes. Evaluation of the prognosis model in ccRCC. (A) Heatmap illustrated the different expressions of
f-box family genes in current immune clusters in the TCGA cohort. (B) Kaplan–Meier survival analysis of overall survival stratified by current immune clusters FB-risk for
pan-cancer patients in the TCGA cohort. (C) Unsupervised cluster analysis by k-means based on f-box family genes in the TCGA cohort. (D) Kaplan–Meier survival
analysis of overall survival stratified by the novel phenotyping in the TCGA cohort. (E) Verification of risk stratification performance by the novel phenotyping in the CPTAC
cohort. (F) Cox regression analysis of the novel phenotyping based on f-box cluster for ccRCC. ccRCC, clear cell renal cell carcinoma; TCGA, The Cancer Genome Atlas;
CPTAC, clinical proteomic tumor analysis consortium; FB-risk, f-box family-related risk.
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immune checkpoint inhibitors (ICIs). Comparison of the main
immune checkpoints among different clusters indicated that a
higher expression level of PD-L1 was found in the C3A cluster
(Figure 7A). In order to perform the novel phenotyping in the
anti-PD-1 cohort, we firstly screened out 50 differentially
expressed FBG via the limma method (29) (Figure 7B) and
trained a C3A-cluster prediction model based on these 50 FBGs
through deep neural networks (Figures 7C, D). The results
indicated that patients in the C3A cluster exhibited observably
prolonged OS and DFS (Figures 7E, F).
Identification of Core FBG Associated With
Response to Immunotherapy
All the FBGs in the TCGA cohort were hierarchically clustered
into 5 gene modules through WGCNA (Figure 8A). Correlation
analysis indicated that the blue model (MEblue) seemed to have
the highest correlation with the C3A cluster (Figure 8B). Ten
FBGs in the blue model, including BTRC, CCNF, FBXL3, FBXL4,
FBXO21, FBXO3, FBXO41, FBXO43, FBXO8, and FBXO9, were
then identified as hub genes. Cox regression analysis in the anti-
PD-1 cohort revealed that only FBXL3, FBXO3, and PBRM1
mutation could serve as biomarkers of immunotherapy for
patients with ccRCC (Figure 8C). Patients with higher
expressions of FBXL3 and FBXO3 presented a markedly
prolonged survival (Figures 8D, E).
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

Until recently, the most clinically applied prognostic indicators
for ccRCC patients are TNM staging and the International
Society of Urological Pathology (ISUP) grading system (30,
31). TNM staging mainly targets on the macroscopic features
whereas the ISUP grading system concerns most on the nuclear
abnormality. Under the comprehensive utilization of both TNM
staging and the ISUP grading system, we found that some ccRCC
patients still show unexpectedly poor prognosis, such as ccRCC
patients with sarcomatous lesion and rhabdoid differentiation.
Additionally, with the advent of immunotherapy for ccRCC
patients, new prognostic and therapeutic biomarkers are
necessary for clinical practices.

Deep learning, also known as deep neural network, can mimic
the human brain to deal with complex data through multiple
layers of artificial neurons (32). Considering the capability of
deep learning in complex data recognition, interpretation, and
generation, deep learning shows its good performance in various
cancer detection and prognosis prediction based on various
medical data. Based on the deep learning algorithm, we
constructed and verified a robust prognosis prediction model
for ccRCC, which could significantly distinguish patients with
high survival risk and which performed better than traditional
machine learning-based models. Traditional machine learning
methods might be trapped in out-of-sample predictions due to
A

B

FIGURE 5 | Somatic mutation and enrichment analysis of ccRCC with different immune subtypes. (A) Oncoplots of ccRCC in different immune subtypes.
(B) Potentially enrichment pathways based on the enriched genes in each immune subtype of ccRCC. ccRCC, clear cell renal cell carcinoma.
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the inconsistencies in the feature distributions and overfitting. In
this study, we applied two dropout layers in the network to
prevent overfitting as far as possible. The results indicated that
our deep learning-based model presented better generalization
performance in independent patient cohorts and a pan-
cancer cohort.

It is mainly considered that F-box proteins are involved in the
cell cycle regulation and the p53 apoptosis pathway to affect
tumor growth (5, 6). Intriguingly, in a recent study, FBXO38 was
demonstrated to mediate the ubiquitination of PD-1 on T cells
and thus improve the performance of ICI treatment (33).
Frontiers in Immunology | www.frontiersin.org 8
Another F-box family member, FBXO44, could promote DNA
replication and was inversely correlated with the diminished
immunogenicity as well as the decreased immunotherapy
response (34). In addition, F-box proteins were also reported
to inhibit the metastasis of ccRCC patients and could act as
prognostic indicators for patients with ccRCC (35).

As a revolutionary therapy, immunotherapy has shown its
improvement in prolonging the survival of various malignant
tumors, including lung cancer, gastric cancer, bladder cancer,
and melanoma. Moreover, some studies illustrated that ICIs
could obviously increase the survival of intermediate- or poor-
A

B C

FIGURE 6 | The landscape of the tumor immune microenvironment in different FB-based clusters. (A) Comparison of the abundances of 22 immune cells in different
subclusters. (B) Expression of chemokines, interleukins, interferons, MHC molecules, co-stimulators, co-inhibitors, and other important cytokines and their receptors
in ccRCC from different subclusters. (C) Different values of vital immune characteristics in different subclusters. ccRCC, clear cell renal cell carcinoma; TCR, T cell
receptor; CTA, cancer testis antigens; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, non-significance.
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risk metastatic ccRCC patients with fewer adverse reactions (36,
37). However, as a common issue for immunotherapies, only
limited ccRCC patients could receive therapeutic benefits from
ICIs. Therefore, it is urgent to find out some useful prognostic
biomarkers for ICI application in patients with ccRCC. In this
study, we proposed that the C3A cluster of ccRCC was associated
with increased benefits of immunotherapy, which might have
promising potential for application in clinical practices.

Further co-expression gene network and Cox regression
analyses revealed that FBXL3 and FBXO3 could be the core
FBGs associated with response to immunotherapy. FBXL3 was
previously supposed to control the oscillation of the circadian
clock (38). Recently, some studies found out that FBXL3 could
also inhibit cell proliferation and migration in lung and
colorectal cancer (39, 40). Moreover, FBXO3 was confirmed to
regulate inflammation responses in subjects with sepsis, which
was also reported to regulate DNp63a degradation and promote
tumor metastasis in malignancy (41). Unluckily, little is known
about the function of FBXL3 and FBXO3 in ccRCC for now,
expressed in the regulation of response to immunotherapy.
Frontiers in Immunology | www.frontiersin.org 9
Patients with higher expressions of FBXL3 and FBXO3
presented a markedly prolonged survival in this study,
illustrating that both of the two core FBGs could serve as
biomarkers of immunotherapy for patients with ccRCC.

There were also some limitations in this study. Firstly, our
study only included the f-box family for the construction of the
prediction model. Future studies are still needed to include other
known important players in ccRCC that contribute to the model
performance and improve the limited accuracy. Secondly, the
immunotherapy prediction model acquired high sensitivity only
when the specificity was very low in the test set, which might
need to be improved in further studies.

In conclusion, we proposed a deep learning-based analysis of
FBG among three independent patient cohorts and identified the
important role of F-box proteins in ccRCC. The robust prognosis
prediction model could significantly distinguish patients with high
survival risk,which alsohadgeneralizationperformance inmultiple
tumors. High FB-risk was partially associated with the negative
regulation of the immune system. Furthermore, the FBG-related
novel phenotyping of ccRCC performed well in the robust
A

B

D
E F

C

FIGURE 7 | Increased response to anti-PD-1 immunotherapy exists in C3A cluster. (A) Comparison of the main immune checkpoints among different clusters.
(B) Volcano plot shows the differentially expressed f-box family genes. (C) The learning curves of the deep learning-based model predicting the cluster of C3A.
(D) Receiver operating characteristic curves for the prediction of C3A cluster in the training and test set. (E) Kaplan–Meier survival analysis of overall survival between
patients treated with ICIs in the C3A cluster and others. (F) Kaplan–Meier survival analysis of disease-free survival between patients treated with ICIs in the C3A
cluster and others. ICIs, immune checkpoint inhibitors. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, non-significance.
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stratification of survival and immune response in ccRCC, which
might have potential for application in clinical practices.
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