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Psychological and behavioral evidence suggests that home sports activity reduces negative moods and anxiety during lockdown
days of COVID-19. Low-cost, nonintrusive, and privacy-preserving smart virtual-coach Table Tennis training assistance could
help to stay active and healthy at home. In this paper, a study was performed to develop a Forehand stroke’ performance
evaluation system as the second principal component of the virtual-coach Table Tennis shadow-play training system. *is study
was conducted to show the effectiveness of the proposed LSTMmodel, compared with 2DCNN and RBF-SVR time-series analysis
and machine learning methods, in evaluating the Table Tennis Forehand shadow-play sensory data provided by the authors. *e
data was generated, comprising 16 players’ Forehand strokes racket’s movement and orientation measurements; besides, the
strokes’ evaluation scores were assigned by the three coaches. *e authors investigated the ML models’ behaviors changed by the
hyperparameters values. *e experimental results of the weighted average of RMSE revealed that the modified LSTM models
achieved 33.79% and 4.24% estimation error lower than 2DCNN and RBF-SVR, respectively. However, the R

2 results show that all
nonlinear regression models are fit enough on the observed data. *e modified LSTM is the most powerful regression method
among all the three Forehand types in the current study.

1. Introduction

COVID-19 (Corona Virus Disease 2019) has been spreading
rapidly since December 2019.*eWorld Health Organization
(WHO) declared COVID-19 as a pandemic on 11March 2020
[1]. COVID-19 is highly contagious; it has led to acute re-
spiratory disorder and severe cases, and it has causedmultiple-
organ failure and, thus, significant mortality. *is disease has
caused panic and has become a worldwide nightmare.
According to WHO reports, the first case of COVID-19 was
reported in Wuhan, China [2]. *is disease has caused a
devastating effect on the well-being and health of the global
population and hurt their mental health. *e side effects of
this virus influence the economics and safety of billions of
people as well. *ese effects have surprised the world.

Quarantine and social distance are severe steps in the
fight against COVID-19. However, one of the most signif-
icant points that may be forgotten during a crisis like the
lockdown days of COVID-19 is mental health problems. In
this situation, people’s everyday activities are confined to a
small area. *ese limitations may lead to increased rest-
lessness, stress levels, and adverse consequences of physical
inactivity. Behavioral Immune System theory indicates that
people can develop negative cognitive and negative emo-
tions to protect themselves in these situations [3, 4]. Besides,
based on perceived risk [5] and stress [6] theories, public
health emergencies cause more negative emotions. However,
in a short time, these emotions keep people away from the
disease [7]. On the other hand, when a crisis period is
becoming unpredictable, these negative emotions may
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decrease people’s immune function and devastate their
balance of physiological mechanisms [3].

Being active “#BeActive” and healthy at home
“#HealthyAtHome” are two campaigns presented by WHO
to encourage people to fight together against the COVID-19
and stay healthy. WHO recommended 30min of physical
activity for all healthy adults and 60min for kids in the crisis
days [8]. Inactive situations caused by lockdown affected
ordinary people’s lives and seriously affected athletes’ lives.
Athletes who need to practice and keep their performance
high during the pandemic of COVID-19 have to practice
more than theWHO recommended duration. Inmost sports
fields, doing practice needs coach supervision, particularly in
individual sports that require hand equipment such as racket
sports and throwing sports.

Shadow practice/exercise, or so-called shadow-play, is a
sports training technique that involves repeating actions and
imitating a sport’s specific skill [9, 10]. *is effective tech-
nique can help players, particularly novice players, learn the
proper form of a sport’s style and agility [9]. In Table Tennis,
which is a popular sport that requires hand equipment, the
shadow-play technique improves the players’ strokes per-
forming skills [9]. *e practice of Table Tennis strokes
without the ball is the definition of Table Tennis shadow-
play. Not only does shadow-play develop players’ stroke
performing skills, but it can train the players’ brains in terms
of the racket’s proper position and the feeling of how the
correct stroke technique should be played [10, 11]. Shadow-
play can be valuable if applied under the supervision of
trained coaches [9].

Nevertheless, due to numerous iterations of shadow-
play, this technique needs professional coaching resources.
*e coach must allocate a significant amount of time, which
is not available on these quarantine days. An accessible,
practical, and intelligent system with minimal cost could be
an appropriate solution to assist the trainee automatically
during these days.

Machine learning (ML) algorithms were inspired by
human brain structure and can play the role of a human in
most of the real-life problems (in limited conditions for
specific reasons), such as the education sector [12], industrial
sector [13], health sector [14], and transportation systems
[15, 16]. On the other hand, sensors as cutting-edge tech-
nologies are responsible for reliable and accurate informa-
tion gathering regarding peoples’ activities. *us, a
combination of sensor technology and ML algorithms could
be an appropriate solution to overcome the real coach’s
absence during these crisis days (in limited conditions for
specific purposes).

1.1. Motivation. Developing a shadow-play assistance sys-
tem of Table Tennis as a virtual-coach system, with three
main components, namely, (1) shadow stroke classification,
(2) shadow stroke qualification, and (3) player guidance, is
the perspective of the authors [17]. Table Tennis Topspin,
Push, and Basic Forehand strokes [18] are considered the
motions whose quality scores are evaluated and estimated in
the current study.

We completed the shadow stroke classification phase as
the first component of the desired system [17]. *us, we take
the next step to create the virtual-coach Table Tennis
shadow-play training system. *e system is capable of
providing a personalized training system for players, par-
ticularly novice ones. Generally, the individual sports
training qualities that require equipment used by the hand
depend on the equipment’s movements and orientations’
correctness. *us, identifying the appropriate multivariate
regressionMLmethods to apply to the second component of
the system is considered in this study. Figure 1 depicts the
architecture of the virtual-coach system.

1.2. Contribution. *e three main contributions of this
paper are as follows: (1) the authors introduce the self-
collected dataset, which is made publicly available at [19],
consisting of segmented sensor data (accelerometer, gyro-
scope, magnetometer, and Euler angles) from one minia-
turized, inexpensive, and nonintrusive inertial sensor
(BNO055) mounted on a standard Table Tennis racket.
Moreover, the study’s data collection phase’s details and
steps were released in the authors’ last work [20]. (2) We
examine and compare the ML models’ performance when
their parameters were tuned based on the dataset.*e results
of parameter-tuning attempts are publicly available at [21].
(3) We determine a multivariate regression model that takes
the sensory data as input and estimates the score of per-
formed stroke qualities at the output.

1.3. Outline. *e rest of the paper is organized as follows.
Related research is summarized in Section 2. Section 3 in-
cludes the methodologies of the study, and Section 4 covers
the experimental setup. Experimental results are presented
in Section 5. Conclusion and future studies are given in
Section 6.

2. Related Studies

Machine learning (ML) algorithms make significant prog-
ress in solving, estimating, and predicting problems of
Activity of Daily Life (ADL), sports activity analysis, and
health and disease issues. In this section, the related works of
estimation of ADL and sport activity are presented. *e
studies are considered based on the developed applications,
types of sensing modalities, and applied algorithms.

*e task of estimation in Activity of Daily Life (ADL)
necessitates the use of sensors, which has been well
addressed in previous studies and commercial products.
Numerous studies have involved various sensor modalities
in capturing humanmotion or biometric information.*ese
studies have addressed the subject of human daily life ac-
tivity estimation with appropriate performance.

Brophy et al. [22] presented a robust heart rate esti-
mation study with a photoplethysmography as a body-worn
sensor. *e Convolutional Neural Network with Regression
(CNNR) was applied to estimate the heart rate [22]. Barut
et al. [23] introduced a new dataset consisting of human
activity types and activities’ intensities. *ey introduced a
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novel multitask Long Short-Term Memory (LSTM) network
to recognize human activities and estimate their passions. A
single ActiGraph GT9X as a wearable sensor measured
human activities [23]. Zihajehzadeh and Park [24, 25] de-
veloped a walking speed estimation system with a wrist-
worn inertial measurement unit (IMU) and Gaussian pro-
cess regression. Ahad et al. [26] conducted three IMU
sensors placed on the top of a backpack or waist-belt to
estimate age and gender. *e underlined multitask LSTM
and temporal Convolutional Neural Network (CNN)
revealed good results [26]. Zerkouk and Chikhaoui [27]
proposed a method based on LSTM to estimate older
people’s abnormal behaviors. *ey used SIMADL [28]
dataset in their experiments. A novel symptom-based
“Unified Parkinson Disease Rating Scale” estimation system
was presented by Hssayeni et al. [14]. *ey used two
wearable sensors with a dual-channel LSTM [14].

Sports activity and performance estimation systems,
particularly for individual sports, are another popular area
considered in this section. Numerous studies have involved
using cameras or various sensor modalities or a combination
of both methods to capture and measure athletes’ motions.
*ese studies have addressed the subject of sports activities
analysis and estimation with appropriate performance.

Dadashi et al. [29] developed a swimming velocity es-
timation system with a single IMU to help coaches provide
impressive guidance to trainees. Martin et al. [30] presented
a novel vision-based stroke classification system of Table
Tennis with a new Twin Spatiotemporal CNN algorithm.
Lim et al. [31] developed a coaching assistant system of Table
Tennis with three body-worn IMUs. LSTM networks
(unidirectional and bidirectional) with probabilistic features
were applied to classify the strokes. *ey claimed that the
developed systems’ promising results based on high di-
mensional time-series data collected via the sensors could
help the players practice Table Tennis [31]. *e Gradient
Boosted Regression Trees algorithm was applied to a new
fatigue prediction model for runners based on a single wrist-

worn IMU [32]. Support Vector Regression (SVR) was
introduced as a more reliable athletes’ performance pre-
diction model [33]. Another severe problem in most sports
fields, particularly football, is the recovery time after an
undiagnosed injury. *is problem was considered by [34].
He presented a model to predict “recovery time” with neural
network based on the professional football club of Totten-
ham Hotspur members’ data. Likewise, [34, 35] considered
football players’ injury prediction problems.*eir developed
system used k-nearest neighbors (KNN) and SVR in two
phases. A similar study was presented by [36] based on an
Australian football club players’ GPS and accelerometer data
with linear regression and SVM. Wiik et al. [37] developed a
system based on the performance monitoring system’s data
for athletes (pmSys) dataset with LSTM to predict future
peeks in a soccer player’s readiness-to-train.

By considering the type of data, Postorino and Versaci
[16] underlined the fact that, in the case of the uncertain or
linguistic-based data, their proposed ellipsoid-shaped fuzzy
model with the neuro approach (ellipsoid-shaped +ANFIS)
outperforms the conventional fuzzy systems. *eir research
results show that the developed model is applicable in real-
life applications with low computational complexity.

*e applications developed by Zhang [38], Martin et al.
[30], Lim et al. [31], Blank et al. [39], and Liu et al. [40] are
the only related academically published papers in the area of
Table Tennis. *ese studies, except Lim et al. [31], only
considered Table Tennis stroke classifications and did not
consider the Table Tennis training issue. Moreover, Zhang
[38] and Martin et al. [30] did not use any sensors as the
sensing modalities; thus, their developed systems could be
considerably expensive to implement in practical conditions.
Both Lim et al. [31] and Liu et al. [40] developed body-worn
sensor systems, but both designs were considerably complex
for the players to set up and wear. Blank et al. [39] used an
object sensor as a sensing modality, which places a sensor on
the Table Tennis racket. It seems that their proposed system
is more practical to set up in real conditions for stroke
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Figure 1: *e architecture of the Table Tennis shadow-play virtual-coach system.
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classification. On the other hand, the system developed by
Lim et al. [31] is the only academically published one in the
area of Table Tennis training. *ey claimed that the de-
veloped system’ promising results indicated that it would be
beneficial for Table Tennis players to practice their strokes.
However, until now they [31] have not published any
quantitative results. In addition, the orientations and
movements of the racket that are crucial in Table Tennis
practice and training were neglected in Lim et al.’s study
[31].

Literature review revealed that, in the case of conven-
tional regression models, SVR is mostly applied. In the deep
learning techniques, the LSTM and CNN are most com-
monly used to estimate time-series sensory data [41]. Besides,
it has revealed that, in the literature, stroke quality evaluation
of Table Tennis Forehand based on a single object sensor has
yet to be considered. Because of this deficiency in the lit-
erature, the proposed study considers a single object sensor as
the sensing modality in addition to a high-performance
multivariate regression algorithm to estimate the scores of
quality of Table Tennis Forehand strokes.

3. Materials and Methods

*e structure of object sensors as the data collection tool and
the basics of the regression algorithms (shallow and deep
models) are briefly described in this section.

3.1. Object Sensors. As one of the most common and popular
sensing modalities, object sensors are widely used to develop
sensor-equipped devices to measure motions and orienta-
tions. For inferring human motions or activities, object
sensors are mounted on a specific object(s) to measure its
movements or orientations [42]. Accelerometers and gyro-
scopes are two conventional sensors that have traditionally
been utilized in the robotics and human motion analysis
fields. *e low-cost and miniaturized features are crucial for
accelerometers and gyroscopes for developing state-of-the-art
systems such as navigation, gestural control, motion mea-
surement and detection, personal health, and augmented
reality. *e Microelectromechanical System (MEMS) is the
combination of electrical systems with the mechanical
structure on a micrometer scale, which could be a proper
solution for the issue mentioned above [43]. MEMS devices
have provided low prices with high-quality sensing capa-
bilities. *e design of MEMS is a multidisciplinary research
endeavor that uses the concepts and methods of physics,
mathematics, and engineering. Various technologies for
designingMEMS have been presented. Using the electrostatic
field and investigating its influence on the geometric cur-
vature of the membrane forMEMS devices and the numerical
model of the curvature of the membrane and the electrical
magnitude has been investigated [44, 45].

Di Barba et al. [44] have proposed a framework of one-
dimensional membrane Microelectromechanical System
(MEMS) theory. In the steady-state case, they have for-
malized the problem of existence and uniqueness of a so-
lution for the membrane deformation of electrostatic

actuation. *ey investigated the presence of the solution
using Schauder–Tychonoff fixed point theorem. Using a
numerical approach for the reconstruction of the membrane
profile in one-dimensional MEMS devices has been ac-
complished. *e applied voltage produces an electrostatic
field whose direction is, locally, orthogonal to the mem-
brane’s surface [45]. Angiulli et al. [45] rewrote the con-
dition of the solution’s existence in the form of an equivalent
dual problem. *e dual problem has been solved using the
numerical shooting approach, the method of secants, and
the Matlab solver for ordinary differential equations. *e
authors have investigated the necessary condition for the
convergence guarantee of the numerical method.

*e IMU is developed by various technologies such as
MEMS. Typical sensors used in the IMU include gyroscope
and accelerometer, which can measure angular velocity and
directional acceleration, respectively, and involve magne-
tometer and barometer sensors. *e low weight and small
size of IMUs are the advantages that MEMS offers. Based on
these advantages, IMUs are used in many applications [46],
particularly in motion measurement.

Moreover, IMUs can produce excellent accuracy in the
short term and long term by utilizing filters and external
references [46]. A literature review [47, 48] revealed that
IMUs could be used to determine the attitude of an object(s)
and track its positions. *e Attitude and Heading Reference
System (AHRS) is a sensor fusion algorithm built based on
the IMU to enable the combination of multiple-sensor
measurements to yield one orientation measurement. All
released signals from the sensors (gyroscope, accelerometer,
and magnetometer) are fed to an AHRS algorithm to
combine them and produce a measure of orientation relative
to magnetic north and gravity. Furthermore, Euler angles
(roll, pitch, and yaw angles) are computed based on the IMU
sensors’ measured signals. Euler angles illustrate rotations
around three orthogonal axes (x, y, and z). Another spec-
ification of the IMUs is the Degree of Freedom (DoF). DoF is
a typical designation for IMU sensors, which signifies the
released number of the sensors’ independent signals. Many
9-DoF sensors are available in most modern commercial
IMUs, consisting of a 3-axis gyroscope, a 3-axis acceler-
ometer, and a 3-axis magnetometer [49]. AHRS algorithms
are mostly based on Fuzzy Logic, Kalman filter (KF), and
Artificial Neural Network (ANN). KF has been used in
commercial IMUs [38].

3.2.Regression. *e object sensors provide a large amount of
sensory data during the measurement of motions or ori-
entations. Conventional ML algorithms such as SVR were
considered in most previous studies that addressed sensory
data-based estimation systems with high accuracy. Deep
learning is a new paradigm of machine learning. *e
multiple process layers of deep algorithms provide facilities
to extract and analyze big-data information without manual
feature engineering [50]. CNN and Recurrent Neural Net-
work (RNN) are the most well-known deep models used for
sensor-based approach activity and motion estimation.
Unlike other conventional models, we can apply SVR to big
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data without feature selection or reduction processes, like
deep ones. SVR and deep models can learn high-level fea-
tures by training, and they are more feasible to perform in
real-life problems [51, 52]. Both model types’ performance
has been assessed in terms of the accuracy of the applied
algorithms under actual test conditions [53].

3.2.1. Long Short-Term Memory (LSTM). A RNN has been
proposed to address recognition and estimation problems in
time-series datasets [54, 55]. Besides, as one of the typical
deep methods, RNN utilizes the temporal correlations be-
tween neurons to process natural language and recognize
speech [56, 57]. When the standard RNN input data is a long
sequence, the model is faced with the exploding problem and
gradient vanishing challenge due to the training phase. *e
LSTM method was introduced by Hochreiter and
Schmidhuber [58] to overcome these challenges. LSTM cells
are combined with the standard RNN method by replacing
its hidden layer and playing the memory unit’s role through
gradient descent [57, 59, 60]. After that, it is trained using the
backpropagation algorithm.

3.2.2. Convolutional Neural Network (CNN). CNN has a
multilayer feed-forward neural network architecture. CNN
was inspired by the biological visual system [61]. A con-
volutional layer(s), pooling layer(s), fully connected layer(s),
and output layer comprise the structure of the CNN; they are
stacked together and can be trained entirely as a whole.
Consequently, using a backpropagation algorithm and ap-
propriate optimized training parameters with a proper
optimizing algorithm is a common way of achieving this. In
the one-dimensional convolutional layer, to compute the
convolution between x

→ and f
→
, f

→
as a convolutional filter

slides along x
→. By computing dot product in each step and

calculating the convolutional layer [62], we get

x
→ ∈ R

n
,

f
→
∈ R

m
,

c ∈ R
n− m+1

, where ci � f
T
x[i: i+m−1].

(1)

Hyperbolic tangent, Sigmoid, and Rectified Linear Unit
(ReLU) are three common activation functions typically
applied to the convolutional output values. ReLU is a simple
thresholding operation defined as ReLU(x) � max(0 · x).

*e main goal of the pooling layer is to summarize and
reduce the obtained representation. *e maximum or av-
erage of the data’s small rectangular blocks is applied in
more than one convolutional choice. *e fully connected
layer’s primary goal, which follows the pooling layer(s), is to
compute this vector as its output layer. All additional fea-
tures are stacked into this vector [61].

3.2.3. Support Vector Regression (SVR). One of the popular
supervised learning algorithms is the Support Vector Ma-
chine (SVM) [52]. Vapink [63] introduced SVM as a high-
performance and flexible method that has been successfully
applied to various regression problems and classifications.

Support Vector Regression (SVR) uses the basic idea of
SVM. It is a useful tool that applies as a real value estimate
function [64]. *e kernel function k, regularization pa-
rameter c, and penalty parameter c are the configurable SVR
parameters that have to be set in advance to achieve the
highest performance [65, 66]. Linear, Radial Basis Function
(RBF), Sigmoid, and Polynomial are the SVR possible kernel
functions [64]. Unlike SVM, SVR computational complexity
is independent of the input data space’s dimension. *is
capability is one of the main advantages of SVR. High
prediction accuracy and generalization capability are two
other main advantages of SVR.

4. Experimental Setup

A set of experiments was applied to the self-collected dataset
to evaluate the proposed method’s performance. As seen in
Table 1, the current study consists of four main sections,
namely, (1) hardware setup, (2) data gathering [20], (3)
preprocessing [17], and (4) processing. *e first three phases
are in charge of sample collection and preparation. *e
processing phase of the study is responsible for identifying an
appropriate regression method. *e proposed regression
method will be applied to estimate the value of the performed
strokes’ scores quality based on stroke evaluation metrics of
Table Tennis. Generally, regressionmethods, particularly deep
ones, are sensitive to the parameter settings. *e Random
Selection method is applied to sample selection. Besides, the
parameter-tuning phase of the methods is also accompanied
by verification. Table 1 reports the framework of the exper-
iments in the four main steps in detail.

4.1. Hardware Setup. As seen in Figure 1, the self-collected
dataset contains two parts: (1) automatically captured data
and (2) manually recorded data. *e automatically captured
data contains the IMU sensors’ time-series signals for each
stroke measured by the developed racket. *e IMU includes
a gyroscope and accelerometer, measuring angular velocity
and directional acceleration, respectively, and a magne-
tometer. Furthermore, Euler angles (roll, pitch, and yaw
angles) are computed based on the IMU sensors’ measured
signals. Euler angles illustrate rotations around three or-
thogonal axes (x, y, and z). *e captured time-series data
were transmitted via a USB cable to a laptop computer
running the data gathering software. *e received measured
data at any time t contains four groups of data as follows:

datat � Acc · Gyro · Mag · Euler􏼈 􏼉,

Acc � ACCx · ACCy · ACCz􏽮 􏽯,

Gyro � Gyrox · Gyroy · Gyroz􏽮 􏽯,

Mag � Magx · Magy · Magz􏽮 􏽯,

Euler � Rollx · Pitchy · Yawz􏽮 􏽯.

(2)

In the following subsection, the reasons behind the se-
lection of the appropriate sensor, the selected sensor
placement, and the sensor calibration are described.

Computational Intelligence and Neuroscience 5



4.1.1. Selecting an Appropriate Sensor. Vision-based sensing
modalities are widely used to develop sports motion analysis
systems [67]. Lighting, natural and indoor environment
challenges, vision blocking, expensive sensing tools, and
complex setup are some of the challenges faced by vision-
based systems. Miniaturized, inexpensive, lightweight, and
easy mountable specifications are characteristics of object
sensor modalities, particularly IMU series sensors. IMUs
could be used as an alternative for the vision-based sensing
modalities used in most motion detection and orientation
measurement cases with high performance. In a similar
study [43], a 9-DoF BNO055 factory-calibrated IMU sensor
with KF was used to measure Table Tennis Forehand strokes
time-series data without noise. A basic description and the
key features of the BNO055 and its integrated sensors are
given below. Linear acceleration, Euler angles, gravity, ro-
tation vector, heading, and quaternion matrix comprise the
BNO055 fused sensor output data. It can hold three ad-
vanced sensors in one device: a triaxial 16-bit gyroscope, a
versatile, a full performance geomagnetic sensor, and a
triaxial 14-bit accelerometer with a 100Hz sampling rate.
Detailed specifications of the module are available in [68]. In
this study, the sampling rate of BNO055 is set to 70Hz.

4.1.2. 8e Sensor Placement. Not only the appropriate type
of sensor is essential, but proper sensor placement is also
crucial. A literature review revealed that individual sports’
motion and orientation data requiring hand equipment were
captured from the sensors mounted on the equipment [69].
Usually, the object sensor does not directly interact with
users. *us, to collect raw data from the sensors, two critical
issues have to be considered: (1) the developed objects would
have to be user-friendly; (2) the sensors placed on the item
would have to be nonintrusive [57]. *e BNO055 was
mounted on various standard Table Tennis racket positions
to determine the sensor’s best position. Based on the nature
of the Forehand movements, the blade’s center was em-
pirically determined as the appropriate sensor placement.
*e rubber secures the IMU. Figure 2 shows the developed
Table Tennis racket and the sensor placed on it.

4.1.3. 8e Sensor Calibration. Although the IMU is a fac-
tory-calibrated sensor, the authors had observed the
BNO055 calibration when the samples were collected. *e
IMU’s released calibration values range from 0 to 3 for each
embedded sensor separately. *e “not calibrated” status is
shown by zero value, and the “fully calibrated” status is
indicated by value three.*e sensor’s datasheet describes the
calibration guidance steps when the sensor calibration status
shows zero value [68].

4.2. Data Acquisition. Due to the lack of available Table
Tennis strokes’ sensory data with their quality scores dataset,
the authors collected the data.*e data acquisition protocols
were defined before obtaining the data. Subsequently, based
on the defined protocols, samples were gathered, scored, and
labeled. All details of the data gathering phase are published
in the authors’ recent article [20], and the collected samples
are made publicly available in [19]. In the following sub-
sections, these steps and characteristics of the participants
are briefly described.

4.2.1. Participants’ Characteristics. *ree groups of partic-
ipants were involved in this study, namely, (1) novice
players, (2) professional players, and (3) coaches. *e I.R.
Iran Table Tennis Federation (TTF) Ethics Committee ap-
proved the current study, and all participants delivered their
written agreement in advance. *e novice players’ group
consists of eight mixed-gender first-year students of the
Physical Education and Sport Science Department at the
University of Tabriz, with height of 161± 4 cm and age of
19± 4 years, who volunteered as novice players in this study.
*e professional players’ group consisted of eight mixed-
gender experienced and highly national and international
ranked players, with height of 171± 8 cm and age of 28± 4
years. *e coach group participating in this study consists of
three high national and international ranked Table Tennis
coaches who were recommended and introduced by the I.R.
Iran TTF in East Azerbaijan.

4.2.2. Defining Data Acquisition Protocols. *e players used
the IMU mounted racket when samples were collected.
*ree main protocols have been determined for the players’
groups in advance. Protocol 1: all players were familiar with
the preparatory condition for Forehands training (the po-
sitioning, the accurate way to grip the racket, and posture of
the Forehand strokes). Protocol 2: the players waited five
seconds between each repetition. Protocol 3: the players
were familiar with the Forehand shadow-play stroke eval-
uating and scoring metrics. Each subject’s performance was
evaluated, scored, and labeled by the coaches placed around
Table Tennis’s table. *e coaches are placed around the table
to observe each player’s performance and score the per-
formed stroke qualities separately. *e places were deter-
mined based on the coaches’ best observation conditions and
the elimination of blind spots associated with the players’
arms. Capturing order of the samples is as follows: (1) the
players started performing strokes, (2) they were paused for

Table 1: *e experiment framework phases.

# Phase Descriptions

1 Hardware setup
Selecting an appropriate sensor
*e sensor placement, the sensor

calibration

2 Data acquisition [20]
Participants characteristics

Defining data acquisition protocols
Labeling and scoring samples

3 Preprocessing [17]
Eliminating incomplete data

Time-series signals segmentation
Normalizing segmented signals

4 Processing

Networks setup
Model parameters setup

Training and testing models
Computing performance metrics
Comparing models’ performances
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five seconds by the coaches at the end of each stroke per-
forming, (3) the sensory data was stored by the software into
a single CSV file, and (4) the players’ performance was la-
beled and scored by the coaches manually. A group of 16
players comprised of both genders participated in the cre-
ation of the self-collected dataset samples. All professional
players performed each Forehand stroke type 45 times.
Overall, 1080 samples were captured for the professional
group. In the case of the novice group, 648 samples were
collected from 8 novice players. Table 2 explains the col-
lected data statistical specifications briefly. As seen in Ta-
ble 2, the self-collected dataset is not balanced.

4.2.3. Labeling and Scoring Samples. As seen in Figure 1, in
each sample collecting session, besides the automatic cap-
tured sensory data of performed strokes, the labeling and
scoring processes were applied. *ese processes generated
three separate lists of the strokes’ labels (B, T, or P), along
with the scores (0–100 percentage) of the stroke evaluation
criterion (C1, C2, C3, C4, C5) manually assigned by the
coaches. Converging and diverging angle of the racket
gripping during the performance (C1), forward swing (C2),
follow-through (C3), appropriate speed of the racket
movement (C4), and performed stroke general quality (C5)
were applied as the evaluating and scoring criteria for Table
Tennis Forehand training in this study [38, 70]. *e coaches
contributed to the supervision of the data collection phase.
*ey supervised each player’s stroke performing speed and
preparatory conditions of the Forehand strokes. Regarding
the performance scoring method, in some sports like
gymnastics and ice skating, for each criterion, the average of
the coaches’ set scores was determined as the final score for
all performed strokes of the players. Table 3 depicts the
schema of the proposed method to create the dataset.

4.3. Data Preprocessing. Due to the mounted sensor’s short-
time usage during the data collection, the sensor drift rate
and sensor aging effect are negligible [17]. Nevertheless, we
must consider the sensor drift rate and aging factors for the
sensor’s long-term usage. In the current study, the pre-
processing phase was applied to the measured sensory data.

*is phase includes three main steps: (1) eliminating
incomplete samples, (2) segmenting time-series signals,
and (3) normalizing the segmented signals. *e pre-
processing phase results have already been published in the
authors’ previous paper [17]. Table 4 shows the basic in-
formation of the dataset after the preprocessing step.
Consequently, the dataset consists of 1525 samples of
performed strokes. Each collected sample consists of three
different types of data: (1) the sensory data of the racket
movements and orientations with 840 features (840 fea-
tures: 12 (value of datat) × 70 (length of segment)); (2) the
final value of the players’ strokes quality scores based on the
criteria released from the scoring section; and (3) the label
of the performed strokes (B, T, or P).

4.4. Processing. We applied the setup and parameter settings
of both network groups (shallow and deep) after the pre-
processing phase. *e models’ performance metrics are also
explained in this section. As seen in Figure 1, the strokes that
have been detected in the classification phase [17] are ready
for evaluation. An accurate assessment and scoring of the
sport performance are essential to give guidance and
feedback for the players, particularly novice ones [71, 72].
Moreover, this feedback will help prevent a false stroke
pattern from institutionalizing the player’s performances.
*erefore, to modify this faulty pattern, a lot of time and
costs are needed. In this regard, identifying an appropriate
regression ML algorithm to estimate the strokes’ quality
scores was considered in this section. *e ML algorithms
were trained and tested based on the coach evaluation scores
to assess the quality of the performed strokes. *ese scores
were collected and calculated during the data acquisition
phase [20]. *us, to evaluate each type of Forehand strokes
(Basic, Topspin, and Push), three separate ML models are
needed. To benchmark the study, a conventional regression
method (SVR) and two commonly used deep neural net-
works (LSTM and CNN) were utilized [41]. We took a
sequence of the features x1, . . ., x840 as input data for the ML
algorithms representing the sensory-data dataset. *e
models’ outputs estimate the strokes’ quality scores (C1, C2,
C3, C4, C5).

(a)

Yaw

Pitch

Roll
X Y

Z

(b)

Figure 2: (a) *e developed racket and (b) the determined IMU sensor placement [20].
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4.4.1. Network Setup. To avoid overfitting through the
training phase, the models were benchmarked and their
performances were compared fairly; for both groups
(shallow and deep), K-fold cross-validation (K� 4) was
applied to evaluate the testing and training performance of
the modified methods. *e proposed application has been
implemented for various low power platforms.

All models are trained offline on a computer equipped
with 3.7GHz i7-8700k core processors, 32G RAM, and
NVIDIA 1080 Ti GPU. *e trained models are capable of
exporting to other platforms to deploy applications, par-
ticularly mobile applications. To implement the LSTM and
2-Dimensional Convolutional Neural Network (2DCNN)
estimators, we applied the Python library Keras with the
backend of TensorFlow.

4.4.2. Parameter Setting. *e proposed deep and shallow
methods contain a set of parameters that have to be set in
advance before being trained. We can say that fine-tuning
models may achieve better results. On the other hand, there
is no universally accepted method for selecting the appro-
priate parameters’ values. *e chosen methods’ parameters

are tuned carefully by applying the validation dataset and a
trial and error strategy.

(i) For the SVR, the Radial Basis Function (RBF) was
selected as its kernel function. We validated the
soft-margin parameters with parameter c and
parameter Gamma (c) in the range (100 to 10−7).
For all three types of strokes, the optimum RBF-
SVR c and c parameters were chosen as 100 and
10−7, respectively.

(ii) In the case of the deep models, we validated the
parameters with the following values:

(1) *e Epoch number in range (100, 250, and 500).
(2) *e batch size in range (10, 50, 100, 500, and

1000).
(3) *e number of the layers (LSTM and convolu-

tional layer) in range (1, 2, and 3).
(4) *e number of filters in range (24 to 28).
(5) *e rate of dropout in range (0.1, 0.2, 0.3, . . .,

0.9).
(6) *e number of the dense layers (fully connected

layers) in range (1, 2, and 3).

Table 3: Schema of the dataset.

Attribute Description Data type
Sensory data *e racket movement and orientation measurements Numeric
Quality scores *e average scores of each criterion Numeric
Labels *e label of the performed stroke (B, T, and P) Alphabet

Table 4: Basic information of the dataset.

Dataset Strokes’ name Samples’ number Percentage Feature size

(1) Sensory data

Basic 740 48%

12 × 70 � 840Topspin 393 26%
Push 392 26%
Total 1525 100%

(2) Quality scores

Criteria’s name Criteria’s number — Range of scores value
C1

1525 — (0–100)%
C2
C3
C4
C5

(3) Labels

Labels’ name Labels’ number — Percentage
B 740

—
48%

T 393 26%
P 392 26%

Table 2: *e collected data statistical specification∗.

Type of participant # Samples
# Forehand strokes classified by

type Gender Age Duration
Basic Push Top

Professional 8 1080 360 360 360 Mixed 20–38 3 days
Novice 8 648 227 191 230 Mixed 19–22 5 days
Total 16 1728 587 551 590 — — 8 days
∗*e coaches as supervisors controlled all collected data in the limited conditions.
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(7) *e number of neurons in the dense layer in the
range (23 to 26).

*e number of LSTM’s layers, or so-called memory cells,
affects the LSTM models’ ability to memorize, erase, and
ignore new inputs. In the CNN case, the convolutional layer
is responsible for the feature extraction from the input data.
Like LSTM, CNN’s performance depends on the number of
the convolutional layers and the neurons’ number in the
dense (fully connected) layers. To avoid overfitting the
dropout rate, it represents a technique that ignores a specific
rate of arcs. Figure 3 depicts the change of the loss function
values, Root Mean Square (RMSE), for a different set of the
three hyperparameters.*e figure shows the test phase of the
LSTMs and 2DCNNs for 100, 250, and 500 Epochs as an
example. Figure 3(a) depicts the models’ different behaviors
on the testing dataset with different numbers of the memory
cells and convolutional layers of 1, 2, and 3. *e best per-
formance of the LSTM models is reached with 3 memory
cells. In the case of the 2DCNN, the best performance was
gained with three layers for Basic and Topspin and two
convolutional layers for the Push model. Figure 3(b)
demonstrates the effect of the number of neurons in the
fully connected (FC) layer from 23 to 26. In this figure, the
Basic and Topspin models of the LSTM with 32 neurons and
the Push LSTM model with 16 neurons reached the highest
performance. In 2DCNN, the Basic and Topspin models
with 16 neurons got the best performance, and for the Push,
the number of neurons is 8. Figure 3(c) indicates the LSTM
and 2DCNN models’ configuration with different dropout
rate values from 0.1 to 0.9. It can be observed that the best
performances of both LSTM and 2DCNN models are re-
leased when the rate is 0.1.

(i) *e best performance of the LSTMs on three sep-
arate datasets is reached in the following cases:

(a) Basic Forehand: *e proposed LSTM model
involves three LSTM layers with 512, 256, and
128 filters, respectively, and 100 Epochs with
batch size of 50. *e dropout rate is 0.1. It
consists of two fully connected layers with the
size of 32 neurons.

(b) Topspin Forehand: *e proposed LSTM model
comprises three LSTM layers with 1024, 512, and
256 filters, respectively, and 100 Epochs with
batch size of 100. *e dropout rate is 0.1. It
consists of two fully connected layers with 32
neurons.

(c) Push Forehand: *e proposed LSTM model
consists of three LSTM layers with 1024, 512, and
256 filters, respectively; 100 Epochs with 50
batch size; dropout rate of 0.1; and two fully
connected layers with the size of 16 neurons.

(ii) Like LSTM, the 2DCNN parameters are validated
with the seven parameters within the same range. In
the pooling layer case, max pooling operation was
applied for all three types of Forehand models. *e
best performance of the 2DCNNs on three separate
datasets are reached in the following cases:

(a) Basic Forehand: *e proposed 2DCNN model
consists of three convolutional layers with 4, 8,
and 16 filters, respectively; 500 Epochs with
batch size of 10; a 0.1 dropout rate; and two fully
connected layers with the size of 16 neurons.

(b) Topspin Forehand:*e proposed 2DCNN model
involves three convolutional layers with 8, 16,
and 32 filters, respectively; 250 Epochs with
batch size of 10; a 0.1 dropout rate; and one fully
connected layer with the size of 16 neurons.

(c) Push Forehand: *e proposed 2DCNN model
comprises two convolutional layers with 8 and
16 filters, respectively; 250 Epochs with batch
size of 10; a 0.1 dropout rate; and three fully
connected layers with the size of 8 neurons.

We determined the batch size, the number of Epochs,
and the number of hidden layers after several empirical
tuning attempts for better regression performances [73].
ReLU was chosen as the activation function for both pro-
posed deep models. Moreover, for deep models, the
“RMSprop” was selected as an optimizer. In our study, the
results of feature selection attempts revealed that these
techniques removed critical and crucial information for
stroke evaluation. For all proposed models, regardless of the
model type (deep or shallow), we chose RMSE as a loss
function. *e online available index reports all possible
computations results for the deep models [21]. *e results of
parameter-tuning attempts for the LSTM and 2DCNN on
the three types of Forehand dataset released 48600 possible
models.

4.4.3. Compute Performance Metrics. Choosing the appro-
priate ML performance metrics is crucial for the ML pipeline.
We addressed RMSE as an evaluation metric to evaluate the
performance of Multiple Input Multiple Output (MIMO)
estimation problems [74]. We set it as the loss function in all
three models. *e benchmark methods performances are
compared primarily based on the RMSE. Two other con-
ventional metrics addressing the estimation problems, Mean
Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE), are analyzed. Moreover, based on the nature of the
dataset, the Adjusted Coefficient of Determination (R2) is
considered to compare the goodness-of-fit of the developed
regression models for the dataset.

4.5. Models’ Performance Evaluation. *is section explains
the RMSE, MAE, MAPE, and R

2 for quality evaluation of the
Topspin, Push, and Basic strokes of both groups of methods
(shallow and deep) using the Table Tennis Forehand stroke
self-collected dataset.

4.5.1. Comparing the Models’ Performances. Based on the
nature of the Forehand strokes’ racket movements, we
empirically determined the center of the surface as the
appropriate sensor placement location in this study. *us,
the collected data was acquired by mounting the sensor in
the center of the racket’s surface.
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*e same experiments have to be applied to the same
dataset [75] to evaluate variousmodels’ performance. Table 5
shows the optimum performance for each of the ninemodels
to estimate the performed strokes’ scores quality based on
the stroke evaluation metrics. As outlined in Table 5, we

observed that R
2 values of all proposed models are over

90.0% on the dataset. *e revealed results showed that all
nonlinear regression models are fit enough on the observed
data. It leads the authors to examine the models’ perfor-
mance results in the next step and continue the comparison.
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Figure 3: *e deep models’ behavior according to three different hyperparameters: (a) number of the hidden layers; (b) number of the
neurons in the FC layers; (c) dropout rate.
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In the models’ performance, the proposed three LSTM
models with three different parameters’ values achieved the
lowest estimation error rate compared to the other six types
of models. Table 6 provides statistical information on the
regression outputs generated by RBF-SVR, LSTM, and
2DCNN models. *e mean and standard deviation (STD)
values of the LSTM models’ output data were much smaller
than the other models. Note, it was found that the LSTM
models with three different configurations generated the
output result with the smallest deviation (Basic-STD� 3.78,
Top-STD� 4.12, and Push-STD� 2.76) for each stroke,
compared to 2DCNN (Basic-STD� 6.82, Top-STD� 6.96,
and Push-STD� 3.42) and RBF-SVR (Basic-STD� 4.19,
Top-STD� 4.73, and Push-STD� 3.13).

5. Results

*e performances of the three nonlinear conventional re-
gression models, LSTM, 2DCNN, and RBF-SVR, for Table
Tennis Forehand strokes’ quality estimation problem were
compared based on the self-collected dataset. *ese re-
gression models’ performances were analyzed by using
RMSE, MAE, MAPE, and R

2. For fair comparison, 4-fold
cross-validation technique was applied to all models. All

model parameters and hyperparameters were tuned in ad-
vance to find the appropriate configuration of themodels. As
outlined in Table 5, all three proposed regression models’
training and testing performances revealed that overfitting
did not occur. Regarding the weighted average of RMSE,
MAPE, and MAE on the testing dataset, the proposed LSTM
model had the lowest error value, and the SVR-RBF model
had the second lowest error rate (see Table 7). *e proposed
LSTM models’ weighted average of RMSE is 3.39, MAPE
value is 0.05, and MAE value is 2.86, which are lower than
RBF-SVR and 2DCNN models’ results. On the other hand,
the RBF-SVR performance is so close to the optimum LSTM.
According to study [17], based on the number of RBF-SVR
parameters, the model parameters tuning is significantly
easy to choose. *us, the model is far less challenging to
develop. Besides, the SVR model theoretically gives better
performance in small-scale training datasets [65]. However,
the LSTM provides better performance in large-scale ones,
as in this study’s collected data. *is means that the pro-
posed LSTM models outperform both RBF-SVR and
2DCNN models.

*e experimental results of the different parameter-
tuning attempts indicated that the proposed LSTM could be
a practical and feasible method. Moreover, the weighted

Table 5: RMSE, MAPE, MAE, and R
2 for the Table Tennis Forehand stroke self-collected dataset.

Strokes Model
RMSE

MAPE MAE R
2

Training Test

Basic
RBF-SVR 4.91 4.81 0.10 8.70 0.962
LSTM 4.79 4.44 0.07 3.30 0.998
2DCNN 8.52 6.55 0.10 20.92 0.987

Topspin
RBF-SVR 2.45 2.51 0.05 5.12 0.965
LSTM 4.33 2.62 0.04 2.02 0.999
2DCNN 9.35 5.04 0.11 5.30 0.987

Push
RBF-SVR 2.08 2.20 0.04 3.80 0.961
LSTM 3.75 2.22 0.02 2.81 0.996
2DCNN 8.84 3.84 0.09 3.67 0.900

Table 6: Statistical information of output data of RBF-SVR, LSTM, and 2DCNN.

Models Strokes Statistics C1 C2 C3 C4 C5 Total W. mean W. STD

RBF-SVR

Basic Mean 2.75 4.88 4.56 4.16 3.32 3.95

3.74 4.07

STD 2.5 5.99 4.67 4.47 3.7 4.19

Top Mean 3.94 3.96 4.77 3.98 4.36 4.12
STD 4.24 3.83 5.07 4.26 5.95 4.73

Push Mean 2.21 2.86 3.59 3.62 2.95 3.09
STD 3.3 2.47 4.23 2.25 3.13 3.17

LSTM

Basic Mean 1.85 4.08 3.63 3.93 3.28 3.35

3.16 3.6

STD 1.69 5.09 3.87 3.54 3.47 3.78

Top Mean 3.61 3.15 4.00 3.18 3.43 3.47
STD 3.99 3.50 4.26 3.36 5.15 4.12

Push Mean 1.78 2.61 3.26 2.81 2.05 2.50
STD 2.75 2.04 3.98 1.92 2.32 2.76

2DCNN

Basic Mean 14.61 14.43 15.25 13.13 12.17 13.92

12.10 5.97

STD 4.72 8.95 6.77 6.24 6.28 6.82

Top Mean 13.89 15.23 16.02 13.34 13.70 14.44
STD 7.67 7.57 6.96 6.19 5.83 6.96

Push Mean 6.52 6.35 6.88 6.17 6.10 6.40
STD 3.59 2.95 4.08 3.43 2.85 3.42
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average of R
2 value, 99.7% of all three proposed LSTM

models with a different configuration, revealed that the
LSTMs are more fit than the other models on the observed
data.

Besides, the LSTM model can consistently and consid-
erably outperform the other two models of the study. In
other words, the modified LSTM is the most powerful re-
gression method among all three Forehand types in the
current study.

6. Conclusions and Future Work

As time continues to pass, day by day, the new life paradigms
that the pandemic COVID-19 has caused are clarified
dramatically. Quarantine and social distance have significant
effects on people’s daily lives and personal and social re-
lations.*is disease has caused a devastating impact on their
well-being and mental health. *e literature review revealed
various studies related to COVID-19 disease treatment,
recognition, diagnoses, estimation, etc., based on the ML
techniques. However, one of the most significant points that
may be forgotten during the crisis lockdown days of
COVID-19 is mental health problems. Psychological and
behavioral evidence suggests that home sports activity could
reduce negative moods and anxiety during these days. *us,
a low-cost, nonintrusive, and privacy-preserving (not visual)
smart sports training assistance solution could help to stay
active and healthy at home. *e answer could be highly
affordable for the general population. In the big picture, the
authors’ main aim is to develop the virtual-coach Table
Tennis shadow-play training system. *e system is capable
of providing personalized training for players, particularly
novice ones. In the current study, the proposed LSTM, as the
appropriate method, was applied to the third step of the
system to estimate the performed Table Tennis strokes’
scores qualities based on the study’s five evaluation metrics.
*is study’s primary purpose was to develop an evaluation
system of Table Tennis Forehand stroke for the three types of
Forehands (Basic, Topspin, and Push) by considering both
practical and technical aspects. By considering the practical
aspect, object sensor sensing modality was used in this study
to develop the data collection tool. As a miniaturized and
inexpensive sensing tool, the IMU was embedded in the
center of the standard Table Tennis racket’s surface to
measure movements and orientations of strokes automati-
cally. Unlike other sensing modalities and approaches, in-
ertial-sensor-equipped devices provide measurements by
considering privacy (not visual) and nonintrusive issues.
According to the selected sensing modality and based on the
selected IMU’s specifications, the developed racket makes

the solution appropriate for cost-effective and nonintrusive
assisted Table Tennis shadow-play training.

Moreover, as another practical aspect of the study, the
coaching group who participated in this study set scores of
the performed strokes’ quality and labeled them manually.
Considering the technical aspect, it is also crucial that the
proposed Forehand quality estimation models achieve high
estimation performance. *ree different nonlinear regres-
sion methods were applied and compared based on two deep
models, namely, LSTM and 2DCNN, and one shallow
model, RBF-SVR. *e experimental results revealed that the
three LSTM models with different configurations constitute
the most powerful regression method. *e weighted average
of all three LSTM models’ performance of RMSE is 3.39,
MAPE is 0.05, MAE is 2.86, and R

2 is 99.7%. Results show
that the LSTM model performs very well in evaluating
Forehand strokes, including Topspin, Push, and Basic
Forehands. *e study’s technical and practical aspects
demonstrate that the proposed model has a high potential to
be successfully applied in the second principal component of
the Table Tennis shadow-play systems (see Figure 1). Unlike
other similar studies that have used professional cameras
[30, 38] or multiple wearable sensors [31, 40], the developed
system only uses one object sensor to measure the Fore-
hands’ signals. *e configuration and installation of vision-
based sensing modality would cause the shadow-play as-
sistance solution to be expensive, making it less affordable
for the general population. *e selected object sensor
sensing modality is inexpensive, easily configurable, and
straightforward to use, which would make it a cost-effective
and easy solution to set up. Unlike similar studies [31, 40],
the proposed system does not need many IMU sensors as it
uses one BNO055 IMU. In similar studies, participants were
required to wear a particular wearable object with three
IMUs on their hands; however, the wearable object could be
perceived as intrusive and difficult to apply by the players,
particularly novice players. Besides, one of the main issues in
educational assistance systems is user preference. Even high-
performance systems with lower user preference would be
considered failures [76]. In this work, an IMU embedded
racket was used as the data collection tool, which increased
the privacy (not visual) and anonymity of players’ issues,
thus increasing the players’ confidence. Moreover, the
practical and close cooperation among all the study’s parties
(the players, trainers, and researchers) in the design and data
collection phases of the research could overcome the
challenge mentioned in the recent Rajšp and Fister’s study
[41].

As future work, we planned to complete the system’s last
component, the smart feedback component. To complete the
final phase of the system, facing uncertainly data challenges
is inevitable. *us, it seems that adapting methodologies
based on the ellipsoid-shaped Fuzzy Inference Systems with
neuro-fuzzy approach could be an appropriate solution to
overcome this challenge [16]. After that, the virtual-coach
Table Tennis shadow-play training system could be inte-
grated with Cloud Internet Services to store the player’s
practice history for the next phase of recommendations and
feedback. Besides, it can be integrated with web-based and

Table 7: *e weighted average of RMSE, MAPE, MAE, and R
2 for

the Table Tennis Forehand stroke self-collected dataset.

Models RMSE MAPE MAE R
2

SVR 3.54 0.07 6.5 0.962
LSTM 3.39 0.05 2.86 0.997
2DCNN 5.12 0.10 12.37 0.963
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mobile applications to show graphical and visual feedback to
players and to coaches if players train with physical coaches.
Long-term storage of the automatic evaluation of strokes
and feedback could produce progress rates of the players’
performance. *e system would assist players with training
Table Tennis shadow-play individually and provide appro-
priate automatic feedback to increase their performance
without a coach.
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