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The efficacy and mechanisms of therapeutic action are largely described by atomic bonds and interactions
local to drug binding sites. Here we introduce global connectivity analysis as a high-throughput
computational assay of therapeutic action – inspired by the Google page rank algorithm that unearths most
‘‘globally connected’’ websites from the information-dense world wide web (WWW). We execute short
timescale (30 ps) molecular dynamics simulations with high sampling frequency (0.01 ps), to identify
amino acid residue hubs whose global connectivity dynamics are characteristic of the ligand or mutation
associated with the target protein. We find that unexpected allosteric hubs – up to 20Å from the ATP

binding site, but within 5Å of the phosphorylation site – encode the Gibbs free energy of inhibition
(DGinhibition) for select protein kinase-targeted cancer therapeutics. We further find that clinically relevant
somatic cancer mutations implicated in both drug resistance and personalized drug sensitivity can be
predicted in a high-throughput fashion. Our results establish global connectivity analysis as a potent assay of
protein functional modulation. This sets the stage for unearthing disease-causal exome mutations and
motivates forecast of clinical drug response on a patient-by-patient basis. We suggest incorporation of
structure-guided genetic inference assays into pharmaceutical and healthcare Oncology workflows.

T
he first principles of protein-drug interactions focus on the geometric, chemical, and physical properties of
the orthosteric binding site – for instance the ATP-binding site for ATP-competitive protein kinase inhi-
bitors1,2,3,4,5. Given allosteric regulation of protein function and emergence of drug resistance mutations

outside of ligand-binding sites6,7,8, three complementary pioneering efforts have attempted to characterize
molecular interactions from a structural standpoint (without bias of the ligand-binding site). These efforts include
analysis of sequence alignments to identify likely pathways of allosteric communication9; studying coupling
between distant sites via computing inter-residue structural contacts10,11,12; and molecular dynamics (MD) simu-
lations for mapping coupled conformational changes13.

Past sequence-based methods have relied on thousands of evolutionary-related protein sequences to identify
pathways of allosteric communication14. Some of the structure-based methods have truncated residue-residue
interaction paths and used large distance thresholds to compensate for rotamer or other considerations15,16. MD
simulations are low in throughput, owing to the need for long simulation timescales17. Diverse analytic methods
such as root mean square deviation (RMSD) of defined motifs, clique and community patterns, correlation
matrices, principal component analysis (PCA), energetic analysis (e.g. WHAM), and mutual information have
been developed to decode the simulated MD trajectories18,19. There is a paucity of high-throughput, structure-
guided computational assays that can be readily integrated into the emerging array of precision medicine tech-
nologies targeting oncology and other complex genetic diseases20,21.

Here we introduce a high-throughput computational method to assay protein functional perturbation via
short-timescale MD simulations and global connectivity analysis of the resultant trajectories (see Methods and
Figure S1). These perturbations can involve small molecule ligand binding and/or amino acid mutations. In the
case of a small molecule ligand of interest, the ligand bound protein crystal structure is considered. This protein-
ligand complex is superposed onto an apo state (unbound) reference crystal structure. The ligand is then extracted
onto the reference structure, and the resulting reference-ligand structural complex is subjected to MD simulations
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(see Methods). In the case of amino acid mutations, the mutation of
interest is computationally-introduced in the relevant position and
the mutant protein is then subjected to MD simulations. The MD
simulation itself is short-timescale (30 ps) and high sampling rate
(0.01 ps). This is to intentionally capture only immediate atomic
perturbations (see illustrative Movie S1). These include movements
of side-chain and backbone atoms, but exclude pronounced confor-
mational changes (such as significant loop movements) that are
generally incorporated into current MD approaches – e.g. DFG-in
to DFG-out transitions in kinases17,18,19. Next, we represent every
conformation (without any bias from selection of few conforma-
tions) as a distinct Connectivity Graph – with residues as nodes,
residue-residue contacts as edges, and amino acid sequence consid-
erations enabling edge weight assignment. For each graph (con-
formation) we compute, on a residue by residue basis, centrality
measures such as Degree Centrality (Figure 1A) that captures local
connectivity and Eigen Centrality (Figure 1B) that captures global
connectivity (see Methods)22,23. This process is repeated with multiple
random seeds that represent a range of initial atomic velocities to test
the reproducibility of the computed results.

As highlighted here for the Janus kinase (JAK) enzyme family
member tyrosine kinase 2 (TYK2), local connectivity emphasizes
distributed hubs (Figure 1C) and global connectivity highlights a
single cluster of tightly inter-coupled hubs (Figure 1D). The global

connectivity measure yields a ranking scheme with better discrim-
ination of amino acid residues compared to the local connectivity
measure (Figure 1E, Figure S2). Global connectivity analysis is able to
identify functionally important residues with high statistical signifi-
cance for protein kinases such as TYK2 (p-value 5 0.00036; see
Methods). We noted a Fractal pattern of global connectivity
dynamics for TYK2 bound to ATP – wherein sub-sampling at one
tenth of the original sampling rate (i.e. 0.1 ps) retained the relevant
information content. Ten different random seeds (representing a
range of possible initial atomic velocities for the MD simulation)
resulted in similar mean global connectivity measures for the amino
acid residues constituting the TYK2-ATP structural complex (Figure
S3). These appealing characteristics motivated further investigation
of global connectivity analysis with protein kinases as a model
system.

Results
ATP binding by a non-phoshorylated kinase increases global con-
nectivity of residues along a path linking the orthosteric active site
to the allosteric phosphorylation site. Non-phosphorylated (inacti-
vated) TYK2 enzyme is considered here as an illustrative example.
JAK kinase enzymes such as TYK2 (and JAK1, JAK2, JAK3) are
popular drug targets for inflammation and oncology indica-
tions24,25,26. The reference crystal structure used for this analysis is

Figure 1 | Connectivity of protein 3-D structures. (A.) Degree centrality captures ‘‘local connectivity’’ for each node of a Graph. A caveat of degree

centrality is that it considers nodes like ‘‘A’’ and ‘‘C’’ – that are involved in a cluster of densely connected nodes (each hence having a ‘‘high degree’’) – to be

less important than nodes like ‘‘D’’ that are exclusively connected to a large number of ‘‘low degree’’ nodes. (B.) Eigenvector centrality captures ‘‘global

connectivity’’ of each node in the Graph – e.g. Node ‘‘A’’ is more important than node ‘‘D’’ – such nodes provide a ‘‘pathway’’ for allosteric

communication between different parts of a protein structure such as nodes ‘‘B’’ and ‘‘C’’. (C.) Each node is colored based on its global connectivity score

on a linear scale (white 5 0, black 5 1). For inactivated (non-phosphorylated) TYK2 bound to ATP, local connectivity of an exemplary conformation has

distributed ‘‘hubs’’ with limited discrimination of their relative importance. The Arg-1159 residue has been highlighted by a red box (D.) For the same

conformation, global connectivity analysis results in a cluster of tightly coupled hubs. The Arg-1159 residue has been highlighted as a red box (E.) For the

same TYK2-ATP conformation, global connectivity measures like Eigen centrality provides a superior ranking scheme compared to local connectivity

measures like Degree centrality.
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PDB ID 4GVJ sans the ADP molecule. The ATP bound reference
structure is compared with the Apo state structure. The residues Arg-
1159, Asp-1023, Ser-1082, Glu-1071, Trp-1067, Ser-1086, and Leu-
1024 have higher mean global connectivity in the former over the
latter state (Figure S4 – ATP bound; Figure S5 – apo; Figure S6 –
contrast). These residues form a contiguous set of residues distri-
buted from a remote allosteric site (abutting the phosphorylation site
on TYK2) to the ATP-binding site (and active site) on TYK2.
Specifically, every residue other than Asp-1023 are physically
distant from the ATP-binding site on TYK2 (Figure S7).

Change in global connectivity of select allosteric residues relate to
the binding energy of a set of ATP-competitive orthosteric kinase
inhibitors. The residues Arg-1159, Glu-1071, and Ser-1082 con-
stitute an allosteric hub – i.e. high mean global connectivity;
(Figure S8) with low variation across conformations (i.e. limited
high frequency fluctuations; Figure S9). This allosteric hub is

around 20 angstroms from the ATP-binding site, but within 7
angstroms of the Tyr-1054 phosphorylation site on inactivated
TYK2 (Figure 2A). This allosteric hub is also highly conserved
across Eukaryotic protein kinases (EPKs) and especially across
the human kinome (Figure S10)27. The identified allosteric hub
was examined for a series of Genentech inhibitors targeting non-
phosphorylated TYK224. A correlation was observed between the
total global connectivity of residues constituting the allosteric hub
and the dissociation constant (Ki) for each compound (Figure
S11). This implies that the global connectivity of the allosteric
hub is related to the Gibbs Free Energy of Inhibition for this
series of compounds (Figure 2B). The global connectivity of the
residues constituting the allosteric hub is shown relative to other
residues of TYK2 (Figure 2C; highlighted by * for Arg-1159; ‘ for
Glu-1071; 1 for Ser-1082). The highly effective TYK2 inhibitors
diminish the global connectivity of the hub residues more
significantly.

Figure 2 | Global connectivity of residues constituting the allosteric hub of inactive TYK2 captures the potency of TYK2 inhibitors. (A.) The hub

residues Arg-1159 (R1159 - pink), Glu-1071 (E1071 - orange), and Ser-1082 (S1082 - blue) are shown as spheres on inactivated (non-phosphorylated)

TYK2 structure (gray cartoon). This hub is about 20 angstroms from ATP (sticks of green – carbon atoms) and around 7 angstroms from Tyr-1054 (Y1054

– yellow). (B.) The mean global connectivity of the hub residues (y-axis) is plotted against the Gibbs Free Energy of Inhibition (DGinhibition – x-axis) for a

small set of inactive TYK2 inhibitors from Genentech, Pfizer, Merck, Abbott Laboratories, and AVEO Pharmaceuticals (Table S1-S2). (C.) Heatmaps (top

row) and spectra (bottom row) for TYK2 bound to ATP, cmp 41 (Ki 5 240 nM), cmp 1 (Ki 5 32 nM), and cmp 19 (Ki 5 1.8 nM) – from left to right. The

amino acid sequence of TYK2 is reflected on the x-axis of both the heatmap and spectra renderings and the columns corresponding to the hub residues are

highlighted as follows – Arg-1159 (*); Glu-1071 (‘); and Asp-1082 (1). For the heatmaps, the y-axis is the conformation number from the MD simulation

(ranging from 1 through 300) and the color of each entry is based on the hot rendering for global connectivity (black 5 none; red 5 medium; yellow 5

high; white 5 maximum). For the spectra, the y-axis is mean global connectivity (range 0 to 1).

www.nature.com/scientificreports
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Global connectivity analysis as a predictive tool of therapeutic
efficacy. The VEGFR-selective inhibitors Tivozanib (Aveo Phar-
maceuticals) and Axitinib (Pfizer) – with kinome partition indices
,1 and no cross reactivity to TYK2 – are considered as blinded
negative controls28. The potent TYK2 inhibitors cmp6 (Merck; ic50

5 1 nm) and Staurosporine (Ki 5 0.1 nm) are considered as blinded
positive controls29. For these compounds, the mean global
connectivity of the TYK2 allosteric hub – near Tyr-1054 (phospho-
rylation) site – is an effective indicator of the experimentally
determined TYK2 inhibition potential (Figure 3A, Figure 3B). The
heatmap and spectra renderings for these compounds shows the
more potent TYK2 inhibitors Staurosporine and cmp6 deplete the
allosteric hub residues’ global connectivity more significantly than
the TYK2-agnostic Tivozanib and Axitinib (Figure 3C).

Information theoretic perspective to the therapeutic inhibition of
an enzyme drug target. We use a quantitative measure termed
Dispersion (see Methods) to compare protein conformations in the
presence of different compounds. Given the increase of global
connectivity across non-hub residues for the more potent TYK2
inhibitors (Figure 2C, Figure 3C), we hypothesized that this
phenomenon may factor into the mechanism of action for ATP-
competitive TYK2 inhibitors. Consistent with this hypothesis, we

find that the global connectivity of Arg-1159 and Glu-1071 are
depleted and distributed instead to other residues on TYK2 – for
the more potent inhibitors (Figure 4A). This is further consistent
across multiple algorithms that assess global connectivity23.
Quantitatively capturing the Dispersion measure of inactive TYK2
with various compounds shows higher dispersion for potent
inhibitors compared to ATP (Figure 4B). This suggests an
increased Entropy in the inhibited state of the kinase (over the Apo
and ATP-bound states) from an information theoretic standpoint30

(Figure S12, Figure S13).

Contributions of ultra-conserved structural elements towards
carcinogenesis. The Arg-Glu salt bridge has been shown to be an
integral feature of the Eukaryotic protein kinase fold and a ‘‘center
hub of connectivity between structurally-conserved kinase motifs’’
using the phosphorylated Protein Kinase A (PKA) model system27.
Mutation of either residue renders the mutants less effective sub-
strates for PKA phosphorylation by upstream kinases, in addition
to altering catalytic activity and enzyme regulation27. These experi-
mental results suggest that the Arg-Glu salt bridge is important for
the active state of kinases. In non-phosphorylated TYK2, R1159A
and E1071A point mutations dampen the global connectivity of the
hub compared to other randomly-selected control mutations

Figure 3 | Predictions of positive and negative controls for inactive TYK2 inhibition. (A.) The test negative controls (VEGFR selective Tivozanib,

Axitinib) and positive controls (Merck cmp6; ic50 5 1 nM, Staurosporine; Ki 5 1 nM) are examined here along with Genentech’s cmp1 (Ki 5 32 nM)

and cmp35 (Ki 5 1.4 nM) for reference. (B.) For each ligand-bound TYK2 structure, the hub residues are highlighted as blue spheres and Tyr-1054 that

gets phosphorylated by upstream kinases is shown as yellow spheres. (C.) Heatmaps (top row) and spectra (bottom row) for the apo state of TYK2 as well

as TYK2 bound to Tivozanib Axitinib, cmp 6, and staurosporine – from left to right. The amino acid sequence of TYK2 is reflected on the x-axis of both the

heatmap and spectra renderings and the columns corresponding to the hub residues are highlighted as follows – Arg-1159 (*); Glu-1071 (‘); and Asp-1082

(1). For the heatmaps, the y-axis is the MD conformation number and the color of each entry is based on the hot rendering for global connectivity (black

5 none; red 5 medium; yellow 5 high; white 5 maximum). For the spectra, the y-axis is the mean global connectivity.

www.nature.com/scientificreports
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(Figure 4C, Figure S14). We hypothesize that reducing the global
connectivity of the phosphorylation-site (or methylation-site) –
leads to destabilization of activation motifs and diminished up-
stream kinase activity. We suggest that this may be a broader
mechanism of Type II kinase inhibitors (that target non-pho-
sphorylated/inactivated kinases). In addition to TYK2, we find that
the 1159-1071 equivalent Arg-Glu pair is the global connectivity hub
for the serine-threonine oncoprotein kinase BRAF31 in the non-
phosphorylated form (Figure 4D). More generically, we suggest
that ultra-conserved structural elements (such as the R1159-E1071
pair of TYK2) within each oncoprotein family may be prime candi-
dates for experimental and clinical studies to determine disease
causality.

Given that both the illustrative tyrosine kinase (TYK2) and the
serine-threonine kinase (BRAF) suggest the same hub in their inact-
ive (non-phosphorylated) states, we consider a third kinase – ABL1
kinase involved in the oncogenic Bcr-ABL gene translocation that
has been implicated as causal to leukemia. The goal is to investigate
whether all inactive kinases have an identical hub (analogous to the
Arg-1159 residue of TYK2). The alternative possibility is that each
kinase may have a hub in the vicinity of its phosphorylation site (or
other such activation trigger).

Mechanism of mutation induced clinical drug resistance from
targeting an oncoprotein kinase. Analysis of Bcr-ABL kinase also
provided us the opportunity to analyze the evolution of drug

Figure 4 | Dispersion as the mechanism of action of Type II kinase inhibitors. (A.) Each amino acid residue is shown as a node (circle) colored based on

its global connectivity with a linear scale (white 5 0; black 5 1). The ATP-bound TYK2 reference structure and the cmp23-bound TYK2 reference

structure are compared herein (cmp23 is an effective TYK2 inhibitor). The Arg-1159 amino acid residue is highlighted as a red square. (B.) higher

dispersion for potent inhibitors compared to ATP. (C.) R1159A point mutation reduces the global connectivity of the hub residues whereas randomly

selected control mutations R941A have no effect on the hub residues. The Arg-1159 amino acid residue is highlighted as a red square. (D.) Inactivated

(non-phosphorylated) BRAF kinase structure bound to ATP is shown. The Arg-704 and Glu-623 residues (blue spheres) are around 20A from the ATP site

and within 5A of the Arg-671 methylation site. These residues constitute the hub for BRAF kinase. The Arg-704 residue is highlighted as a red square in the

graph rendering.

www.nature.com/scientificreports
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resistance. Here we highlight the T315I gatekeeper drug resistance
mutation as an illustrative example. The spectra of wild-type and
T315I (gatekeeper) mutant forms of ABL1 kinase bound to ATP as
well as a series of inhibitors from Novartis, Pfizer, Ariad and
Deciphera pharmaceuticals were analyzed (Figure 5A)32,33,34. This
reveals an inactive ABL1 hub constituted of Arg-362, Ser-385, and
Ile-360– distinct from the location of hubs for inactive BRAF and
TYK2 kinases. As expected, the total global connectivity of the ABL1
hub residues is correlated with the experimentally-measured binding
kinetics for inhibitors targeting both wild type and T315I mutant
forms (Figure 5B). The Arg-362, Ser-385, and Ile-360 hub is around
15 angstroms from the ATP binding site on ABL1 kinase, but
in direct contact with the Tyr-393 residue that is phosphorylated
by upstream kinases – which trigger ABL1 kinase activation
(Figure 5C). The increase in global connectivity of the hub residues
in the ATP-bound T315I mutant state over the ATP-bound wild type
state (Figure 5A), suggests the mutant state is more easily activated by
upstream kinases. This hints at evolution of drug resistance being
opportunistic for the growing tumor, i.e. drug-induced selection of
the mutation enables increased oncogenic signaling.

Given the distinct hub of Bcr-ABL kinase, we suggest that each
oncoprotein harbors a characteristic hub. The reduction of the global
connectivity of hub residues may factor into the mechanisms gov-
erning therapeutic protein kinase inhibition.

Mechanistic insights into constitutive activity of somatically-
mutated oncoprotein. Clinically-observed EGFR kinase mutations

that sensitize patients differentially to the inactive (non-phosphorylated)
EGFR kinase inhibitors Gefitinib and Erlotinib35,36,37 were analyzed.
By comparing the ATP-bound structures of non-phosphorylated
(inactive) EGFR kinase and phosphorylated (active) EGFR kinase,
we find an increase in global connectivity of Arg-958, Glu-884, Gln-
894, and Asp-896 in the active state (Figure 6A). The oncogenic
EGFR L858R mutation is one of the most common non small cell
lung cancer (NSCLC) somatic mutations, observed from sequencing
of both solid tumor biopsies and circulating tumor cells (CTCs). This
mutation renders the EGFR kinase constitutively active. The ATP-
bound non-phosphorylated EGFR kinase harboring the oncogenic
L858R mutation has a global connectivity spectra that correlates with
the ATP-bound, phosphorylated EGFR kinase (Figure 6B). The
global connectivity of the Arg-958, Glu-884, Gln-894, and Asp-896
amino acid residues are especially prominent.

Unlike the L858R mutation, non-phosphorylated EGFR kinase
harboring the oncogenic T790M ‘‘gatekeeper’’ mutation is not seen
to be a good correlate of the phosphorylated EGFR kinase from their
spectra (Figure 6C). These results suggest global connectivity ana-
lysis as a useful method of predicting oncoprotein functional state for
the somatic cancer mutations.

Structural insights into genetic sensitivity, drug resistance, and
clinical efficacy of targeted cancer therapy. The differential
genetically-induced drug sensitivities for the FDA-approved
targeted lung cancer drugs Erlotinib and Gefitinib was examined.
Patients harboring the oncogenic EGFR kinase double mutation

Figure 5 | Mechanism of kinase drug resistance. (A.) The global connectivity spectra is plotted for each ATP-competitive Bcr-ABL kinase inhibitor

against both the wild-type (top row) and T315I gatekeeper mutant (bottom row) forms of Bcr-ABL. The amino acid sequence of Bcr-ABL kinase is

captured on the x-axis. The hub residues Arg-362 (*) and Ser-385 (‘) are highlighted. Ile-360 of the hub is not highlighted. (B.) Plot of the experimentally

measured ic50 (nM) for WT and T315I mutant forms of Bcr-ABL kinase (x-axis) versus the computed net global connectivity of the hub residues (y-axis)

is shown for ATP, Bosutinib (Pfizer), Imatinib (Novartis), Ponatinib (Ariad), and Rebastinib (Deciphera pharmaceuticals). (C.) The identified hub on

Bcr-ABL kinase is Arg-362, Ser-385, and Ile-360 is highlighted as blue spheres. This hub is over 15 angstroms from the ATP binding site where an inhibitor

molecule is shown (pink - carbon atoms). The hub is also over 15 angstroms from the gatekeeper residue (Thr-315 – orange spheres) that is frequently

mutated into Ile-315 in several types of drug-resistant cancer. The hub residues are in direct physical contact with Tyr-393 that gets phosphorylated by

upstream kinases leading to activation of Bcr-ABL.

www.nature.com/scientificreports
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L858R 1 E884K have a clearly defined differential clinical response
to these drugs36,38. The increased inhibition potency for Erlotinib
against the oncogenic EGFR L858R mutant (over the EGFR WT
protein) correlates with decreased global connectivity of the hub
residues (Arg-958, Glu-884, Gln-894 and Asp-896) in the mutant
(Figure 6D – wild type, Figure 6E – L858R mutant). The subsequent
decrease in potency for Erlotinib against the oncogenic EGFR L858R
1 E884K double mutant correlates well with the increased global

connectivity of the hub residues (Figure 6D – wild type, Figure 6F –
L858R 1 E884K mutant). On the other hand, the increased
inhibition potency for Gefitinib against EGFR L858R mutant
(compared to EGFR WT protein) and subsequent further increase
in potency for Gefitinib against the EGFR L858R 1 E884K double
mutant correlates well with the increased global connectivity of the
hub residues in the mutants (Figure 6G – wild type, Figure 6H –
L858R, Figure 6I – L858R 1 E884K). The oncogenic EGFR L861Q

Figure 6 | Mechanisms of kinase inhibitor differential drug sensitization. (A) non-phosphorylated EGFR 1 ATP (blue) compared with phosphorylated

(active) EGFR 1 ATP (termed pATP – red); (B) The EGFR L858R mutation is seen to make the connectivity spectra of non-phosphorylated EGFR 1 ATP

closely resemble that of active (phosphorylated) EGFR 1 ATP (termed pATP). (C) EGFR T790M mutant does not resemble pEGFR unlike the EGFR

L858R mutant shown in B. (D–F) increased inhibition potency for Erlotinib against EGFR L858R mutant compared to EGFR WT protein and subsequent

decrease in potency for Erlotinib against EGFR L858R 1 E884K double mutant. (G–I) increased inhibition potency for Gefitinib against EGFR L858R

mutant compared to EGFR WT protein and subsequent further increase in potency for Gefitinib against EGFR L858R 1 E884K double mutant.

(J) EGFR L861Q activated more than T790M but less than L858R.

www.nature.com/scientificreports
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mutation is known to constitutively activate the kinase more than the
gatekeeper T790M mutation but less than the oncogenic L858R
mutation, in agreement with the total global connectivity of the
hub residues on EGFR kinase (Figure 6J)38.

These results suggest that global connectivity analysis may be a
useful, high-throughput cancer diagnostic tool to augment the cur-
rent array of DNA sequencing and sequence-based analytics tools.
Mutations such as EGFR E884K are especially important to truly
realize the promise of precision medicine. Such mutations that occur
in less than 1% of lung cancer patients, emerge as an important
determinant of therapeutic efficacy and choice of treatment for these
patients. There are literally hundreds of thousands of somatic muta-
tions such as EGFR kinase L858R and E884K that have been recorded
from the first thousands of cancer patients whose biopsy genomes
have been sequenced and deposited in the COSMIC database. Rare
mutations (like EGFR E884K) can clearly impact therapeutic effi-

cacy, but are largely ignored by the majority of current clinical bio-
marker and companion diagnostics methods39. This underlines the
need to develop novel technologies that can identify those genomic
alterations that are most likely driving each cancer subtype and
acutely influencing drug response.

Structural basis for therapeutic inhibition of a phosphorylated
(active) protein kinase. Given the generally improved selectivity of
Type II kinase inhibitors over Type I inhibitors that target
phosphorylated kinases40, we analyzed the hub residues of the
phosphorylated (active) TYK2 state. Examination of the active
TYK2 structure via global connectivity analysis suggests an
orthosteric hub that includes residues of the DFG motif, the HRD
motif, and the ATP binding site (Figure 7A). A small set of Type I
TYK2 inhibitors from Genentech, Pfizer, Merck, and Aveo
pharmaceuticals dampen the global connectivity of the orthosteric

Figure 7 | An orthosteric hub dictates potency of inhibitors targeting phosphorylated (activated) TYK2. (A.) An exemplary conformation of the ATP-

bound structure of pTYK2 highlighting the orthosteric hub of Phe-1042, Gly-1043, Lys-930, and His-1021 (blue spheres) is shown. An exemplary

conformation of the Apo (unliganded) state of pTYK2 shows a general shift of the global connectivity towards the N-lobe, within the ATP-site proximal

area (blue spheres). The potent inhibitor (Genentech cmp33 with pTYK2 Ki of 0.4 nM) bound pTYK2 structure that sees a complete shift of global

connectivity away from the ATP-site (blue spheres). (B.) The high global connectivity of the ATP-bound pTYK2 structure in the orthosteric hub (red box)

is shown (in the top graph), in sharp contrast with the fully depleted global connectivity of the hub (red box) for the Genentech cmp33 bound pTYK2

structure (in the bottom graph). (C.) Free energy of inhibition (DGinhibition) determined from the experimentally-determined dissociation constant (Ki)

measures of a series of pTYK2 inhibitors from Pfizer, Genentech, and AVEO pharmaceuticals (Table S3) is plotted on the x-axis (in KJ/mol) with the

computed global connectivity of the orthosteric hub (on the y-axis) for each compound-pTYK2 complex. A near linear relationship is observed between

these measures. (D.) Global connectivity heatmaps (top row) and spectra (bottom row) for pTYK2 with ATP and inhibitor molecules is shown,

highlighting the hub residues His-1021 (1) and Phe-1042 (*). Gly-1043 of the pTYK2 hub is not highlighted for clarity.

www.nature.com/scientificreports
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hub residues (Figure 7B). The total global connectivity of the hub
residues also correlates with the experimentally determined Ki

measures and the Gibbs free energy of inhibition (DGinhibition)
measures for these compounds (Figure 7C; Figure S15). The
heatmaps and spectral renderings for these compounds also
support these observations (Figure 7D).

These results highlight the predictive potential of global connec-
tivity analysis across diverse kinases and distinct modes of inhibition.
We suggest that the switch from the phosphorylation site proximal
allosteric hub (in the inactivated state) to the active site proximal
orthosteric hub (in the activated state) correlates with TYK2 enzyme
activation in cells (Figure S16). Given that allosteric inhibitors are
generally associated with desirable selective pharmacology41 but are
challenging to develop, rationally engineering orthosteric inhibitors
that dampen the global connectivity of allosteric hub residues may
present a new approach to achieve selective Type I inhibitors (Figure
S17).

Discussion
The method introduced in this study relies on capturing global con-
nectivity modulation during a short timescale (,few tens of picose-
conds) interaction between small molecule ligands (such as drug
candidate compounds) and their target protein 3-D structure. It is
utterly impossible to reveal the entire ensemble of conformational
dynamics for a drug-protein interaction by a 30 picosecond MD
simulation. While what is revealed in this study is probably related
to the initial adaptation of the protein target to the bound ligand, it is
very surprising that global connectivity analysis is able to capture
‘‘information’’ indicative of drug efficacy from such poorly sampled
MD trajectories of protein kinases. As an alternative to simulating
several hundreds of nanoseconds of MD simulation to even partially
explore the conformational dynamics of a protein 3-D structure of
interest, an alternate approach is to sample different initial confor-
mations of the target protein bound to the ligand of interest using
short-timescale MD simulations and global connectivity analysis.
Such an approach may reveal a more comprehensive picture regard-
ing how protein structure encodes orthosteric function and allosteric
regulation.

Despite the caveat of MD simulations, the high-throughput nature
of the approach presented in this study suggests the promise of
mechanistically-driven virtual screening in the Cloud (Figure S18).
Incorporating the effects of possible single point and combinations of
‘‘synthetic mutations’’ into analyses of the therapeutic potency for
each compound takes us a step closer to ‘‘precision medicine’’.
Incorporating such analytics into the earliest stages of drug discovery
may enable the structure-based selection of compounds that can be
strong candidates for promotion into preclinical and clinical settings.
Such an approach presents a strong complement to current emphasis
on toxicology and intellectual property as the chief determinants of
promoting compounds through a pharmaceutical pipeline. Selecting
compounds with the least potential for clinical drug resistance prob-
ability offers the enticing possibility of increasing progression free
survival for patients suffering from mutation-prone, complex dis-
eases such as cancer.

Across diverse disciplines, connectivity analysis via centrality
measurements have provided remarkable insights about how the
‘‘structure’’ of a Graph encodes ‘‘function’’ via its constituent
nodes23,42. For instance, design of telecommunications switching net-
works with certain fault tolerance/resilience properties share several
connectivity characteristics similar to the protein structures we ana-
lyze in this study. A nationwide telecom network may have several
hubs (such as New York City, Dallas, Denver, Los Angeles etc.) that
aggregate traffic from local sources (such as NJ, CT etc.). The fault
tolerant performance of such a network (typically quantified as the
‘‘economic value’’ lost due to failure of one or more switching nodes)
is usually determined by the hubs that aggregate several ‘‘dense local

networks’’ (e.g. NY aggregating NJ, CT traffic) as opposed to hubs
whose fan-out (degree) may be large but mostly sparse ‘‘local net-
works’’ (e.g. Dallas – several south/central states are aggregated in the
Dallas node). Such a network when modeled as a graph will have NY
as one of the highest ranking nodes compared to Dallas albeit the NY
node in the graph having a possibly lower degree than the Dallas
node. An outage in the NY node that is serving several other dense
clusters (such as NJ, CT, and also has important transatlantic con-
nections) does far more economic damage than an outage in Dallas.
Like the global connectivity analysis of the protein structures we
cover in this paper, the Principal Eigenvector of the Telecom network
graph will show a higher rank for NY as compared to Dallas. This
analogy to telecommunications switching networks motivates how
the global connectivity analysis introduced in this study may be
superior to the current protein structure analysis benchmarks (e.g.
local connectivity analysis such as select hydrogen bonds linking an
enzyme catalytic site to the substrate molecule being considered as a
key determinant of binding affinity and kinetics).

More broadly, in the field of structural molecular biology, a major-
ity of past theoretical efforts to understand protein-ligand interac-
tions – using measures such as dissociation constants (Ki, pKi),
concentration benchmarks (ic50), and energies (e.g. Gibbs free energy
of binding – DGbinding) – have focused on local connectivity (e.g. few
Hydrogen bonds or Van der Waals contacts) of the binding or inter-
face region. In such cases, the importance of an amino acid residue
has been obtained by accounting almost exclusively for residues that
share a direct interaction or contact with it (Figure 1A). This is in
sharp contrast to the all-pervading internet that routinely employs
Global connectivity algorithms such as Larry Page’s Google Page
Rank22 and Jon Kleinberg’s Hubs and Authorities43 to search and
retrieve the most ‘‘important’’ sources from an information-dense
World Wide Web (WWW).

Recently, there has been an emerging interest in exploring the
applications of Google page rank like algorithms and elastic network
computations to study biochemical networks44,45. There have also
been studies that break down ligand-protein interaction energies into
a residue-by-residue basis, to gain more insights into how interaction
energies are distributed across a protein 3-D structure46,47. Future
analysis of protein-ligand and protein-protein complexes via
Global connectivity analysis has the potential to reveal intricacies
of intramolecular communication as well as mechanisms underlying
mutational pathogenesis.

Methods
Reference structures for the TYK2, BRAF, Bcr-ABL, and EGFR protein kinases.
Chemically-diverse ATP-competitive small molecules have been developed against
both activated (phosphorylated) TYK2, as well as inactivated (non-phosphorylated)
TYK2 (Tables S1-S3). The TYK2 structures with PDB IDs 4GVJ (non-
phosphorylated) and 3LXN (phosphorylated) are selected as references with their
ligands deleted. Protein superposition is used to extract the ligands of interest, as
explained earlier. The resulting TYK2-ligand co-complex structures are considered
for further analysis. The structures with PDB ID 3UE4, 3W32, and 2GS6 are used as
reference structures for extracting Bcr-ABL, non-phosphorylated EGFR, and
phosphorylated EGFR kinase inhibitors respectively.

Preparation of the protein-ligand co-complex structure for molecular dynamics
simulation. Each co-complex structure is edited to remove any crystallographic
artifacts from the original crystal of the target protein. Specifically, missing side chains
are modeled back in, unresolved loops are modeled back in, and solvent molecules as
well as ions are deleted. The edited co-complex is then typed with the CharmM force
field. The fully prepared and typed protein-ligand co-complex 3-D structure is
subjected to energy minimization with the Smart Minimizer algorithm of Discovery
Studio 4.0.0.13259 (up to 4000 iterations or an RMS gradient of 0.0001 angstroms).
The resulting optimized initial pose for the co-complex structure is used for further
analysis. All computation was carried out over the Amazon Web Services EC2 Cloud
platform.

Short-timescale high sampling rate MD simulations. To avoid biases from
crystallographic resolution, rotamer-possibilities for side-chains, and other related
caveats of these ‘‘static’’ kinase-ligand 3-D structural models, MD simulations were
performed on the co-complex structures. Each co-complex structure was solvated
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with the Generalized Born with Simple Switching (GBSW) model. The CharmM
force field was used to type this system. The system was subjected to an unconstrained
Molecular Dynamics (MD) cascade – starting with a heating phase of 4 picoseconds,
time step of 2 femtoseconds, initial temperature of 50 Kelvin, target temperature of
300 Kelvin, and non-bonded list radius of 14 angstroms. The next step of the MD
cascade is the equilibration phase of 30 picoseconds duration, time step of 2
femtoseconds, and target temperature of 300 Kelvin. Each system is noted to have
equilibrated post this step, by ensuring that the net kinetic energy oscillates about a
mean energy value for the period of observation. In the post-equilibration production
phase of 30 picosecond duration, the following parameters are set – time step of 2 fs
and target temperature of 300 Kelvin. A high sampling frequency of 0.01 ps per
conformation is used to obtain a total of 3000 sampled conformations for the kinase-
ligand co-complex during the 30 ps production phase. The dynamics cascade is
carried out in Discovery Studio 4.0.0.13259 over the Amazon Web Services EC2
Cloud platform. Every one of the sampled conformations of the MD trajectory is
considered. All ligands are modeled as uncharged/neutral (including ATP) without
considering any ions (such as Mg21).

‘‘Digitizing the atomic contact space’’ to compute a Graph capturing each 3-D
conformation. Next we ‘‘digitize’’ the atomic contact space for each computed
protein conformation. For this purpose, we consider the set of oxygen, nitrogen,
sulfur atoms, i.e. {O, N, S} – termed Atoms of Interest (AOI) – constituting each
protein structural conformation. The reason for this choice is that only these three
atoms showed maximal shift in net root mean square deviation (RMSD) during the
course of the short time scale (30 ps) simulation, whereas Carbon (C) atoms did not
have any significant movements. Including C atoms – that is, considering all heavy
atoms – was further seen to be detrimental to observing significant shifts in global
connectivity for different ligands and mutations. Thus, only the polar {O, N, S} atoms
were considered for further analysis.

A set of Python-based programs were developed for these computations and
automated using PiCloud. The Gephi package was used to visualize graphs as nodes
and edges (http://gephi.org/), the networkx package used for graph computations
(https://networkx.github.io/), and the matplotlib package was used for heatmap
computations (http://matplotlib.org/). Each of the computed 3D protein structural
conformations is represented as a Graph where the vertices are residues (amino acids)
of the structure. For a protein of N amino acid residues, there will be N nodes in the
graph. An edge (or ‘‘connection’’) exists between any two residues (vertices) in this
graph if there is at least one AOI in one residue within a Euclidean distance threshold
of 4.5 angstroms from at least one AOI on the second residue. Pairs of residues
harboring such contacts between AOI are termed to be ‘‘connected’’ to each other.
Two distinct Graphs were constructed for each conformation: one to capture the
discretized atomic interactions mentioned above (Connectivity Graph) and the other
to capture the physical distance between the Alpha Carbon atoms of amino acids
(Distance Graph). The two graphs have identical structure (same number of nodes
and the edges that connect the nodes) but with different edge weights. The edge
weight assignment for both these Graphs are described below.

For the Connectivity Graph, the ‘‘weight’’ of each residue-residue edge (or ‘‘con-
nection’’) is determined using a combination of location based edge weight assess-
ment and sequence based edge weight assessment. For location based edge weight
assessment, AOI-AOI contacts are weighted 165451 depending on whether they are
of the sidechain-sidechain, sidechain-backbone or backbone-backbone nature
respectively. For sequence based edge weight assessment, contacts between AOI on
two residues that are twelve or more residues apart in the sequence space are weighted
4 times more than other AOI contacts. The total edge weight between a pair of
residues (nodes) in the protein (graph) is given by the sum of individual weights
calculated between the ‘‘set of all considered AOI’’ on the residue pair. For each of the
conformations obtained from the MD simulation of the target protein, one
Connectivity Graph is determined as described above that captures the ‘‘digitized’’
information of that 3-D protein conformation. Hence, there are a total of 3000 such
Connectivity Graphs that are computed – each corresponding to one of 3000 con-
formations that together constitute the entire MD trajectory of the target protein.

For the Distance Graph, the ‘‘weight’’ of each residue-residue edge (or ‘‘connec-
tion’’) is just the physical distance (in Angstroms) of the Alpha Carbon atoms
between the two residues.

Computing the Global Connectivity Temporal Function for each amino acid
residues. A NxN adjacency matrix representation of the Connectivity Graph
(Connectivity Matrix) is used for computing the global connectivity of each amino
acid residue. The Connectivity Matrix is positive semi-definite and hence guaranteed
to have an Eigenvector corresponding to the maximum positive Eigenvalue (Principal
Eigenvector). Furthermore, all components (each component representing a certain
amino acid residue of the protein conformation) of the Principal Eigenvector are
positive and constitute the ranking of the amino acid residues. For example, in a
TYK2 protein kinase, the global connectivity of Arg-1159 is given by the component
corresponding to that residue in the Principal Eigenvector. The Principal Eigenvector
is computed for each of the 3000 matrices/graphs obtained from the MD simulation,
resulting in the Global Connectivity Temporal Function.

Computing mean global connectivity for each residue on the target protein
kinase. The Fast Fourier Transform (FFT) of the Global Connectivity Temporal
Function is computed for all N amino acid residues of the target protein. This results
in N Fourier-transformed frequency domain functions. Each of these function’s DC

(zero frequency) values provide the mean (average) global connectivity for the N
amino acid residues constituting the target kinase. The higher order harmonics are
captured as follows: FFT1 (first harmomic), FFT2 (second harmonic), FFT3 (third
harmonic), FFT4 (fourth harmonic), etc.

Identifying ‘‘hub’’ residues on target protein kinase with consistently high global
connectivity. The residues with consistently high global connectivity throughout the
MD trajectory are identified for the natural/endogenous ligand (ATP), provided the
same residues do not have high global connectivity in the apo state (hub residues).
The hub residues are obtained by subtracting the global connectivity temporal
function of the ATP-bound state from the global connectivity temporal function of
the apo state of the kinase.

Estimation of inhibitor potency for each ATP-competitive kinase inhibitor. The
potency of inhibition for each drug candidate is estimated by comparing the mean
measures of the identified ‘‘hub’’ residues for the natural ligand with the
corresponding measures for the drug candidate. Those drug candidates that elicit
relatively more reduced mean measures for the selected hub residues are found to be
more potent inhibitors of the target kinase. Conversely, those drug candidates that
elicit a relatively less pronounced reduction of mean measures for the selected hub
residues are found to be less effective inhibitors.

Estimation of the Dispersion of global connectivity for each compound. The
Floyd’s algorithm is used on the Distance Graph to compute the shortest path between

all the residue pairs of the protein conformation (
N N{1ð Þ

2
paths). This information

is used along with the global connectivity obtained for each amino acid residue
(node weight) to compute a path score for each such shortest path comprising a
certain set of nodes in the Distance Graph. The path score is simply the sum of the
weights of the nodes that constitute a shortest path. The physical intuition here is
that the forces are transmitted across the shortest paths and all possible shortest
paths are computed (in order to help us reason about the entire conformation in a
holistic fashion). The Area under the curve of the plot formed by arranging path
scores in decreasing order for all possible paths provide the measure of skewness
or Dispersion (Figure S12 is an illustration of such a plot). Figure 4B is an example
that shows the Area under the curve measure for multiple compounds. Note that
the aggregate scalar Dispersion provides a quantitative measure for the
visualization of Global Connectivity distribution (e.g. plotted as a graph in
Figure 4A, with darker nodes having larger Global Connectivity). A higher value
of Dispersion is equivalent to a graph visualization that has a larger number of
dark(er) spots compared to a lower value of Dispersion. Both the scalar Dispersion
measure and the global connectivity distribution capture the same information for
a given protein structure.

Statistical testing of ranking each residue’s relative importance using global
connectivity. Let us consider a protein structure of N amino acid residues where T is
the number of top ranked amino acids considered as a suitable threshold for the
effectiveness of prediction. Let us consider the following different cases:

Case #1 – Assuming only one site is functionally-relevant (e.g. ATP binding site). Let us
consider the Event where at least one among k amino acids of a functionally-
important site (e.g., ATP binding site) are identified among the top T ranked amino
acids:

P Eventð Þ~1{

N{k

T

� �
N

T

� � ð1Þ

subject to, NwTð Þ; and N{kð ÞwT

(An effective ranking scheme, by definition, requires that T is much smaller
than N)

Case #2 – Assuming two sites are both functionally-important (e.g. ATP-binding, active
sites). Let us consider the case where k1 and k2 are the number of amino acids in
sites 1 and 2 respectively. The Event may be defined as finding at least one amino
acid from each site (of ki amino acids) in the Top T ranked residues. Note that this
is a stringent requirement that both sites are represented in the Top ranked
residues. Here ki is the event that at least 1 of the amino acid residues in the ith site
is in the Top ranked residues. As an example, P(k1) is the probability that at least
one amino acid residue among k1 amino acid residues are found within the top T
residues.

P Eventð Þ~P k1\k2ð Þ~P k1ð ÞzP k2ð Þ{P k1|k2ð Þ ð2Þ

Using Equation 1 in Equation 2 yields:
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P k1ð Þ~1{

N{k1

T

 !

N

T

 ! P k2ð Þ~1{

N{k2

T

 !

N

T

 !

P k1|k2ð Þ~1{

N{ k1zk2ð Þ

T

 !

N

T

 !
ð3Þ

Case #3 – Assuming three sites are all functionally-important sites (e.g. ATP-binding
site; Active site, Phosphorylation site). Let us consider the case where k1, k2, and k3 are
the number of amino acids in sites 1, 2, and 3 respectively (with k1 1 k2 1 k3 , T). The
Event may be defined as finding at least one amino acid from each site (of ki amino
acids) in the Top T ranked residues. Here ki is the event that at least 1 of the amino
acid residues in the ith site is in the Top ranked residues. From the well-known
Inclusion-Exclusion principle:

P k1\k2\k3ð Þ~P k1|k2|k3ð Þ{ P k1ð ÞzP k2ð ÞzP k3ð Þð Þ

zP k1\k2ð ÞzP k2\k3ð ÞzP k1\k3ð Þ
ð4Þ

Using equation (2) in equation (4), and rearranging the terms yields:

P k1\k2\k3ð Þ

~P k1|k2|k3ð ÞzP k1ð ÞzP k2ð Þ

zP k3ð Þ{ P k1|k2ð ÞzP k2|k3ð ÞzP k1|k3ð Þð Þ

ð5Þ

P k1ð Þ~1{

N{k1

T

 !

N

T

 ! P k2ð Þ~1{

N{k2

T

 !

N

T

 ! P k3ð Þ~1{

N{k3

T

 !

N

T

 !

P k1|k2ð Þ~1{

N{ k1zk2ð Þ
T

� �
N

T

� �

P k2|k3ð Þ~1{

N{ k2zk3ð Þ
T

� �
N

T

� �

P k1|k3ð Þ~1{

N{ k1zk3ð Þ
T

� �
N

T

� �

P k1|k2|k3ð Þ~1{

N{ k1zk2zk3ð Þ
T

� �
N

T

� �

In a similar fashion, based on principle of inclusion-exclusion, one can compute the
p-value for any number of functionally-important sites, etc.
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9. Süel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily
conserved networks of residues mediate allosteric communication in proteins.
Nat. Struct. Mol. Biol. 10, 59–69 (2002).

10. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors.
Nature 494, 185–194 (2013).

11. Weinkam, P., Pons, J. & Sali, A. Structure-based model of allostery predicts
coupling between distant sites. Proc. Nat. Acad. Sci. 109, 4875–4880 (2012).

12. Cheng, T. M. K., Lu, Y.-E., Vendruscolo, M., Lio, P. & Blundell, T. L. Prediction by
Graph Theoretic Measures of Structural Effects in Proteins Arising from Non-
Synonymous Single Nucleotide Polymorphisms. PLoS Comput Biol. 4, e1000135
(2008).

13. Weiss, D. R. & Levitt, M. Can Morphing Methods Predict Intermediate
Structures? J. Mol. Biol. 385, 665–674 (2009).

14. Morcos, F. et al. Direct-coupling analysis of residue coevolution captures native
contacts across many protein families. Proc. Nat. Acad. Sci. 108, 1293–1301
(2011).

15. Vishveshwara, S., Brinda, K. V. & Kannan, N. Protein Structure: Insights from
Graph Theory. J. Theor. Comput. Chem. 1, 87 (2002).

16. Soundararajan, V. et al. Networks link antigenic & receptor-binding sites of
influenza hemagglutinin: Mechanistic insight into fitter strain propagation. Sci.
Rep. 1, 200 (2011).

17. Shan, Y., Arkhipov, A., Kim, E. T., Pan, A. C. & Shaw, D. E. Transitions to
catalytically inactive conformations in EGFR kinase. Transitions to catalytically
inactive conformations in EGFR kinase. Proc. Nat. Acad. Sci. 110, 7270–7275
(2014).

18. Shukla, D., Meng, Y., Roux, B. & Pande, V. S. Activation pathway of Src kinase
reveals intermediate states as targets for drug design. Nat. Comm. 5, 3397 (2014).

19. Ghosh, A., Vishveshwara, S. Variations in Clique and Community Patterns in
Protein Structures during Allosteric Communication: Investigation of
Dynamically Equilibrated Structures of Methionyl tRNA Synthetase Complexes.
Biochem J. 47, 11398–11407 (2008).

20. Shrager, J. & Tenenbaum, J. M. Rapid learning for precision oncology. Nat Rev
Clin Oncol. 11, 109–118 (2014).

21. Hu, R., Wang, X. & Zhan, X. Multi-parameter systematic strategies for predictive,
preventive and personalised medicine in cancer. EPMA J. 4, 2 (2013).

22. Brin, S. & Page, L. The anatomy of a large-scale hypertextual Web search engine.
Comp Net and ISDN Sys. 33, 107–17 (1998).

23. Langville, A. & Meyer, C. Google’s Page Rank and Beyond: The Science of Search
Engine Rankings (Princeton University Press, New Jersey, 2006).

24. Liang, J. et al. Lead identification of novel and selective TYK2 inhibitors. Euro J
Med Chem. 67, 178–187 (2013).

25. Argiriadi, M. A. et al. Enabling structure-based drug design of Tyk2 through co-
crystallization with a stabilizing aminoindazole inhibitor. BMC Struct Biol. 12, 22
(2012).

26. Chrencik, J. E. et al. Structural and Thermodynamic Characterization of the TYK2
and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6. J. Mol. Biol.
400, 413–433 (2010).

27. Yang, J. et al. A Conserved Glu–Arg Salt Bridge Connects Coevolved Motifs That
Define the Eukaryotic Protein Kinase Fold. J. Mol. Biol. 415, 666–679 (2012).

28. McTigue, M. et al. Molecular conformations, interactions, and properties
associated with drug efficiency and clinical performance among VEGFR Tyrosine
Kinase inhibitors. Proc. Nat. Acad. Sci. 109, 18281–18289 (2012).

29. Tsui, V. et al. A new regulatory switch in a JAK protein kinase. Proteins 79,
393–401 (2011).

30. Shannon, C. E. A Mathematical Theory of Communication. Bell Sys Tech J. 27,
379–423 (1948).

31. Gould, A. E. et al. Design and Optimization of Potent and Orally Bioavailable
Tetrahydronaphthalene Raf Inhibitors. J. Med. Chem. 54, 1836–1846 (2011).

32. Pritchard, J. P., Lauffenburger, D. A. & Hemann, M. T. Understanding resistance
to combination chemotherapy. Drug Resist Updat. 15, 249–257 (2012).

33. Panjarian, S., Iacob, R. E., Chen, S., Engen, J. R. & Smithgall, T. E. Structure and
Dynamic Regulation of Abl Kinases. J. Biol. Chem. 288, 5443–5450 (2013).

34. Tanneeru, K. & Guruprasad, L. Ponatinib Is a Pan-BCR-ABL Kinase Inhibitor:
MD Simulations and SIE Study. PLoS ONE 8, e78556 (2013).

35. Guillermo Paez, J. et al. EGFR Mutations in Lung Cancer: Correlation with
Clinical Response to Gefitinib Therapy. Science 304, 1497–1500 (2004).

36. Kobayashi, S. et al. EGFR Mutation and Resistance of Non–Small-Cell Lung
Cancer to Gefitinib. N Engl J Med 352, 786–792 (2005).

37. Dowell, J. E. & Minna, J. D. Chasing Mutations in the Epidermal Growth Factor in
Lung Cancer. N Engl J Med 352, 830–832 (2005).

38. Tang, Z. et al. Disruption of the EGFR E884-R958 ion pair conserved in the
human kinome differentially alters signaling and inhibitor sensitivity. Oncogene
28, 518–33 (2009).

39. Eisenstein, M. Foundation medicine. Nat Biotech. 30, 14 (2012).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7294 | DOI: 10.1038/srep07294 11



40. Liu, Y. & Gray, N. S. Rational design of inhibitors that bind to inactive kinase
conformations. Nat. Chem. Biol. 2, 358–364 (2006).

41. Endicott, J. A., Noble, M. E. M. & Johnson, L. N. The Structural Basis for Control
of Eukaryotic Protein Kinases. Ann. Rev. of Biochem. 81, 587–613 (2012).

42. Barabási, A.-L. Scale-Free Networks: A Decade and Beyond. Science 325, 412–413
(2009).

43. Kleinberg, J. Authoritative sources in a hyperlinked environment. J. of ACM 46,
604–632 (1999).

44. Hudelson, M., Mooney, B. L. & Clark, A. E. Determining polyhedral arrangements
of atoms using PageRank. J. Math. Chem. 50, 2342–2350 (2012).
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