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Abstract

It is critical to assess adherence to pre-exposure prophylaxis (PrEP) in clinical trials. The

relationship between pharmacokinetic measures of PrEP adherence and other adherence

measures used in PrEP trials requires further characterization. Plasma, peripheral blood

mononuclear cells (PBMCs), and hair samples were collected from 88 HIV-uninfected

men who have sex with men in a placebo-controlled randomized PrEP trial; announced pill

counts, medication electronic monitoring (MEMS), and self-report using visual analog scale

(VAS) were also collected. Tenofovir (TFV or TFV-DP) in plasma, hair, and PBMCs were

quantified. Proportions with drug detection, Spearman correlation coefficients, and univari-

ate and multivariable regression models were used. Drug detection in plasma, PBMC, and

hair samples was highly concordant with treatment arm assignment. TFV or TFV-DP levels

were detected in most active-arm participants: 44/47 (94%) in plasma, 46/47 (98%) in hair,

and 44/47 (94%) in PBMCs and in only 1/41 placebo arm participant. Correlation coefficients

were r = 0.59 for plasma and PBMC, r = 0.34 for PBMC and hair and r = 0.36 for plasma and

hair. MEMS and announced pill-counts were moderately correlated (r = 0.52) but less so

with pharmacologic measures (range of r = 0.12 to 0.38). Self-reported adherence by visual

analog scale demonstrated essentially no correlation with drug levels (r = 0.06 for hair,

PBMC or plasma) and was a poor indicator of exposure to study product. Indices of drug

exposure are important indicators in assessing adherence to PrEP; accounting for variability

between measures may improve interpretation and use of adherence measures in future

PrEP studies.
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Introduction

Several HIV pre-exposure prophylaxis (PrEP) clinical trials have demonstrated the safety and

efficacy of daily oral tenofovir disoproxil fumarate (TDF) either alone or in combination with

emtricitabine (FTC) in the prevention of HIV infection [1–6]. As a result of these studies, both

the US Centers for Disease Control and Prevention (CDC) [7] and the World Health Organi-

zation (WHO) [8] have published guidelines for PrEP use. Adherence to a daily PrEP regimen

is the most important determinant of PrEP effectiveness. Recent PrEP trials have demon-

strated that adequate adherence to PrEP is imperative for benefit and that self-reported adher-

ence and pill counts have limited utility in assessing adherence [9–12]. Therefore, adequate

measurement of PrEP use was essential to interpret clinical trial outcomes, in particular those

showing limited benefit, and ultimately in determining what amount of PrEP use is sufficient

for effective prevention of HIV acquisition.

Several different measures of adherence to study product have been used with varying suc-

cess in HIV PrEP trials, but each has its limitations. Self-report of adherence is influenced by

social-desirability bias, recall bias and poor memory [13–15]. Scheduled or unannounced pill

counts by study staff or medication event monitoring system (MEMS) recording of bottle cap-

openings may represent an improvement over self-report [16, 17], but are subject to end-user

variability and fail to account for tampering, decanting or sharing of medications. Moreover,

both pill counts and MEMS fail to confirm actual pill ingestion [13, 18–23]. For these reasons,

there has been interest in the implementation of biological or pharmacologic measures of drug

exposure in PrEP trials, where concentrations of the drug of interest are measured in a biologic

matrix.

Antiretroviral (ARV) measurement in plasma has been frequently used in PrEP trials, and

reflects whether a recent dose was ingested, but does not inform cumulative dosing beyond the

several days prior to the specimen collection [24–26]. Furthermore, plasma levels are suscepti-

ble to “white-coat” consumption of study drug in anticipation of clinic visits, in which case the

patient would appear to be adherent even if non-adherent prior to the day or days preceding

the study visit [27, 28]. Drug levels in PBMCs and red blood cells measured in dried blood

spots (DBS) have also proven useful in the interpretation of PrEP trial results [1, 11, 29, 30] by

providing information on exposure over longer periods (7–14 days for PBMC, 30 days for

DBS) and because they are strongly correlated with PrEP efficacy [11, 29, 30]. However, proce-

dures to process, isolate and count PBMCs can be technically challenging and expensive. DBS

collection and processing is simpler, although freezing is required to preserve the medication

moieties that are indicative of long-term PrEP exposure. Hair collection is noninvasive, hair

specimens can be stored and shipped at room temperature, and ARV levels in hair reflect

uptake from the systemic circulation over weeks-to-months [31], thus capturing long-term

cumulative exposure. While the concentration of ARVs in hair does not provide information

on recent variability in patterns of exposure, nor on the time course of variable exposure, hair

is easy to handle and store, has been highly acceptable in a variety of studies [15], offering pos-

sible advantages in resource-limited settings.

Several gaps remain in our understanding of these three pharmacologic measures of PrEP

adherence. First, we need to know which can accurately distinguish PrEP use from non-use
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with various “look-backs” in time. Second, we need to understand what factors influence drug

levels. Finally, we need to understand how well various pharmacokinetic (PK) measures corre-

late with each other and with traditional measures of adherence. Having this information will

aid in interpretation of PK measures of adherence in future PrEP projects and roll-out settings.

We report findings of a nested substudy within the US CDC PrEP Safety Study, which pro-

vided a unique opportunity to compare the utility of hair, PBMC, and plasma measures in

detecting study product use in a placebo-controlled, randomized, PrEP study design. We also

estimated the correlations between drug concentrations in hair, PBMC and plasma samples, as

well as their correlations with MEMS caps openings, announced pill counts, and self-report by

visual analog scale, and finally assessed the impact of factors that may influence these drug lev-

els, including age, weight, creatinine clearance, and hair color and treatment.

Materials and methods

Study design, sample collection and participants

The US CDC Safety Study was a multi-site phase 2, randomized, double-blind (investigator

and participant), placebo-controlled extended-safety trial of TDF among MSM in the United

States (Clinical Trials.gov NCT00131677). This multi-site study enrolled 400 MSM in San

Francisco, Atlanta, and Boston, with 200 enrolled at the San Francisco site and is described in

detail in published reports elsewhere [32]. The randomized trial checklist is provided in S1 File

and the protocol is provided in S2 File. Participants were randomized in four equal propor-

tions to immediate or delayed receipt of daily TDF or placebo, by the study statistician using a

permuted block randomization scheme (blocks of 8 with 2 assignments in each of the four

arms). Recruitment for the study occurred between January 2005 and January 2007. Two year

follow-up was completed at all sites by July 2009, prior to the availability of any PrEP trial effi-

cacy results [1–6]. All San Francisco site participants who attended a study visit between Octo-

ber 2007 and June 2008 and had been on study drug (either TDF or placebo) for� 3 months

were invited to participate in the sub-study. The primary inclusion criteria were male sex at

birth, 18–60 years of age, HIV-1 negative by lab confirmation, hepatitis B surface antigen nega-

tive by lab confirmation, normal urinalysis and serum electrolytes and report of anal sex with a

male partner in the past 12 months. Primary exclusion criteria include those with a history of

chronic renal disease or concurrent use of nephrotoxic medications or HIV antiretrovirals.

Ethical considerations. Written informed consent was obtained separately for the parent

study and sub-study from each study participant. All procedures performed in studies involv-

ing human participants were in accordance with the ethical standards of the institutional and/

or national research committee and with the 1964 Helsinki declaration and its later amend-

ments or comparable ethical standards. Both the parent study and this sub-study received

approval from the University of California San Francisco Committee on Human Research

(CHR #10–04109, initial approval on November 2, 2004).

Sample collection and processing

Hair was collected at the sub-study enrollment visit. Viable PBMCs collected as part of the par-

ent protocol every 6 months were selected for testing at either the same visit as hair collection

if available (33% of samples) or at the nearest neighboring quarterly visit (either 3 months

before or after hair collection) (67% of samples). Plasma samples collected quarterly per the

parent protocol were selected for testing to match both hair and PBMC collection dates. Tim-

ing of collection of plasma samples in relation to last dose was not specified per protocol and

varied by subject. All samples were collected and tested by staff who were blinded to study

arm assignment. In plasma and hair specimens, TFV was measured and for PBMCs, TFV-
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diphosphate (TFV-DP) was measured, using the methods outlined for all three biomatrices

below. TFV undergoes intracellular phosphorylation in PBMCs, ultimately resulting in

TFV-DP which has a substantially longer half-life than TFV [33].

Plasma. Plasma was collected in EDTA tubes and analyzed for TFV via liquid chromatog-

raphy/tandem mass spectrometry (LC/MS/MS) [34]. The TFV plasma assay was validated

from 10 ng/mL to 1000 ng/mL. The lower limit of quantification (LLOQ) for TFV was 10 ng/

mL. TFV in the quantifiable range would represent a dose within 48–72 hours.

PBMC. Procedures for processing viable PBMCs have been previously described [11]. A

validated LC/MS/MS assay analyzed PBMC TFV-DP [35] with a linear range of 2.5 to 2000

femtomole (fmol)/sample. Approximately 1 to 2 million viable cells were typically extracted

(representing the sample) and results reported as fmol/million viable cells. The LLOQ for

TFV-DP was 2.5 fmol/sample. TFV-DP accumulates with dosing. In a prior PK study involv-

ing directly observed dosing of different dosing frequencies of TDF (STRAND), the median

(IQR) TFV-DP concentration for 2 doses per week was 11 fmol/106 cells (6 to 13 fmol/106

cells), four doses per week was 32 fmol/106 cells (25 to 39 fmol/106 cells) and seven doses per

week was 42 fmol/106 cells (31 to 47 fmol/106 cells) [11] after 6 weeks.

Hair. Approximately 100 strands of hair were cut as close as possible to the scalp in the

occipital region and the distal portion was labeled [36, 37]. The proximal section of the hair

sample (approximately 1 cm, reflecting the last month of dosing) was chopped to ~1–2 mm

length segments with scissors and weighed, processed and analyzed using LC/MS/MS. The

TFV in the cut hair sample was extracted with 50% methanol/water containing 1% trifluroace-

tic acid and internal standard (TFV-d6) in a 37˚C shaking water bath overnight (>12 hours)

and then analyzed by an LC/MS/MS method [38]. The relative error (%) and precision (coeffi-

cients of variation (CV)) for spiked quality control hair samples at low, medium and high con-

centrations were all <15%. These assays have been validated from 0.01 ng/mg to 0.400 ng/mg

hair [38]. TFV accumulates significantly in hair. In a prior analysis after 6 weeks of dosing for

each of 3 regimens in STRAND, the median (IQR) hair concentration for 2 doses per week

was 0.012 ng/mg (0.008 to 0.021 ng/mg), four doses per week was 0.023 ng/mg (0.011 to 0.042

ng/mg) and seven doses per week was 0.038 ng/mg (0.021 to 0.053 ng/mg) [37]. The TFV

assay in hair has been peer reviewed and approved by the Division of AIDS’ Clinical Pharma-

cology and Quality Assurance (CPQA) program.

Non-biological measures of drug exposure

A medication event monitoring system (MEMS, Aardex) was used to determine the number

of pill bottle cap openings occurring over 30 and 90 days. Self-reported regimen adherence

was determined by audio computer-assisted self-interview (ACASI) using a visual analog scale

(VAS) representing the percentage of pills taken in the last month. Announced pill counts

were performed by study staff in the clinic at each visit.

Statistical analysis

Outcome. The primary outcomes in the sub-study were log transformed TFV concentra-

tions in plasma and hair, and log transformed TFV-DP concentrations in PBMCs.

Explanatory variables. Drug detection was first evaluated by receipt of active TDF or pla-

cebo. Biological and adherence-related factors influencing drug concentrations were then

assessed, including age, weight, creatinine clearance, pill count, MEMS 30 and 90-day medica-

tion bottle openings, and self-reported adherence using a 10-point visual analog scale (VAS)

assessed via ACASI. Additionally, self-reported hair color (categorized as reddish/blonde

versus black/brown) and a self-reported history of cosmetic hair treatment (bleaching,

Measures of tenofovir drug exposure in PrEP
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highlighting or other) within 3 months preceding hair collection were assessed as predictors of

hair TFV concentrations. Full gray hair was not included in hair color analyses due to the

small number of individuals.

Analysis. Descriptive statistics were used to summarize baseline characteristics of sub-

study participants, using the Kruskal-Wallis test for continuous variables and the Fisher exact

test for nominal variables. We then calculated the proportions of participants assigned to active

TDF or placebo with detectable levels in hair, plasma, and PBMCs. In-depth case reviews were

performed for participants with drug detection results inconsistent with treatment assignment.

The associations of age, weight, creatinine clearance, adherence measures, and hair color and

treatment with log-transformed TFV or TFV-DP concentrations in hair, plasma and PBMCs

in active arm participants were estimated using univariate linear regression models. Subse-

quently, individual multivariable linear regression models were used to measure the associa-

tion of weight, CrCl, pill count, MEMS, and self-report with the three separate biological

measures (plasma, PBMC, and hair). Coefficients obtained through regression modeling were

then back-transformed to be interpretable as percentage changes. Confounders were consid-

ered for each model and noted in the results. The addition of a small constant (+1x10-6 ng/mg)

to tenofovir plasma and PBMC values prior to log transformation reduced the importance of

differences between very low levels, while preserving the approximate interpretation of back-

transformed regression coefficients as percent changes in drug concentration. This allows all

values, including those below the LLOQ, to be included in the analysis. Spearman correlation

coefficients between various pharmacologic measures of TFV and non-pharmacologic mea-

sures of adherence were calculated in active arm participants only, using samples obtained

concurrently or at the nearest visit (for some PBMCs—see sample collection and processing

above). Concurrent refers to obtaining two biological specimens at the same visit. Finally, in

order to understand the impact of outliers on results, linear regression models were re-run

restricting to�60% MEMS adherence, representing those with adherence that may be suffi-

cient for a protective effect. Analyses were performed using Stata Version 13.2 (Stata Corp,

College Station, TX). Figures were generated in using Stata and R (version 3.2.3, Vienna,

Austria).

Results

In total, 101 men of the 200 enrolled at the San Francisco site were eligible and screened for

participation in this sub-study and 88 (88%) provided written informed consent to participate;

all 88 men contributed data to this analysis (Fig 1). Table 1 shows the baseline characteristics

of these participants in the active and placebo study arms. These 88 participants were com-

pared to the remaining 112 who were enrolled at the San Francisco site, but not included in

this sub-study and no statistically significant differences were found with respect to race, age,

creatinine clearance or weight (by Kruskal-Wallis one-way test of variance for all except race

which was evaluated using Fisher’s exact test). This population was mostly of White race and

middle aged (median age of 41 years). Demographic characteristics were similar across arms,

although there was weak evidence suggesting that participants in the placebo arm demon-

strated lower adherence as assessed by 30 day MEMS medication bottle-openings compared to

those in the active arm (median 77% versus 87%, respectively, p = 0.09 by Kruskal-Wallis one-

way test of variance). In participants randomized to the active arm, median (range) TFV or

TFV-DP concentrations in hair, plasma and PBMC were 0.05 ng/mg (<0.01–0.21 ng/mg), 83

ng/mL (<10–367 ng/mL) and 40 fmol/million cells (<5–102 fmol/million cells), respectively.

Overall, 81% of participants had TFV hair concentrations consistent with high levels of protec-

tion (�0.023 ng/mg, consistent with 4 or more doses/week) [11, 37].

Measures of tenofovir drug exposure in PrEP
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Drug was detected in plasma, PBMCs, and hair in almost all active arm participants,

and not detected in almost all placebo arm participants (Table 2). One participant random-

ized to the placebo arm had detectable drug concentrations in all three biomatrices collected

and measured on the same study day. When hair and plasma samples were obtained

Fig 1. Study design and participant disposition.

https://doi.org/10.1371/journal.pone.0190118.g001
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concurrently, 46/47 (97.9%) active arm participants had detectable TFV in both matrices.

When PBMCs and plasma samples were obtained concurrently, 44/47 (93.6%) active arm

participants had detectable TFV-DP and TFV, respectively. Table 3 shows Spearman corre-

lation coefficients for each measure of adherence or drug exposure against all other mea-

sures in the study and Fig 2 shows the scatterplots for the biological measures. Spearman

correlation coefficients ranged between 0.34 and 0.59 for pharmacologic measures, and was

highest for plasma and PMBCs. In general, the non-biological measures (self-report using

VAS measured by ACASI, announced pill count, and MEMS) were moderately correlated

with each other. Self-reported adherence using VAS measured by ACASI was poorly

Table 1. Baseline characteristics of participants in the active and placebo participant arms of the US CDC PrEP

safety study.

Characteristic Active TDF (n = 47) Placebo arm (n = 41) Total (n = 88)

Age, median (IQR) 40 (35, 45) 45 (33, 52) 42 (34, 49)

Race, N (%)

White 40 (85.1) 40 (85.1) 73 (83.0)

Black 2 (4.3) 0 (0.0) 2 (2.3)

Asian/Pacific Islander 4 (8.5) 2 (4.9) 6 (6.8)

Other 1 (2.1) 6 (14.6) 7 (8.0)

Creatinine clearance, median in ml/min (IQR) 122 (97, 144) 118 (102, 134) 122 (102, 141)

Weight, median in kg (IQR) 86 (77, 99) 83 (76, 94) 84 (77, 98)

Hair color, N (%)

Black/Brown 36 (76.6) 32 (78.1) 68 (77.3)

Reddish/Blonde 9 (19.2) 7 (17.1) 16 (18.2)

Totally gray 2 (4.3) 2 (4.9) 4 (4.6)

Hair Treatment, N (%)

Any 9 (19.2) 7 (17.1) 16. (18.2)

Bleaching 1 (2.1) 0 (0.0) 1 (1.1)

Highlighting 2 (4.3) 2 (4.9) 4 (4.6)

None 35 (74.5) 32 (78.0) 67 (76.1)

Adherence, median % (IQR)

Pill counts 90 (80, 97) 91 (76, 97) 91 (77, 97)

MEMS (30-day adherence) 87 (77, 93) 77 (60, 93) 85 (67, 93)

ACASI self-report by VAS (30 days) 90 (90, 90) 90 (90, 90) 90 (90, 90)

TDF = tenofovir disoproxil fumarate; IQR = interquartile range; MEMS = medication electronic monitoring system;

ACASI = audio computer-assisted self-interview; VAS = visual analog scale

https://doi.org/10.1371/journal.pone.0190118.t001

Table 2. Detection of tenofovir in hair, plasma and peripheral blood mononuclear cells in active and placebo par-

ticipant arms in the US CDC PrEP safety study.

TFV Detectable in

Hair

TFV Detectable in

Plasma matched to

hair

TFV Detectable in

Plasma matched to

PBMCs

TFV Detectable in

PBMCs

No Yes No Yes No Yes No Yes

Treatment 1 46 1 46 3 44 3 44

Placebo 40 1� 40 1� 10 1� 10 1�

TFV = tenofovir; PBMC = peripheral blood mononuclear cells;

�tenofovir detected in the same individual, on the same date, in the placebo arm across all three biomatrices

https://doi.org/10.1371/journal.pone.0190118.t002
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correlated with all the drug level measures. MEMS and announced pill count adherence data

were modestly correlated with hair and plasma levels.

Table 4 provides further detail on the five participants in the active arm who had undetect-

able drug in at least one specimen type. TFV was detected in hair from four of these men, with

undetectable drug in both plasma and PBMCs in two individuals, and drug detected in plasma

or PBMCs in one individual each. One participant with an undetectable TFV concentration

in hair had drug detected in the other two matrices. The patterns of drug levels and how they

relate to the non-biological measures, as well as possible interpretations of the various patterns,

are provided in Table 4.

Factors associated with tenofovir levels in hair, plasma and PBMCs are shown in Table 5.

Reddish/blonde hair color (when compared to black/brown hair, p = 0.04) and self-report of

any cosmetic hair treatments in the last 3 months (p = 0.016) were associated with lower TFV

level among participants randomized to the TFV arm in univariate analyses, but these associa-

tions were not maintained in multivariate models. We did not find evidence for interaction

between these two factors (p = 0.60). While older age was associated with increasing plasma

concentrations, weight and creatinine clearance were not associated with concentration of

study drug in any of the three specimens in univariate or multivariable analyses, although nor-

mal creatinine clearance was an eligibility criterion for the overall trial, and thus variability in

this characteristic was limited.

Table 3. Spearman correlation coefficients between various measures of TDF exposure in active arm participants only (n = 47) in the US CDC PrEP safety study.

Self-report Pill count� MEMS� PBMC TFV-DP Plasma TFV Hair TFV

Self-report 1.0

Pill count 0.44 1.0

MEMS 0.32 0.52 1.0

PBMC TFV-DP 0.06 0.17 0.11 1.0

Plasma TFV 0.06 0.36 0.37 0.59 1.0

Hair TFV 0.06 0.38 0.20 0.34 0.36 1.0

�MEMS and Pill count data are for 90 days before either PBMC, plasma, or hair collection

https://doi.org/10.1371/journal.pone.0190118.t003

Fig 2. Scatterplots of PBMC TFV-DP concentration versus plasma TFV concentration (2a), PBMC TFV-DP concentration versus hair TFV concentration

(2b) and plasma TFV concentration versus hair TFV concentration (2c).

https://doi.org/10.1371/journal.pone.0190118.g002
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Average plasma TFV and PBMC TFV-DP concentrations substantially increased (15% and

13%, respectively) with each 10% increase in MEMS 30-day adherence by medication bottle

-openings, although the effects for both were no longer statistically significant among partici-

pants with� 60% adherence by MEMS, suggesting the overall association was driven by the

few participants with low adherence on MEMS. Announced pill counts were the only non-

pharmacologic adherence measure statistically significantly associated with hair (p = 0.003),

plasma (p = 0.002) and PBMC (p = 0.03) concentrations, but again the effect was diminished

when limiting results to those with� 60% adherence as assessed by MEMS. Restricting

to� 60% adherence resulted in the following proportions removed for each statistical test,

reported as test [number removed from analysis (% removed of total)]: impact of MEMS on

hair concentration [5 (11%)], impact of MEMS on plasma concentration [5 (11%)], impact of

MEMS on PBMC concentration [9 (19%)], impact of pill count on hair concentration [5

(12%)], impact of pill count on plasma concentration [5 (12%)], impact of pill count on PBMC

concentration [4 (10%)]. These findings did not change substantially in multivariable analyses

adjusting for age and weight. Self-reported adherence by VAS measured by ACASI was not a

Table 4. Pharmacokinetic and non-pharmacokinetic adherence measures among five participants who had at least one sample with undetectable drug in the US

CDC PrEP safety study.

Detectable tenofovir in biological measures of drug exposure Count data for non-biological measures of drug exposure Most likely

Interpretation

Participant Hair

(level

ng/mg

hair)

Plasma on

hair

collection

date (ng/

mL)

Plasma on

PBMC

collection

date (ng/

mL)

PBMC on

hair

collection

date (fmol/

sample)

PBMC if

done on

date other

than hair

MEMS

openings 90

days before

hair (%)

MEMS

openings 90

days before

PBMC (%)

Self-

report by

ACASI

using

VAS (%)

Pill

counts in

90 days

before

hair

Pill

counts in

90 days

before

PBMC

-

1 Yes

(0.026)

Yes (48.3) PBMCs,

plasma and

hair

collected on

same date

No (BLQ) n/a 92.2 92.2 90 95.5 95.5 False negative PBMC

result or remote dosing

(suggested by hair) with

dosing holiday (PBMC

BLQ) and then very

recent dosing before

clinic visit (plasma

elevated)

2 Yes

(0.042)

Yes (99.5) No (BLQ) n/a No (BLQ)

(58 days

before

hair)

68.9 1.1 100 73.3 N/A Low/no adherence

before PBMC collection

date, but higher

adherence before hair

collection date

3 Yes

(0.069)

Yes (446) No (BLQ) n/a Yes (52.48

fmol/

sample,

103 days

after hair)

34.4 31.1 90 86.0 38.8 Adherence throughout

the duration with

waning adherence in

the last few days prior

to PBMC sampling, or

false negative plasma

test.

4 No

(BLQ)

Yes (188) Yes (87.4) n/a Yes (43.62

fmol/

sample,

91 days

after hair)

42.2 75.6 90 82.4 80.2 False negative hair

result, or, less likely,

recent adherence

without remote

adherence.

5 Yes

(0.011)

No (BLQ) No (BLQ) n/a No (BLQ)

(32 days

after hair)

0 0 70 1.6 21.9 Remote adherence

without recent

adherence.

PBMC = peripheral blood mononuclear cells, MEMS = medication electronic monitoring system; ACASI = audio computer-assisted self-interview; VAS = visual analog

scale; BLQ = below lower limit of quantification

https://doi.org/10.1371/journal.pone.0190118.t004
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statistically significant predictor of TFV or TFV-DP in hair, plasma or PBMC in univariate or

multivariable models.

Discussion

In this sub-study of San Francisco site participants of the CDC-sponsored safety study of TDF

PrEP, uptake of hair collection was found to be high and detection of study drug in hair,

plasma, and PBMCs was highly concordant with treatment arm assignment. Study drug was

detected in almost all participants randomized to the active TDF arm, and appropriately not

detected in all but one participant randomized to placebo. This latter individual was possibly a

surreptitious PrEP user. Drug concentrations in hair, plasma, and PBMCs were less strongly

correlated with each other than in other studies [15], and at best moderately correlated with

adherence as measured by MEMS medication bottle openings and pill counts. Drug concen-

trations were poorly correlated with self-reported adherence using VAS measured by ACASI.

Reasons for the relatively weak correlations among all of the measured drug concentrations

are unclear. Notably, most participants had drug concentrations suggesting high levels of

adherence [11, 37], so that biological and analytical variability likely represents a larger propor-

tion of overall observed variability. Additional reasons for relatively weak correlations would

include non-concurrent measurements, variability in use over time, genetic factors that may

impact drug measurement in one setting versus another or limitations of the current assays.

The lack of substantial association between self-reported adherence and drug concentrations

in any of the three biological specimens is consistent with a recent analysis in other PrEP trials

by our group [15] and consistent with findings from other PrEP trials [9, 10, 15, 39]. MEMS

medication bottle openings were associated with plasma and PBMC drug concentrations, but

Table 5. Percent differences in tenofovir in hair, plasma and peripheral blood mononuclear cells in active arm participants, by linear regression (univariate and

multivariable results presented), in the US CDC PrEP safety study.

Hair, % difference (95% CI) Plasma, % difference (95% CI) PBMC, % difference (95% CI)

Explanatory variable Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Age (per 10 years) 20 (-3, 44), p = 0.09 - 75 (23, 128),

p = 0.005

- 34 (-11, 79),

p = 0.14

-

Weight (per 10 kg) -5 (-16, 7), p = 0.41 -8 (-18, 3),
p = 0.17�

8 (-13, 29), p = 0.47 1 (-17, 18),
p = 0.94�

2 (-19, 23),

p = 0.87

-2 (-23, 18),
p = 0.81�

CrCl (per 10 mL/min/1.73 m2) -6 (-12, 1), p = 0.08 -2 (-13, 9),
p = 0.75��

-7 (-17, 4), p = 0.22 -1 (-18, 16),
p = 0.93��

-4 (-15, 8),

p = 0.52

2 (-18, 22),
p = 0.84��

Pill count (per 10%) 12 (4, 21), p = 0.003 12 (4, 20),
p = 0.005��

24 (9, 38), p = 0.002 18 (5, 32),
p = 0.008��

17 (2, 32),

p = 0.03

14 (-2, 30),
p = 0.08��

MEMS 30-day (per 10%) 2 (-5, 9), p = 0.52 2 (-5, 9), p = 0.50�� 15 (3, 27), p = 0.012 12 (1, 23),
p = 0.03��

13 (2, 24),

p = 0.02

12 (1, 23),
p = 0.03��

ACASI self-report by VAS (per 10%) 6 (-12, 25), p = 0.50 5 (-13, 24),
p = 0.59��

34 (-3, 71), p = 0.07 23 (-9, 55),
p = 0.15��

17 (-18, 53),

p = 0.34

13 (-22, 48),
p = 0.48��

Reddish/blonde hair color (vs black/

brown)

-32 (-62, -2),

p = 0.04

- - - - -

Any hair treatmentΔ -34 (-63, -4),

p = 0.025

- - - - -

CI = confidence interval; CrCl = creatinine clearance; PBMC = peripheral blood mononuclear cells; TFV = tenofovir; MEMS = medication electronic monitoring

system; ACASI = audio computer-assisted self-interview; VAS = visual analog scale

unadjusted refers to univariate regression modeling; adjusted refers to multivariate modeling for the variable in a given row

� for age only or the variable in a given row

�� for age and weight;
Δ excludes full gray hair

https://doi.org/10.1371/journal.pone.0190118.t005
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the association was weaker among the participants with MEMS-measured adherence

of� 60%. In contrast to findings in intermittent PrEP trials in Kenya and Uganda [15],

MEMS medication bottle-openings were not substantially associated with concentration of

tenofovir measured in hair in this study. Interestingly, announced pill counts were associated

with TFV drug concentration measured in hair and plasma, and TFV-DP drug concentration

measured in PBMCs, but again the correlation was weaker when restricting analyses to those

with higher MEMS adherence. Finally, hair color and coloring or chemical treatment were

associated with lower overall concentrations of TFV in hair in univariate, but not multivari-

able, modeling.

These findings highlight the variability across adherence measures which may reflect

imprecision in measurement, differences in time period of assessment of different measures,

social-desirability bias for non-pharmacologic measures, and biological and analytic variability

for PK measures. Accounting for variability between adherence measures may improve inter-

pretation and use of adherence measures in future PrEP trials. The high concordance of PK

drug detection and treatment arm assignment in this study, along with the strong relationship

observed between dose and drug levels in hair and PBMCs in a PK study using directly

observed dosing [37], support the use of objective measures of drug exposure where possible.

Self-reported adherence can be subject to over-reporting bias [9, 10, 15, 39] and this report fur-

ther supports that the discordance between biological measures and self-report of adherence

using VAS via ACASI may be due to the inaccuracy of the latter. MEMS medication bottle-

openings may be a more accurate approximation of adherence than self-report [15, 40] and

can provide data on patterns of adherence, but cannot measure ingestion of drug. Pill counts

in HIV prevention trials have proven useful [16, 17], but they may be limited by pill dumping

or sequestering [9, 10, 39] and a lack of method standardization across studies [18]. In our

study, announced pill counts and MEMS as indicators of dosing were moderately correlated

with each other and provided a more consistent assessment of tenofovir concentration com-

pared with self-report using VAS measured by ACASI when evaluated against the biological

measures of drug exposure. Biological measures can confirm actual ingestion of study drug

and have been used extensively in PrEP studies, both as an indicator of adherence to study

product and as a correlate of antiviral protection [1, 9–12, 15, 30, 41]. Strong correlation

between measures in different biomatrices in the PrEP setting has been previously reported

[15].

Discrepancies in drug detection in the different matrices may provide information on pat-

terns of dosing, but false negative or positive tests should also be considered. The various half-

lives of TFV in plasma and hair and of TFV-DP in PBMCs are helpful in understanding the

proximity of drug consumption with respect to measurement of drug level, as well as the accu-

mulation of doses for hair and PBMC. For example, participant #3 had detectable drug in hair

and PBMC, but not plasma, consistent with recently declining adherence. Participants #2 and

#5 also had detectable hair levels, but they both had undetectable PBMC TFV-DP concentra-

tions in addition to undetectable TFV in plasma, which may represent more remote dosing.

While the optimal strategy and frequency of drug monitoring for PrEP has yet to be

defined, cost and feasibility of specimen collection and processing are important consider-

ations, particularly when considering PrEP adherence measurement during wide-scale PrEP

implementation and scale-up, including in low resource settings. Current PK measures of

adherence all require LC/MS-MS, which involves expensive equipment, and, except for hair,

require biohazard precautions for handling, processing and storing specimens. Dried blood

spots (DBS) are easier to collect and process than PBMCs, but DBS still require storage in

freezers and require standardization when the hematocrit falls outside the normal range [42].

Lower-cost methods to assay pharmacologic exposure measures, with potential point-of-care
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testing, are currently under development, including in hair, urine and DBS [43–45]. Under-

standing how these measures may be combined to most accurately ascertain patterns of adher-

ence and drug exposure, in ways that are affordable, feasible and informative, is an important

research priority.

There were a number of strengths to this study. We obtained multiple measures of drug

adherence and exposure, allowing comparisons of three biological measures and three com-

monly used non-biological measures. Specificity of the biological measures could be estimated

among participants randomized to placebo (via MEMs, VAS using ACASI, and pill count), in

contrast to a previously published analysis of two PrEP trials which compared biological mea-

sures of drug exposure and non-biological measures of drug adherence in active arm partici-

pants only and excluded those randomized to placebo [15]. This is important given that

placebo-controlled PrEP trials are not ethical going forward and therefore this study provides

an important insight into how well these measures identify true negatives. There are also some

limitations to the interpretation of these data. This study only evaluated adherence measures at

a single time-point and did not provide information on the measurement of longitudinal pat-

terns of adherence. The lack of a true gold standard in the field of adherence measurement in

HIV-negative persons is another limitation. We had to use treatment assignment as a proxy,

but were able to interpret the three biologic and three non-biologic measures for the six partic-

ipants whose results were not clearly consistent with treatment assignment. The drug concen-

trations were not assessed in relationship to the primary outcome of interest, specifically HIV

acquisition, given the relatively small number of participants and relative rarity of this out-

come in the PrEP trial setting. Also, the acceptability and performance of different indicators

of adherence may be different in the context of a randomized clinical trial compared with clin-

ical practice. Although there was low racial and gender diversity in this study, the hair assay

has been validated in diverse settings with a variety of antiretroviral agents [15, 29, 36, 37, 44,

46, 47]. Finally, assuming that the variability in drug exposure is only a function of variability

of adherence may be inaccurate because individual pharmacokinetics also determine drug

exposure and may be influenced by genetic variability and other factors. Recent data have

found genetic variants that impact tenofovir pharmacokinetics, and such variability may be

dependent on what biological tissue is sampled [48].

Conclusions

In conclusion, in a randomized placebo controlled trial of tenofovir-based PrEP in MSM, con-

centrations of TFV or TFV-DP in hair, plasma and PBMCs were detected in very high propor-

tions in the active arm; MEMS medication bottle-openings and pill counts were modestly

associated with biological measures of drug exposure; and self-report using VAS measured by

ACASI correlated poorly with drug exposure. While self-reported measures often overestimate

adherence, they may provide important information about patterns of PrEP use and the cli-

ent’s goals for PrEP use, which cannot be obtained using biological measures. Such biological

measures can assist in identifying other self-reported measures which are less subject to bias

and play an important role in objectively measuring drug exposure in PrEP research and

implementation.
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