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Abstract: Black tiger (Kadsura coccinea (Lem.)) has been reported to hold enormous pharmaceutical
potential. The fruit and rhizome of black tiger are highly exploited in the pharmaceutical and
other industries. However, the most important organs from the plant such as the leaf and stem are
considered biowastes mainly because a comprehensive metabolite profile has not been reported in
these organs. Knowledge of the metabolic landscape of the unexploited black tiger organs could
help identify and isolate important compounds with pharmaceutical and nutritional values for a
better valorization of the species. In this study, we used a widely targeted metabolomics approach
to profile the metabolomes of the K. coccinea leaf (KL) and stem (KS) and compared them with the
root (KR). We identified 642, 650 and 619 diverse metabolites in KL, KS and KR, respectively. A
total of 555 metabolites were mutually detected among the three organs, indicating that the leaf and
stem organs may also hold potential for medicinal, nutritional and industrial applications. Most of
the differentially accumulated metabolites between organs were enriched in flavone and flavonol
biosynthesis, phenylpropanoid biosynthesis, arginine and proline metabolism, arginine biosynthesis,
tyrosine metabolism and 2-oxocarboxylic acid metabolism pathways. In addition, several important
organ-specific metabolites were detected in K. coccinea. In conclusion, we provide extensive metabolic
information to stimulate black tiger leaf and stem valorization in human healthcare and food.

Keywords: black tiger; metabolite profile; polyphenol; nutraceutical; plant valorization; medici-
nal plant

1. Introduction

Black tiger (Kadsura coccinea (Lem.)) is a perennial evergreen climbing woody vine
belonging to the family Schisandraceae. It has ovate-elliptic-shaped leaves, solitary with
hexagonally structured skin developed by each carpel, one–three flat unisexual flowers and
large globose fruits with seeds in the mericarp [1]. The color, shape and size of fruits and
leaves vary among Kadsura species. K. coccinea is widely distributed in Guizhou, Guangxi,
Yunnan and southern China, consumed by the local population as fresh fruit and used as
a key ingredient in local juice and wine [2]. Its rhizome has high medicinal value and is
used in folk medicine to treat gastric and duodenal ulcers, acute gastroenteritis, rheuma-
toid arthritis, bruises, swelling and pain, dysmenorrhea and many other conditions [3,4].
Modern medicinal research showed that the black tiger rhizome has anti-tumor, anti-HIV,
anti-inflammatory, hepatoprotective and antioxidant effects, attracting widespread atten-
tion in the field of phytomedicine [5–7]. It has been demonstrated that the leaf and stems
can relieve rheumatic pain in the bones, chronic enteritis, acute gastritis [8,9] and immuno-
logic hepatic fibrosis [10,11]. The stem has also been used to prevent and treat rheumatic
and arthritic diseases, with anti-nociceptive and anti-inflammatory effects [12–14].
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Research on the chemical composition and biological activities of black tiger has mainly
been focused on the rhizome, which has lignans, triterpenes, sesquiterpenes, steroids and
amino acids as the main chemical components [2,6,7]. At present, more than 70 types of
lignan compounds such as schizandrin, isovaleroyl-binankadsurin and more than 80 triter-
penoid compounds such as coccinone A and coccinone B acids have been isolated from
the black tiger rhizome [2,4,6,7]. However, the chemical composition of other organs of
black tiger including the leaf and stem has not been reported [2,4,6,8–10,14]. The leaf
and stem of black tiger plants are usually discarded after harvest and represent waste
biomass. Determining the metabolome profiles of black tiger leaves and stems could
facilitate the identification of the common and unique metabolites in these organs for
potential valorization.

Metabolomics is a functional “omics” technique for performing qualitative and quan-
titative studies on plant metabolites and other relevant constituents [15–17]. It has been
widely utilized to study plant metabolism and food quality. Common metabolites such as
alkaloids, flavonoids, glycosides, organic acids, saponins and steroids have been studied
and engineered for improving pharmaceutical and phytochemical values of medicinal
plants [18,19]. To harness the medicinal, nutritional and nutraceutical values of black
tiger, it is important to identify the functional compounds and understand their biological
activities in the different organs.

In this study, we performed comparative metabolome profiling on the leaves, stems
and roots of K. coccinea. Unique and differentially accumulated metabolites involved in
important biosynthetic pathways were identified and characterized among the three organs.
This is the first report of a widely targeted metabolome profiling of black tiger which may
serve as a valuable resource for further functional study on the species.

2. Materials and Methods
2.1. Study Area, Plant Material, Growth and Sampling

The study was conducted on leaves, stems and roots of black tiger plants (Kadsura
coccinea (Lem.)), locally named “Hei Laohu” and cultivated outdoor in 2017 in Yunyan Dis-
trict, Guiyang City, Guizhou Province, China (latitude 106◦42′04” and longitude 26◦34′48”).
Four-year-old black tiger plants were used in the experiment. Seedlings were trans-
planted from the nursery to resin plastic pots containing understory humus and yellow
soil (v/v = 1:1). The branches were pruned from time to time, and the plants were watered
regularly. We selected three plants with similar growth patterns for sampling. Plants were
harvested with a shovel to ensure they were neatly pulled from the soil. We cut 3 main
roots and fine roots from each plant as root samples. We also sampled 3 main vines about
10 cm above the ground surface as stems and harvested 6 fresh leaves. All samples were
taken in triplicate and transported in 10 mL cryotubes. These tubes were subsequently
labeled as KL1–3 (leaves), KR1–3 (roots) and KS1–3 (stems) and quickly placed in liquid
nitrogen. The samples were stored on ice and transported to the laboratory and then stored
in a −80 ◦C ultra-low temperature refrigerator.

2.2. Sample Preparation and Extraction

Biological samples were freeze dried by a vacuum freeze dryer (Scientz-100F, Sci-
entzbio, Ningbo, China) and crushed using a mixer mill (MM 400, Retsch, Haan, Germany)
with a zirconia bead for 1.5 min at 30 Hz. An amount of 100 mg of lyophilized powder
was mixed in 1.2 mL 70% methanol solution, vortexed for 30 s every 30 min 6 times and
placed in a refrigerator at 4 ◦C overnight. Following centrifugation at 12,000 rpm for
10 min, the extracts were filtrated (SCAA-104, 0.22 µm pore size; ANPEL, Shanghai, China;
http://www.anpel.com.cn/, accessed on 12 June 2020) before UPLC-MS/MS analysis.

2.3. Organ-Specific Metabolome Profiling and Analyses

Widely targeted metabolome analyses were performed by the Wuhan MetWare
Biotechnology Co., Ltd. (Wuhan, China) on the leaf, root and stem samples. Each or-

http://www.anpel.com.cn/
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gan sample consisted of three biological replicates with a total of nine samples. Sample
preparation and analysis, metabolite detection and computations were undertaken by
the Wuhan MetWare Biotechnology Co., Ltd. (Wuhan, China), following their standard
procedures as described by Wang et al. [20].

2.4. Metabolite Determination

The sample extracts were analyzed using a UPLC-ESI-MS/MS system (UPLC, SHI-
MADZU Nexera X2, www.shimadzu.com.cn/, accessed on 8 June 2021; MS, Applied Biosys-
tems 4500 Q TRAP, www.appliedbiosystems.com.cn/ accessed on 8 June 2021). The analyt-
ical conditions were as follows: UPLC: column, Agilent SB-C18 (1.8 µm, 2.1 × 100 mm).
The mobile phase consisted of solvent A, pure water with 0.1% formic acid, and solvent B,
acetonitrile with 0.1% formic acid. Sample measurements were performed with a gradient
program that employed the starting conditions of 95% A, 5% B. Within 9 min, a linear
gradient to 5% A, 95% B was programmed, and a composition of 5% A, 95% B was kept for
1 min. Subsequently, a composition of 95% A, 5.0% B was adjusted within 1.10 min and
kept for 2.9 min. The flow velocity was set as 0.35 mL per min. The column oven was set
to 40 ◦C, and the injection volume was 4 µL. The effluent was connected to an ESI-triple
quadrupole-linear ion trap (QTRAP)-MS [21]. The analytical conditions were adapted from
Chen et al. [17]. Metabolite quantification was conducted using multiple-reaction moni-
toring (MRM) [22] and the self-built MetWare database (MWDB) based on their standard
metabolic operating procedures [15,17].

2.5. KEGG Annotation and Enrichment Analysis

Identified metabolites were annotated using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) compound database [23] (http://www.kegg.jp/kegg/compound/, ac-
cessed on 8 June 2021). Annotated metabolites were then mapped to the KEGG Pathway
database (http://www.kegg.jp/30kegg/pathway.html accessed on 8 June 2021). Pathways
with significantly regulated metabolites mapped were then fed into the Metabolite Set En-
richment Analysis (MSEA) database (https://www.metaboanalyst.ca/, accessed on 8 June
2021) [24], and their significance was determined as p-values of the hypergeometric tests.

2.6. Statistical Analyses

Quality control (QC) analysis was conducted to confirm the reliability of the data
prior to the overall analyses. The QC sample was prepared by mixing sample extracts
for insertion into every three samples to monitor the changes in repeated analyses. Data
matrices with the intensity of the metabolite features from the nine samples were uploaded
to the Analyst 1.6.1 software (AB Sciex, Redwood City, CA, USA) for statistical analyses.
Partial least squares discriminant analysis (PLS-DA) was performed to maximize the
metabolome differences between sample pairs. The relative importance of each metabolite
to the PLS-DA model [25] was tested using the variable importance in projection (VIP)
as a parameter. Metabolites with VIP ≥ 1 and fold change ≥ 2 or fold change ≤ 0.5
were considered as differential metabolites for group discrimination [25]. The hierarchical
cluster analysis (HCA) results of samples and metabolites were presented as heatmaps
using pheatmap in the R package (www.r-project.org, accessed on 8 June 2021) [26]. For
HCA, normalized signal intensities of metabolites (unit variance scaling) were visualized
as a color spectrum. Consequently, a metabolic pathway was constructed according
to KEGG (http://www.genome.jp/kegg/, accessed on 8 June 2021) [23], and pathway
analysis was performed using MetaboAnalyst (http://www.metaboanalyst.ca/, accessed
on 8 June 2021) [27] based on the change in metabolite ion intensity compared with the
corresponding controls.

www.shimadzu.com.cn/
www.appliedbiosystems.com.cn/
http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/30kegg/pathway.html
https://www.metaboanalyst.ca/
http://www.genome.jp/kegg/
http://www.metaboanalyst.ca/
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3. Results
3.1. Widely Targeted Metabolome Profiling in Leaf, Stem and Root of Black Tiger

Fresh leaf, stem and root samples of four-year-old K. coccinea plants were collected
and used for metabolite profiling (Figure 1A–C). The present study used UPLC-MS/MS to
accurately profile the metabolites both qualitatively and quantitatively in the nine samples
(three organs × three biological repeats). The leaves, stems and roots were designated as
KL (KL1, KL2 and KL3), KS (KS1, KS2 and KS3) and KR (KR1, KR2 and KR3), respectively.
The ion chromatograms of three different organs (KL, KS and KR) of K. coccinea samples
are shown in Supplementary Figure S1.

Figure 1. Organs of Kadsura coccinea used for metabolite profiling: (A) leaf, (B) stem and (C) root.

We identified a total of 642, 650 and 619 metabolites in KL, KS and KR, respectively. The
metabolites were clustered into 11 classes of compounds, namely, alkaloids, amino acids
and derivatives, flavonoids, lignans and coumarins, lipids, nucleotides and derivatives,
organic acids, phenolic acids, tannins, terpenoids and others (Figure 2). Among these,
555 metabolites were mutually detected among the three organs, while 55 (KL and KS),
11 (KL and KR) and 27 (KS and KR) metabolites were uniquely detected in the pairwise
group of organs (Supplementary Figure S2; Supplementary Table S1). The high number
of common compounds among the three organs indicates that the leaf and stem could be
exploited for medicinal, nutritional and other industrial uses.

Figure 2. Number of metabolites detected in each class of compounds in different organs of K.
coccinea, including leaf (KL), stem (KS) and root (KR).
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We performed cluster analysis on the samples based on the metabolite ion intensity.
The three organs with their biological repeats were clustered into two main groups. Cluster
I exclusively comprised KL samples, whereas Cluster II consisted of KS and KR samples
(Figure 3). This suggests that KL is relatively different from either KS or KR. However,
the metabolite concentration and composition in the stems and roots share relatively
high similarity.

Figure 3. Hierarchical clustering based on the ion intensity of metabolites from leaf (KL), stem (KS) and root (KR) of K.
coccinea represented by green, chocolate and purple colors at top of the figure. All analyses were conducted in triplicates, KL
(KL1–KL3), KS (KS1–KS3) and KR (KR1–KR3). The color intensity of each metabolite is shown in the legend on right-hand
side of the figure, and thus green color represents decreased abundance, red color represents increased abundance and
white color represents not detected.

3.2. Specific Metabolites in the Different Organs of K. coccinea

Identification of unique metabolites among the three organs used in the present
study will deepen our understanding of their potential uses in the food and pharma-
ceutical industries. We identified a number of specific metabolites in each organ. Leaf
samples (KL) contained 21 unique metabolites with 7 phenolic acid compounds (5′-
glucosyloxyjasmanic acid, dicaffeoylquinic acid-o-glucoside, 2-o-galloyl-glucose, chloro-
genic acid methyl ester, 5-o-galloyl-methyl quinine ester, maleoyl-caffeoylquinic acid and
p-hydroxyphenyl acetic acid) and 6 flavonoid compounds (kaempferol-3-o-arabinoside,
quercetin-3-o-glucosyl(1→4)rhamnoside-7-o-rutinoside, avicularin (quercetin-3-o-α-L-
arabinofuranoside), luteolin-7-o-glucoside (cynaroside), limocitrin-7-o-glucoside and
kaempferol-3-o-neohesperidoside-7-o-glucoside) (Supplementary Table S1). Additionally,
two compounds each from lignans, coumarins, organic acids and derivatives and one
compound each from alkaloids, lipids, terpenoids and others were identified solely in the
leaf sample (Supplementary Table S2a).
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Thirteen unique metabolites were found in the stem sample (KS), comprising seven
phenolic acids, three organic acids and derivatives, two lipids and one other compound
(Supplementary Table S2a). The seven phenolic acid compounds include o-anisic acid
(2-methoxybenzoic acid), 4-hydroxy-3-methoxymandelate, 5-o-galloylshikimic acid, 1′-o-
(3,4-dihydroxyphenethyl)-o-caffeoyl-glucoside, sinapyl alcohol, dimethyl phthalate and
hydroquinone.

Twenty-six metabolites were unique in the root sample (KR) (Supplementary Figure S1;
Table 1). These consisted of 6 classes of compounds (i.e., 1 alkaloid, 3 flavonoids, 14 lig-
nans and coumarins, 3 lipids, 1 phenolic acid and 4 terpenoids) (Table 1). These unique
compounds may be the basis for the wide usage of black tiger roots.

Table 1. Unique metabolites detected in root of K. coccinea.

Index a Compounds Class Ion Intensity

pmb1096 Indole Alkaloids 23,589.33
Lmjp003402 2′-Hydroxy-3,4,5,3′,4′,6′-hexameth-oxychalcone Flavonoids 1277.59

Hmhp007382 Altisin Flavonoids 1277.59
pmp000109 5,7,8,4′-Tetramethoxyflavone Flavonoids 1277.59

Lmhn008558 Kadangustin I Lignans and Coumarins 4380.50
pmp000934 Gomisin N Lignans and Coumarins 4380.50
pmp000949 Benzoylisogomisin O Lignans and Coumarins 4380.50
pmp000955 Schinsanlignone A Lignans and Coumarins 4380.50
pmp000953 Gomisin J Lignans and Coumarins 4380.50
pmp000950 Gomisin G Lignans and Coumarins 4380.50
pmp000941 Iso-schisandrin ethyl alcohol Lignans and Coumarins 4380.50
pmp000959 Schisantherin D Lignans and Coumarins 4380.50
pmp000961 Angeloylgomisin Q Lignans and Coumarins 4380.50

Lmhn009930 Kadangustin F Lignans and Coumarins 4380.50
Lmhp010106 Acetylepigomisin R Lignans and Coumarins 4380.50

mws2164 Schisantherin A Lignans and Coumarins 4380.50
Lmhn008287 Kadsuralignan A Lignans and Coumarins 4380.50
Lmhn010428 Kadsuralignan H Lignans and Coumarins 4380.50
Lmhp008885 LysoPE 15:0 Lipids 1234.38

pmb0880 LysoPE 18:0 Lipids 1234.38
Lmhp008688 LysoPE 20:5 Lipids 1234.38
Lmtn002324 Benzyl-(2”-O-glucosyl) glucoside Phenolic acids 1861.37
Xmhn007019 Kadcoccilactone A Terpenoids 2582.27
Hmjn003948 Madasiatic acid Terpenoids 2582.27
Lmsn009589 2α,3β,19α,23-Tetrahydroxyurs-12-en-28-oic acid Terpenoids 2582.27
Xmhn007682 Kadcoccilactone M Terpenoids 2582.27

a Obtained from the self-built MetWare database.

3.3. Identification of Differentially Accumulated Metabolites in Different Organs of Black Tiger

Upon application of PLS-DA with thresholds of log2FC ≥ 1 and VIP ≥ 1 (Supple-
mentary Figure S3), the highest number (442) of differentially accumulated metabolites
(DAMs) was found in KL_vs_KR, out of which 256 decreased in abundance (−), while
186 increased in abundance (+) in the KL_vs_KR group (Figure 3). This was followed by
KL_vs_KS with 397 DAMs (−214 and +183) and KS_vs_KR with 393 DAMs (−249 and
+144) (Figure 4). The high proportion of DAMs detected between the different organs
further highlights their specific metabolome composition. These DAMs were dominated by
phenolic acids, lipids and flavonoids, whilst tannins were the least identified. The DAMs
were further divided into six sub-clusters based on their accumulation patterns in the
different organs (Supplementary Figure S4). Metabolites in each of these six sub-clusters
were highly enriched in specific organs. For instance, metabolites of sub-clusters 1, 5 and 6
were highly enriched in KR, while those of sub-clusters 2 and 3 were enriched in KL and
KS (Supplementary Figure S4).
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Figure 4. Differentially accumulated metabolites (DAMs) in leaf (KL), stem (KS) and root (KR) of
K. coccinea in pairwise comparisons. “Decreased” and “increased” represent number of DAMs that
decreased and increased in abundance, respectively, while “total” is the summation of number
of DAMs that decreased and increased in abundance. Partial least squares discriminant analysis
thresholds of log2fold change ≥ 1 and variable importance in projection ≥ 1 were used to screen
for DAMs.

The most abundant class of compounds (based on summation of ion intensities)
detected in KL was phenolic compounds followed by flavonoid compounds (Figure 5).
Similarly, the two top classes of compounds in KS were phenolic acids and flavonoids
(Figure 5). Conversely, the amino acids and derivatives and alkaloids were the most
abundant metabolites in KR (Figure 5).

Figure 5. Abundance of compound class of differentially accumulated metabolites detected in different organs of K. coccinea.
(A) Leaf (KL). (B) Stem (KS). (C) Root (KR). Each bar represents summation of ion intensities of compound classes.
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Comparatively, 188 DAMs (33% of the total DAMs) were detected mutually among
the three pairwise groups (KL_vs_KR, KL_vs_KS and KS_vs_KR), while 70–121 DAMs
were detected in two of the pairwise groups (Figure 6; Supplementary Table S5). However,
KL_vs_KS, KL_vs_KR and KS_vs_KR had 18, 25 and 27 unique DAMs. This indicates
that several metabolites are present in the three organs concurrently at different levels of
abundance. This supports our earlier assertion that the leaf and stem of K. coccinea may be
useful for food, pharmaceutical and industrial uses.

Figure 6. Venn diagram of differentially accumulated metabolites (DAMs) among the three pairwise
groups (KL_vs_KR; KL_vs_KS; and KS_vs_KR). Leaf, stem and root of K. coccinea are designated as
KL, KS and KR, respectively. n represents the number of DAMs detected in each pairwise group.
Partial least squares discriminant analysis thresholds of log2 fold change ≥1 and variable importance
in projection ≥ 1 were used to screen for DAMs.

3.4. Pathway Enrichment Analyses of Differentially Accumulated Metabolites among the Three
Organs of K. coccinea

We subjected the DAMs detected in the pairwise groups to KEGG pathway enrich-
ment analyses, yielding several significantly enriched pathways (p-value < 0.05). The most
enriched pathway among the three pairwise groups was flavone and flavonol biosynthesis
(Table 2; Supplementary Figure S4A–C). This prominent pathway had 12 DAMs with varied
levels of abundance in KL, KS and KR (Figure 7). Out of these, 10 DAMs (luteoloside, scoly-
moside, kaempferol, astragalin, nictofrin, trifolin, quercetin, isoquercitrin, quercetin 3-o-
[beta-d-xylosyl-(1→2)-beta-d-glucoside and rutin) showed significantly higher abundance
in KL than either in KS or KR (Figure 7). The remaining two DAMs (3,7-o-dimethylquercetin
and syringetin) were more abundant in KR compared to KL and KS. These results show
that the K. coccinea leaf organ (and, to a lesser extent, the stem) is highly endowed with
flavone- and flavonol-related metabolites.

Phenolic acids are produced in plants through the phenylpropanoid biosynthesis
pathway with shikimic acid [28,29]. Sixteen phenolic compounds were only accumulated
in KS and KR (Table 3). Of these, caffeic aldehyde, sinapyl alcohol, 5-o-caffeoylshikimic
acid and syringin increased in abundance in KS compared to KR (Table 3).
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Table 2. Enriched pathways of metabolites detected in leaf (KL), stem (KS) and root (KR) of K. coccinea by KEGG.

Enriched Pathways
KL_vs._KR KL_vs._KS KS_vs_KR

DAMs (%) a p-Value b DAMs (%) a p-Value b DAMs (%) a p-Value b

Flavone and flavonol biosynthesis 12/164 (7.32) < 0.01 11/157 (7.01) 0.01 11/135 (8.15) < 0.01
Phenylpropanoid biosynthesis - - - - 16/135 (11.85) < 0.01

Arginine and proline metabolism 11/164 (6.71) 0.02 - - - -
Arginine biosynthesis - - 8/157 (5.10) 0.04 - -
Tyrosine metabolism - - 11/157 (7.01) 0.03 - -

2-Oxocarboxylic acid metabolism - - 19/157 (12.10) 0.03 - -
a represents differentially accumulated metabolites in relation to the total number of metabolites in the pathway; b indicates the significance
level.

Figure 7. Metabolites involved in flavone and flavonol biosynthesis pathway. Metabolites with black dot denote non-
differentially accumulated metabolites, while those with red dot denote differentially accumulated metabolites detected
in K. coccinea leaf (KL), stem (KS) and root (KR). The heatmap near each differentially accumulated metabolite gives the
level of abundance in each organ. Those with red and green colors indicate increase and decrease in abundance, while
black indicates abundance near zero (see legend on right side of the figure). The abundance level of each metabolite was
transformed by log10.

Another enriched pathway detected was arginine and proline metabolism, with
16 DAMs (Tables 2 and 4). These comprised 2, 11 and 3 metabolites from alkaloids, amino
acids and derivatives and organic acid compounds, respectively (Table 4). Among these,
two alkaloid compounds (p-coumaroylputrescine and n-feruloylagmatine), three amino
acids and derivates (trans-4-hydroxy-L-proline, s-adenosyl-l-methionine and guanidinoac-
etate) and two organic acids (4-acetamidobutyric acid and γ-aminobutyric acid) were
abundant in both KL and KR but absent in KS (Table 4). Conversely, five amino acids and
derivatives (L-aspartic acid, n-acetyl-l-glutamic acid, L-glutamine, L-proline and n-α-acetyl-
l-ornithine) and one organic acid (α-ketoglutaric acid) were not identified in KR but mostly
exhibited high abundance in KS and KL (Table 4). The remaining three amino acids and
derivatives (L-ornithine, L-arginine and L-glutamic acid) were abundantly accumulated in
the three organs (Table 4).
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Table 3. DAMs involved in phenylpropanoid biosynthesis pathway in K. coccinea leaf (KL), stem (KS) and root (KR).

Index a Compounds Class KL KS KR

pmb0142 Caffeic aldehyde Phenolic acids - 27,205.00 -
mws0853 Sinapyl alcohol Phenolic acids - 12,342.67 202,186.67

Hmln002806 5-O-Caffeoylshikimic acid Phenolic acids - 74,540.67 35,183.33
mws0011 Syringin Phenolic acids - 98,131.33 20,744.33
pmb3074 5-O-p-Coumaroylquinic acid Phenolic acids - 343,880.00 121,613.33
mws0178 Chlorogenic acid Phenolic acids - 67,665.67 491,066.67
mws2212 Caffeic acid Phenolic acids - 69,809.00 -
pma0149 Sinapoyl malate Phenolic acids - 262,770.00 30,502.33
pmb0751 Trans-5-O-(p-Coumaroyl) shikimate Phenolic acids - 53,514.67 -
mws0009 Coniferaldehyde Phenolic acids - 98,313.33 17,062.00
HJN003 1-O-Sinapoyl-D-glucose Phenolic acids - 81,737.00 29,457.00

mws0093 Coniferyl alcohol Phenolic acids - 2,050,366.67 492,696.67
mws0898 Isoeugenol Phenolic acids - 62,786.67 19,059.67
mws0014 Ferulic acid Phenolic acids - 231,966.67 -
mws0906 Coniferin Phenolic acids - 364,470.00 42,258.00

Lmmn001643 2-Hydroxycinnamic acid Phenolic acids - 286,560.00 139,856.67
a Obtained from on the self-built MetWare database.

Table 4. DAMs involved in arginine and proline metabolism in K. coccinea leaf (KL), stem (KS) and root (KR).

Index a Compounds Class KL KS KR

pmb0490 p-Coumaroylputrescine Alkaloids 24,160.00 - 9.00
pmb0496 N-Feruloylagmatine Alkaloids 383,776.67 - 33,663.33
mws0216 Trans-4-Hydroxy-L-proline Amino acids and derivatives 7825.67 - 43,322.67
mws0219 L-Aspartic Acid Amino acids and derivatives 524,910.00 2,464,966.67 -
mws0260 L-Arginine Amino acids and derivatives 71,618.00 411,153.33 1,850,500.00
pme0006 L-Proline Amino acids and derivatives 1,422,000.00 - 3,054,933.33
pme0014 L-Glutamic acid Amino acids and derivatives 6,100,933.33 18,427,333.33 15,762,666.67
pme0066 Guanidinoacetate Amino acids and derivatives 8755.87 - 2220.20
pme0075 N-Acetyl-L-glutamic acid Amino acids and derivatives 351,523.33 115,753.33 -
pme0193 L-Glutamine Amino acids and derivatives 284,776.67 1,102,136.67 -
pme2527 L-Ornithine Amino acids and derivatives 2016.07 50,564.67 33,644.67
pme2735 S-Adenosyl-L-methionine Amino acids and derivatives 64,168.67 - 16,608.00

Zmyn000155 N-α-Acetyl-L-ornithine Amino acids and derivatives 431,730.00 1,393,533.33 -
pme0295 4-Acetamidobutyric acid Organic acids 127,520.00 - -
pme2380 α-Ketoglutaric acid Organic acids 52,782.67 135,200.00 -
pme3011 γ-Aminobutyric acid Organic acids 61,506.67 - 1,043,233.33

a Obtained from the self-built MetWare database.
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Phenylalanine and, to a lesser extent, tyrosine are the two main amino acids that are
usually involved in the synthesis of phenolic acids in plants [30]. We detected tyrosine
metabolism as one of the enriched pathways with 11 DAMs (3 amino acids and derivatives,
and 8 phenolic acids) (Tables 2 and 5). These compounds were highly enriched only in KL
and KS (Table 5).

Table 5. DAMs involved in tyrosine metabolism in K. coccinea leaf (KL), stem (KS) and root (KR).

Index a Compounds Class KL KS KR

pme1002 L-Tyramine Amino acids and
derivatives 60,308.33 1,298,266.67 -

mws0250 L-Tyrosine Amino acids and
derivatives 1,057,733.33 442,476.67 -

pme3827 3,4-Dihydroxy-L-phenylalanine (L-Dopa) Amino acids and
derivatives 35,464.67 10,650.10 -

MA10014775 Hydroquinone Phenolic acids - 14,767.00 -
Lmbn001981 2,5-Dihydroxybenzaldehyde Phenolic acids 125,690.00 894,363.33 -

mws2368 Tyrosol Phenolic acids 4810.00 43,634.67 -
mws0182 p-Hydroxyphenyl acetic acid Phenolic acids 25,320.00 - -
mws0180 2,5-Dihydroxybenzoic acid; Gentisic Acid Phenolic acids 936,700.00 12,454,333.33 -
pme1292 Homogentisic acid Phenolic acids 128,503.33 16,948.00 -
pme2598 3,4-Dihydroxybenzeneacetic acid Phenolic acids - 55,338.33 -
pme0085 Rosmarinic acid Phenolic acids 135,003.33 498,560.00 -

a Obtained from the self-built MetWare database.

In addition to the above enriched pathways, the 2-oxocarboxylic acid metabolism
pathway was also enriched and included 19 DAMs (10 amino acids and derivatives, and
9 organic acids) (Tables 2 and 6). These DAMs were abundant exclusively in KL and KS
organs (Table 6).

Table 6. DAMs involved in 2-oxocarboxylic acid metabolism in K. coccinea leaf (KL), stem (KS) and root (KR).

Index a Compounds Class KL KS KR

pme2527 L-Ornithine Amino acids and
derivatives 2016.07 50,564.67 -

mws0219 L-Aspartic Acid Amino acids and
derivatives 524,910.00 2,464,966.67 -

pme0026 L-Lysine Amino acids and
derivatives 4976.43 21,966.00 -

pme0014 L-Glutamic acid Amino acids and
derivatives 6,100,933.33 18,427,333.33 -

pme1210 L-Methionine Amino acids and
derivatives 16,588.67 141,423.33 -

pme0021 L-Phenylalanine Amino acids and
derivatives 3,238,400.00 975,633.33 -

Zmyn000155 N-α-Acetyl-L-ornithine Amino acids and
derivatives 431,730.00 1,393,533.33 -

mws0250 L-Tyrosine Amino acids and
derivatives 1,057,733.33 442,476.67 -

pme0075 N-Acetyl-L-glutamic acid Amino acids and
derivatives 351,523.33 115,753.33 -

mws0282 L-Tryptophan Amino acids and
derivatives 640,426.67 2,035,900.00 -

mws0823 3-Methyl-2-Oxobutanoic acid Organic acids 14,985.00 40,875.00 -
mws0425 Citraconic acid Organic acids - 163,850.00 -

Lmbn001288 2-Hydroxy-2-methyl-3-oxobutanoic acid Organic acids 70,115.67 29,645.67 -
pme2380 α-Ketoglutaric acid Organic acids 52,782.67 135,200.00 -

Lmbn001609 2-Acetyl-2-Hydroxybutanoic Acid Organic acids 13,660.67 32,683.67 -
Lmbn001676 3-Hydroxy-3-Methyl-2-Oxopentanoic Acid Organic acids 13,364.67 - -

mws0159 Phenylpyruvic acid Organic acids 160,270.00 23,230.00 -
Lmbn001754 3-Isopropylmalic Acid Organic acids 247,716.67 104,970.67 -

pmb3101 2-Isopropylmalic Acid Organic acids 248,146.67 102,494.00 -
a Obtained from the self-built Metware database.
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The above pathway enrichment analyses revealed that the three organs (KL, KS and
KR) share a number of metabolites in common, while many metabolites are unique or
significantly abundant in a single organ.

4. Discussion

Metabolome profiling has become a state-of-the-art technique for practical genomic
research due to the current advancement in mass spectrometric innovations [31,32]. Nearly
200,000 compounds have been profiled in plants, including approximately 10,000 secondary
metabolites [33,34]. In this study, widely targeted metabolome profiling was adopted to
explore the metabolites available in the leaves, stems and roots of K. coccinea. The study
aimed at unraveling the potential metabolites in the leaf or stem which may play similar or
unique functions to those found in the root, which is the main exploited organ [5,6,35,36].
The black tiger root holds significant economic, medicinal and nutritional value. However,
the present study reveals that the stem and root share a large number of common metabo-
lites as evidenced from our hierarchical clustering analysis (Figure 3). Thus, the stem may
be as useful as the root. Notwithstanding, the high number of metabolites (555) mutually
detected among the leaf, stem and root underscores the potential utility of the leaf and stem,
in addition to the root (Supplementary Figure S1; Supplementary Table S1). For example,
the leaf and stem contain high levels of quercetin and its derivatives (Supplementary
Table S3), which account for 50% of the total dietary flavonoids in fruits, vegetables and
beans and are essential in maintaining good human health as a result of their ubiquitous
antioxidant property [10]. Additionally, this compound has an antiviral activity against
various viral strains along with other flavonoids [37]. It works as an anticancer agent by
regulating the cell cycle in human breast cancer MCF-7 cells [38]. Moreover, Tanwar and
Modgil [39] reported several pharmacological effects of quercetin in various diseases such
as neurogenerative disorders, inflammation, liver disorders, cardiovascular diseases and
bacterial and fungal infections.

Each organ was found to have unique compounds (Table 1; Supplementary Table S2a,b).
For instance, the leaf contains kaempferol-3-o-neohesperidoside-7-o-glucoside (flavonoid),
which has recently been isolated and characterized to have antimicrobial [40], antioxi-
dant [41], anticancer [42], neuroprotective [43], antidiabetic [44], immunomodulatory [45],
anti-osteoporotic and antiestrogenic [46], anxiolytic [47], analgesic [48] and anti-allergic
activities [45]. These varied properties of kaempferol-3-o-neohesperidoside-7-o-glucoside
in the leaf make it a potential candidate for pharmaceutical use. Chlorogenic acid methyl
ester, a phenolic acid, was also exclusively detected in the leaf (Supplementary Table S2a),
which is useful in the food, health, cosmetic and pharmaceutical industries due to its
anti-mutagenic, anti-proliferative and antioxidant potentials [49,50].

Likewise, the stem contains 13 unique compounds made up of 2 lipids, 3 organic acids,
7 phenolic acids and other compounds (Supplementary Table S2b). These metabolites
include hydroquinone which is readily oxidized into quinines and further undergoes
ring opening to produce muconic, maleic and fumaric acid derivatives of the starting
phenolic compounds [51]. Hydroquinone is mainly used as an inhibitor in polymerization
to produce antioxidants from food, rubber, plastic and other industrial antioxidants [51].
It is also useful in the production of polyetheretherketone for use in advanced material
engineering in the aerospace and automotive industries [52]. This further makes the stem
of black tiger a potential candidate for commercial exploitation.

The root contains 26 unique metabolites of phenolic compounds (flavonoids, lig-
nans, coumarins and phenolic acids), lipids, alkaloids and terpenoids (Table 1). The high
abundance of unique phenolic compounds in the root may explain the high commercial
demand on the root compared to the leaf and stem. Phenolic compounds play a vital role
in defense responses and anti-aging, anti-inflammatory, antioxidant and anti-proliferative
activities in humans [28,29]. Additionally, phenolic compounds, through oxidative stress
management, can reduce the incidence and severity of diabetes, cancers and cardiovascular
diseases [29]. The alkaloids (indole), lipids (LysoPE 15:0, LysoPE 18:0 and LysoPE 20:5) and
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terpenoids (kadcoccilactone A, madasiatic acid, 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic
acid and kadcoccilactone M) (Table 1) are some of the most active constituents/secondary
metabolites involved in wound healing [53], anti-inflammatory actions [54], anti-diabetic
activity [55], anti-tumor action [56] and anxiolytic [57], antiviral [58] and anti-proliferative
activities [59,60].

5. Conclusions

The present study employed a widely targeted metabolomics approach to profile the
metabolites in the leaf, stem and root of K. coccinea. Diverse metabolites were identified
and characterized. The different organs share large numbers of metabolites in common,
indicating that either the leaf or stem could be exploited for its potential valorization. Our
metabolomic profiling highlighted the unique metabolites housed in the leaves, stems and
roots of black tiger, identifying them as candidates for valorization in diverse industries.
The information provided here would be valuable for applications in plant biotechnology
to enhance secondary metabolite production from K. coccinea. The unique metabolites
identified in the leaves and stems call for further studies on their commercial exploitation.
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groups: (A) KL_vs_KS; (B) KL_vs_KR; (C) KS_vs_KR. KL, KS and KR represent the leaf, stem and root
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