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Abstract

How the connectivity of cortical networks determines the neural dynamics and the resulting

computations is one of the key questions in neuroscience. Previous works have pursued

two complementary approaches to quantify the structure in connectivity. One approach

starts from the perspective of biological experiments where only the local statistics of con-

nectivity motifs between small groups of neurons are accessible. Another approach is

based instead on the perspective of artificial neural networks where the global connectivity

matrix is known, and in particular its low-rank structure can be used to determine the result-

ing low-dimensional dynamics. A direct relationship between these two approaches is how-

ever currently missing. Specifically, it remains to be clarified how local connectivity statistics

and the global low-rank connectivity structure are inter-related and shape the low-dimen-

sional activity. To bridge this gap, here we develop a method for mapping local connectivity

statistics onto an approximate global low-rank structure. Our method rests on approximating

the global connectivity matrix using dominant eigenvectors, which we compute using pertur-

bation theory for random matrices. We demonstrate that multi-population networks defined

from local connectivity statistics for which the central limit theorem holds can be approxi-

mated by low-rank connectivity with Gaussian-mixture statistics. We specifically apply this

method to excitatory-inhibitory networks with reciprocal motifs, and show that it yields reli-

able predictions for both the low-dimensional dynamics, and statistics of population activity.

Importantly, it analytically accounts for the activity heterogeneity of individual neurons in

specific realizations of local connectivity. Altogether, our approach allows us to disentangle

the effects of mean connectivity and reciprocal motifs on the global recurrent feedback, and

provides an intuitive picture of how local connectivity shapes global network dynamics.

Author summary

The structure of connections between neurons is believed to determine how cortical net-

works control behaviour. Current experimental methods typically measure connections

between small numbers of simultaneously recorded neurons, and thereby provide
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information on statistics of local connectivity motifs. Collective network dynamics are

however determined by network-wide patterns of connections. How these global patterns

are related to local connectivity statistics and shape the dynamics is an open question that

we address in this study. Starting from networks defined in terms of local statistics, we

develop a method for approximating the resulting connectivity by global low-rank pat-

terns. We apply this method to classical excitatory-inhibitory networks and show that it

allows us to predict both collective and single-neuron activity. More generally, our

approach provides a link between local connectivity statistics and global network

dynamics.

Introduction

One of the central questions in neuroscience is how the connectivity structure of cortical net-

works determines the collective dynamics of neural activity and their function. Experimental

assessments of connectivity are typically based on measurements of synaptic weights between

small numbers of neurons recorded simultaneously [1–9]. The most common approach to

quantify connectivity therefore focuses on local statistics, and starts by characterizing the con-

nection probability between pairs of neurons based on their type, before considering progres-

sively more complex connectivity motifs. Linking these local connectivity statistics to the

emerging network dynamics has been an active topic of investigations [10–24]. A second

approach, motivated by computational network models instead of experimental measurements

[25–29], instead specifies the connectivity in terms of a low-rank structure defined by net-

work-wide patterns of connectivity [30–39]. This global connectivity structure directly deter-

mines the low-dimensional dynamics and the resulting computations [30, 31, 33], yet it

remains unclear how it is related to local connectivity statistics that can be recorded experi-

mentally. In this study, we aim to bridge this gap, by mapping local connectivity statistics onto

a global, low-rank description of connectivity and comparing the resulting dynamics.

Starting from random networks with connectivity defined in terms of local, cell-type

dependent statistics, we develop a low-rank approximation based on the dominant eigen-

modes of the connectivity matrix. Using perturbation theory, we show that the obtained low-

rank connectivity patterns universally obey Gaussian-mixture statistics and therefore lead to

analytically tractable dynamics [31, 33]. We specifically apply this approach to excitatory-

inhibitory networks with connections consisting of independent and reciprocal parts, and

exploit the low-rank approximation to predict the emerging dynamics.

We first show that, although the dominant low-rank structure is set on average by the mean

synaptic weights [40–42], a perturbative approach accurately accounts for the components of

individual neurons on the dominant eigenvectors arising from individual instances of the ran-

dom connectivity. As a result, our low-rank approximation analytically captures the activity of

individual neurons in the original E-I network defined based on local statistics. The analytic

description of the dynamics in the low-rank approximation moreover leads to the identifica-

tion of two distinct sources of recurrent feedback corresponding respectively to the mean con-

nectivity and reciprocal connections between neurons. In particular, the reciprocal motifs

impact dynamics by modulating both the dominant eigenvalue and the corresponding eigen-

vectors, and can give rise to additional bistability in the network. Altogether, our analytical

mapping of the local EI statistics to a low-rank description provides a quantitative and intuitive

description of how local connectivity statistics determine global low-dimensional dynamics.

PLOS COMPUTATIONAL BIOLOGY Relating local connectivity and global dynamics in recurrent E-I networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010855 January 23, 2023 2 / 46

“Ecoles Universitaires de Recherche” launched by

the French Government and implemented by the

ANR, with the reference ANR-17-EURE-0017. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: There are no competing

interests.

https://doi.org/10.1371/journal.pcbi.1010855


The paper is structured as follows. In Results Secs. 1.1, 1.2 we explain our setup for the local

and global representations of random connectivity, and introduce the low-rank approxima-

tion, matrix determinant lemma and perturbation theory which are the basis of our analytical

approach. We first start from the case of Gaussian excitatory-and-inhibitory networks, Results

Secs. 1.3, 1.4 demonstrate our analysis for approximating local connectivity with low-rank

structure. In the following Results Sec. 1.5, we use the low-rank approximation models

obtained to describe the nonlinear dynamics. Then, in Results Sec. 1.6 we generalize our analy-

sis to sparse excitatory-and-inhibitory networks. Major novel findings, key insights, restric-

tions and future extensions are addressed in discussions. Technical details and a retour to the

Gaussian-mixture low-rank framework are covered in methods, preceded by a table of nota-

tions (Table 1).

1 Results

1.1 Local vs. global representations of random recurrent connectivity

We study networks of N rate units with random recurrent connectivity given by the connectiv-

ity matrix J, where the entry Jij corresponds to the strength of the synapse from neuron j to

neuron i. A full statistical description of the random connectivity would require specifying the

joint distribution P({Jij}) of the N2 synaptic weights. Determining the dynamics from this

high-dimensional distribution is however in general intractable. We therefore focus on con-

nectivity models that make simplifying assumptions on the underlying statistics.

Our specific goal is to relate two different classes of such models, which we refer to as the

local and the global representations of recurrent connectivity. Both representations assume

that the network consists of P populations, and the statistics of connectivity depend only on

the pre- and post-synaptic populations. The two representations are however based on differ-

ent statistical features of the connectivity.

The local representation defines the connectivity statistics by starting from the marginal

distributions Prob(Jij = J) of individual synaptic weights, and by including progressively

higher-order correlations referred to as connectivity motifs [1, 10, 14]. In this work, we will

consider only the first two orders, i. e. the distribution of individual weights and the pairwise

correlations ηij between reciprocal connections Jij and Jji that quantify pairwise motifs

Table 1. List of notations.

Notation Description

i, j Single neuron indices

p, q Neuron population indices

αp Fraction of neurons belonging to population p
�J pq Mean synaptic weights between populations p, q

JE/I Re-scaled mean excitatory/inhibitory synaptic weights

szpq Standard deviation of the synaptic weights between populations p, q

gpq Re-scaled standard deviation of the synaptic weights between populations p, q
ηpq Reciprocal correlation of connectivity weights between populations p, q
AE/I Excitatory/inhibitory synaptic weights in the sparse network

c Homogeneous sparsity of the sparse network, cpq = c
s2
mp ; s

2
np Variances of components on connectivity vectors mp and np

spnm Covariance between connectivity vectors mp and np

mpx; D
p
x Population-averaged mean and variance of activation

https://doi.org/10.1371/journal.pcbi.1010855.t001
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(Fig 1A). Our key assumption is that both the marginal distributions of Jij and the correlations

ηij depend only on the populations p and q that the post- and pre-synaptic neurons belong to:

ProbðJij ¼ JÞ ¼ f pqðJÞ; p; q ¼ 1 . . . P;

Zij ¼ Zpq:
ð1Þ

All synapses connecting the same two populations therefore have identical statistics, leading

to a block-like statistical structure for the connectivity matrix J (Fig 1B left panel).

The global representation of connectivity instead refers to the situation where J is defined

as a low-rank matrix [30, 31, 33]:

J ¼
1

N

XR

r¼1

mðrÞnðrÞ⊺: ð2Þ

Fig 1. Local vs global representations of recurrent connectivity. (A) The local representation defines the statistics of synaptic weights Jij by starting

from the marginal probability distribution of individual synaptic weights (left) and then specifying reciprocal motifs in terms of correlations ηij between

reciprocal weights Jij and Jji connecting neurons i and j (right). Both the marginal distribution and the reciprocal correlations are assumed to depend

only on the populations p and q that the neurons i and j belong to. (B) The resulting connectivity matrix J has block-structured statistics, where different

blocks correspond to connections between the P different populations (P = 2 in this illustration). It can be decomposed into a superposition of a mean

component �J, and a remaining zero-mean random connectivity component Z that has block-structured variances. (C) The global, low-rank

representation defines the connectivity matrix J as the sum of R outer products between connectivity vectors m(r), n(r) for r = 1. . .R. The statistics of

connectivity are defined in terms of the joint probability distribution over neurons i of their entries ðmð1Þi ; . . . ;mðRÞi ; n
ð1Þ

i ; . . . ; nðRÞi Þ on connectivity

vectors. We specifically consider the class of Gaussian-mixture low-rank models, where each neuron is first assigned to a population p, and within each

population the entries on connectivity vectors are generated from a multivariate Gaussian distribution with fixed statistics. Here we illustrate this

distribution for one pair of connectivity vectors (R = 1) and P = 2 populations. Each dot represents the connectivity parameters ðmðrÞi ; n
ðrÞ
i Þ of one

neuron i, the red and blue colours denote the two populations, white dots and the rotations of the dot clouds indicate the mean and covariance of the

distribution for each population. (D) Relating the local and global representations of recurrent connectivity for a simplified excitatory-inhibitory

network. In this model, the mean connectivity depends only on the presynaptic population (indicated by red and blue colours). The mean connectivity
�J is in this case rank-one, and can be written as an outer product of vectors �m and �n. We approximate the full connectivity by a rank-one matrix, with

connectivity vectors m and n obtained from �m and �n using perturbation theory.

https://doi.org/10.1371/journal.pcbi.1010855.g001
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Here mðrÞ ¼ fmðrÞi gi¼1...N and nðrÞ ¼ fnðrÞi gi¼1...N for r = 1. . .R are referred to as connectivity
vectors, where R is the rank of J. In this representation, the statistics of connectivity are defined

by the distribution of vector elements, rather than directly by the distribution of synaptic

weights as in the local representation. Specifically, each neuron i is characterized by its set of

entries ðmð1Þi ; . . . ;mðRÞi ; n
ð1Þ

i ; . . . ; nðRÞi Þ over the connectivity vectors. For each neuron, these 2R
entries are generated from a joint distribution, independently of the other neurons, and the

parameters of this joint distribution depend on the population p the neuron belongs to. Here

we focus on the broad class of Gaussian-mixture low-rank networks, in which for population

p, the joint distribution of elements is a multi-variate Gaussian defined by the means and

covariances of the 2R entries [31, 33] (Fig 1C).

To relate the local and the global representations of connectivity, a key observation is that

any matrix J generated from the local statistics defined in Eq (1) can be expressed as

J ¼ �J þ Z ð3Þ

where �J contains the mean values of the connections, and Z contains the remaining, zero-

mean random part [40]. Because of the underlying population structure (Eq (1)), �J consists of

P × P blocks with identical values within each block (Fig 1B middle panel), and is therefore at

most of rank P. The random part Z is instead in general of rank N, but obeys block-like statis-

tics, with variance and normalized covariance parameters defined by P × P matrices (Methods

Secs. 2.1.1–2.1.2, Eqs (27) and (32)).

For the sake of simplicity, in this study, we focus on a simplified excitatory-inhibitory

model [41, 43]. This network consists of one excitatory and one inhibitory population, so P = 2

and in the following we use the population indices p, q = E, I. A central simplifying assumption

in this model is that the mean synaptic weights depend only on the pre-synaptic population, so

that �J EE ¼ �J IE > 0 and �J II ¼ �J EI < 0. The mean connectivity matrix �J therefore consists of only

two blocks and is unit rank (Fig 1D). The statistics of the random part Z instead depend on

both pre- and post-synaptic populations, and are therefore described by 2 × 2 matrices of vari-

ance and normalized covariance parameters (see Methods Sec. 2.1.3, Eq (37)).

1.2 Approximating locally-defined connectivity with low-rank connectivity

To relate the local and global representations of connectivity, we start from a connectivity

matrix J generated from the local statistics (Eq (1)) and approximate it by a rank-R matrix of

the form given in Eq (2). As the locally-defined connectivity matrix J is of rank N, this is equiv-

alent to the classical low-rank approximation problem, for which a variety of methods exist

[30, 31, 33]. Here we use simple truncated eigen-decomposition as it preserves the dominant

eigenvalues that determine nonlinear dynamics.

Applying the standard eigenmode decomposition, J can be in general factored as

J ¼
1

N

XN

r¼1

mðrÞnðrÞ⊺; ð4Þ

where m(r) and n(r) are rescaled versions of the r-th right and left eigenvectors (Methods Sec.

2.3, Eqs (44)–(49)), ordered by the absolute value of their eigenvalue λr for r = 1. . .N. A rank-R
approximation that preserves the top R eigenvalues can then be obtained by simply keeping

the first R terms in the sum in Eq (4). In this study, we focus on R = 1, corresponding to the

dominant eigenvalue. Higher rank approximations will be described elsewhere.

Eigenvalues and eigenvectors are in general complex nonlinear functions of the entries of

the matrix J. To determine the dominant eigenvalues and the corresponding vectors of J, we
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capitalize on the observation in Eq (3) that a locally-defined connectivity matrix can in general

be expressed as a sum of a low-rank matrix of mean values �J and the remaining random part

Z. Previous studies have found that the eigenspectra of matrices with such structure typically

consist of two components in the complex plane: a continuously-distributed bulk determined

by the random part, and discrete outliers controlled by the low-rank structure [30, 32, 39, 44–

46]. In this study, we extend previous approaches to determine the influence of the block-like

statistics of Z on the outliers that correspond to dominant eigenvalues. We then use perturba-

tion theory to determine the corresponding left and right eigenvectors and their statistical

structure. Here we summarize the main steps of this analysis (full details are provided in Meth-

ods), and then apply it to specific cases in the following sections.

We focus on the simplified E-I network for which the mean part of the connectivity is unit

rank and can therefore be written as �J ¼ �m�n⊤=N, so that the full connectivity matrix is

J ¼
1

N
�m�n⊺ þ Z: ð5Þ

The mean part �J of the connectivity has a unique non-trivial eigenvalue l0 ¼ �n⊤ �m=N
which can give rise to one or several outliers λ in the eigenspectrum of J. To determine how

the random part of the connectivity influences λ, we start from the characteristic equation for

the eigenvalues of J and exploit Eq (5) to apply the matrix determinant lemma (Eq (59)) and

get

l ¼
1

N
�n⊺ðI � Z=lÞ� 1

�m: ð6Þ

As long as (I − Z/λ) is invertible, this equation determines the eigenvalues of �m�n⊤=N þ Z.

We next assume that the maximal eigenvalue of Z is smaller than the outlying eigenvalues

corresponding to the low-rank approximation mn⊤=N we aim to determine (Eq (4), Methods

Sec. 2.2 Eqs (40) and (41)). This condition holds as long as the variance amplitudes g2
pq=N of

the random part Z of the connectivity are not too large [15, 18](S4 Text). This assumption

allows us to do series expansion which leads to a nonlinear equation for λ [32]:

l ¼
X1

k¼0

yk

l
k with yk ¼

1

N
�n⊺Zk �m: ð7Þ

Although this nonlinear equation is a polynomial with infinite terms, there are at most

finite N solutions for the eigenvalue outliers [32]. More specifically, in this work, we are only

focusing on the second-order reciprocal motifs in the random component. The second order

coefficient θ2 in Eq (7) is the first non-trivial term for the reciprocal case, so we truncate the

series summation at k = 2 (included) to provide a more straightforward and understandable

comprehension of how reciprocal motifs modify the eigenvalue outlier. In addition, we give

the computation of eigenvalue outliers without truncation, and more elaborate explanations in

S6 Text.

Truncating the sum to second order yields an approximate third order polynomial for λ:

l
3
¼ l0l

2
þ y1lþ y2; with y1 ¼ �n⊺Z �m=N y2 ¼ �n⊺Z2 �m=N: ð8Þ

The statistics of the outlying eigenvalue can then be obtained by averaging over the random

part of the connectivity Z.

An approximate expression for the right and left connectivity vectors m and n of J corre-

sponding to the outliers λ can be determined using first order perturbation theory [47], where

we treat the variance amplitudes g2
pq=N of the random part Z of the connectivity as small
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parameters. We first note that �m and �n are the right- and left-eigenvectors of �J corresponding

to the non-trivial eigenvalue λ0. Interpreting the full connectivity matrix J as �J perturbed by a

random matrix Z, at first order m and n can be expressed as

m ¼ �m þ Dm

n ¼ �n þ Dn;
ð9Þ

with

Dm ¼ Z �m=l0

Dn ¼ Z⊺�n=l0:
ð10Þ

A key observation is that each element of Δm and Δn is a sum of N random variables. If the

elements {zij} in Z are random samples drawn from a distribution with overall mean and finite

variance, the central limit theorem holds and therefore predicts that, in the limit of large N, the

statistics of Δmi and Δni, and therefore mi and ni, follow a Gaussian distribution. In general,

the mean and variance of mi and ni and their correlation are determined by the mean, variance

and correlation of the elements of J, but not the specific form of the probability distribution.

Since the matrix Z has block-like statistics determined by the population structure, the statis-

tics of the resulting mi and ni depend on the population p the neuron i belongs to. Overall, the

distribution of elements of m and n obtained from perturbation theory therefore follow a

Gaussian-mixture distribution, so that our approach effectively approximates a locally-defined

J by a Gaussian-mixture low-rank model specified by the means �mp; �np, the variances

s2
mp ; s

2
np and the covariances spnm of the entries on the connectivity vectors for p = E, I.

We next apply the perturbative approach described here to networks with independent ran-

dom components, and then to networks with reciprocal motifs.

1.3 Low-rank structure induced by independently generated synaptic

connections

We first apply our approach for a low-rank approximation to the simplest version of the

locally-defined excitatory-inhibitory network where each Jij is generated independently from a

Gaussian distribution with a mean that depends only on the pre-synaptic population, i. e.

½Jij� ¼ �J pq ¼ �J q with p, q 2 E, I. The entries of the eigenvectors �m and �n of the mean connectiv-

ity matrix �J are then given by:

�mi ¼ 1; i ¼ 1 . . .N ð11Þ

�ni ¼ �nE ¼
N
NE

JE i 2 NE ð12Þ

�ni ¼ �nI ¼ �
N
NI

JI i 2 NI: ð13Þ

In the large network limit, averaging over Z in Eq (7) yields [θk] = 0 for all k> 0 [32], so

that the outlier is on average given by [λ] = θ0 = λ0 (Fig 2A). Our approach moreover gives an

expression for the standard deviation of the outlier in the finite-size network, which grows lin-

early with g (Fig 2B, Eq (80)). Examining the entries of the left and right eigenvectors n and m

of J corresponding to the outlier, as expected, the distribution of (mi, ni) is well described by a

mixture of two Gaussians centred at �mp; �np (Fig 2C). We further find that perturbation theory
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accurately accounts for the individual entries of the eigenvectors as long as g is sufficiently

below unity (Fig 2D). Perturbation theory provides a lower bound for the values of the corre-

sponding variances. For large values of g, the distributions remain Gaussian, but their vari-

ances increase above the predictions of perturbation theory (Fig 2E). The reason for this

deviation from the theory is that perturbation theory assumes a small value of the scaling factor

g in the variance of Jij; as a result, the deviation also reflects the systematic error resulting from

the first-order approximation. Importantly, the entries of the left and right eigenvectors are

uncorrelated, and only their means, but not their variances, differ between the two

populations.

We next turn to the case where the variances of synaptic weights depend on the pre- and

post-synaptic populations q, p, and are given by g2
pq=N. In that case, the entries of the random

part of the connectivity Z are independent, but not identically distributed Gaussians. Previous

studies [11, 44] have shown that the spectrum of Z remains circularly symmetric, but its radius

rg is determined by a combination of variance parameters gpq (S4 Text, Eqs. (147), (148)).

Fig 2. Eigenvalues and dominant eigenvectors for locally-defined Gaussian connectivity with independent synaptic weights. (A)

Eigenvalue spectra of excitatory-inhibitory connectivity matrices J with elements generated from Gaussian distributions with identical

variances g2/N over neurons. The coloured dots in the circular bulk shows 600 eigenvalues for one realization of the random connectivity

for each value of g. Different colours correspond to different values of g. Dashed envelopes indicate the theoretical predictions for the

radius rg of the circular bulk computed according to Eqs. (147), (148). Outlying eigenvalues are shown for 30 realizations of the random

connectivity, and for different g their location on the y-axis is shifted to help visualization, the dispersion reflects finite-size effects. The red

arrow points to the eigenvalue λ0 of the mean connectivity matrix �J. (B) Statistics of outlying eigenvalues over realizations of random

connectivity. Empirical distribution (the red area shows mean ± standard deviation and reflects finite-size effects), compared with the

theoretical predictions for the mean (black dashed line) and standard deviation (gray dashed line) obtained using Eq (80). (C) Scatter plot

showing for each neuron i its entry ni on the left eigenvector against its entry mi on the right eigenvector. Red and blue colours represent

respectively excitatory and inhibitory neurons. The white dots and the dashed lines respectively indicate the means and covariances for

each population obtained from simulations. (D) Comparison between eigenvector entries obtained from direct eigen-decomposition of J

with projections obtained using perturbation theory (Eqs (9) and (10)) in a given realization of Z. (E) Comparison between simulations

(dashed lines) and theory (full lines) for the variances s2
np , s2

mp of eigenvector entries corresponding to different populations (Eq (90)). To

help visualization, the curves for the excitatory population are thicker than the curves for the inhibitory population. (F-J) Identical

quantities for connectivity matrices in which the variance parameters are heterogeneous: gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8, gEE increases

from 0 to 1. Other network parameters NE = 4NI = 1200 and JE = 2.0, JI = 0.6 in all simulations.

https://doi.org/10.1371/journal.pcbi.1010855.g002
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Examining the resulting connectivity matrix J, we found that the results for the uniform case

directly extend to this heterogeneous situation. The eigenspectrum of J still consists of an inde-

pendent superposition of the spectra of Z and �J (Fig 2F). In particular, the random part of the

connectivity does not modify the average value of the outlier, but only impacts its variance,

which now depends on a combination of the variances gpq (Fig 2G, Eq (90)). Similarly to the

uniform case, the distribution of the entries of the left and right eigenvectors is well described

by a mixture of two Gaussians, with variances predicted by perturbation theory. The entries of

the left and right eigenvectors are uncorrelated, but now both their means and variances

depend on the population the neuron belongs to (Fig 2H–2J).

In summary, when synaptic connections Jij are generated independently across pairs of

neurons, the equivalent global representation is a Gaussian-mixture low-rank model where the

entries of the structure vectors are independent with mean values determined by the low-rank

structure of the mean connectivity matrix �J. Although the mean connectivity establishes the

network’s basic structure, the Gaussian-mixture low-rank approximation improves on it in

terms of preserving connectivity fluctuations and reflecting the cell-type-dependent structural

variances in the original locally-defined random connectivity part Z. Importantly, in that situa-

tion, the dominant outlying eigenvalues of J are on average identical to those of �J, that is, [λ] =

λ0.

1.4 Low-rank structure induced by reciprocal motifs

We next turn to locally-defined excitatory-inhibitory networks with reciprocal connectivity

motifs quantified by the correlation ηij between reciprocal synaptic weights Jij and Jji. We

assumed that these reciprocal correlations are identical for any pair of neurons i and j belong-

ing to a given pair of populations p and q, and used the corresponding parameters ηpq to gener-

ate the connectivity matrix J (Methods Sec. 2.1.2). Within the decomposition of J in a mean �J
and random part Z (Eq (24)), the additional reciprocal correlations affect only the statistics of

Z.

We first consider the homogeneous case where the reciprocal correlation is identical across

all populations, i. e. ηpq = η (Fig 3). Previous studies have shown that a random matrix Z with

zero mean and reciprocal correlations η has a continuous spectrum that is deformed from a

circle into an ellipse as η is increased [18, 48]. Superpositions between correlated random

matrices, and low-rank structure such as �J have, to our knowledge, not been previously stud-

ied. Inspecting the eigenspectrum of J ¼ �J þ Z, we find that it still consists of a continuous

bulk and discrete outliers (Fig 3A). The continuous bulk is contained in an ellipse in the com-

plex plane identical to the spectrum of Z, as in the uncorrelated case. In contrast, we find that

the outliers deviated from the eigenvalues of �J as η is increased (Fig 3B). These deviations are

well captured by our analytic approach summarized in Eq (8). Indeed, when averaging Eq (8)

over Z, reciprocal correlations generate a non-zero ½y2� ¼ ½�n⊤Z2 �m�=N due to Z2. This term

leads to a cubic equation in Eq (8) and therefore has two effects. First, the non-zero θ2 induces

deviations of the outliers from the eigenvalue λ0 of �J. The direction of these deviations is posi-

tive if excitation dominates (λ0 = JE − JI> 0) and negative if inhibition dominates (λ0 = JE − JI
< 0, Fig 3G–3I). Second, the cubic equation can have up to three solutions and therefore

potentially generates additional outliers, and in particular complex conjugate ones. Whether

these additional outliers are observed depends on the accuracy of the third-order approxima-

tion (Eq (8)) to the determinant lemma (Eq (59)), and on the norm of these outliers compared

to the spectral radius, in both scenarios where the network has a homogenous variance g2/N
(Fig 3A and 3G) and when gpq differ between populations (Fig 3J). Please refer to S6 Text for a

more thorough discussion.
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Fig 3. Eigenvalues and dominant eigenvectors for locally-defined Gaussian connectivity with homogeneous reciprocal correlations. (A) Eigenvalue

spectra of excitatory-inhibitory connectivity matrices J, with homogeneous reciprocal correlations η. Different colours from top to bottom correspond

to networks with different values of η. The dots in the elliptical bulk show 600 eigenvalues for one realization of the random connectivity. Outlying

eigenvalues are shown for 30 realizations of the random connectivity, the dispersion reflects finite-size effects. The red arrow on the top points to the

eigenvalue λ0 of the mean connectivity �J. Coloured circles are the eigenvalues predicted using determinant lemma and truncated series expansion (Eqs

(7) and (8), truncating at k = 2), coloured triangles are the eigenvalues predicted using determinant lemma without finite truncation (see S6 Text, Eqs.

(153)-(157)). (B) Comparison of the eigenvalues from the finite-size simulation with the predictions of the determinant lemma as the reciprocal

correlation η is increased. The coloured solid lines show the roots of the third-order polynomial in Eq (8) (truncated series expansion). The light purple

area indicates the empirical distribution of the dominant outlier for 30 realizations, reflecting finite-size effects, while the black dashed line is the

unperturbed eigenvalue λ0. The grey areas represent the areas covered by the eigenvalue bulk. (C) Scatter plot showing for each neuron i its entry ni on

the left eigenvector against its entry mi on the right eigenvector. Red and blue colours represent respectively excitatory and inhibitory neurons. The

white dots and the dashed lines respectively indicate the means and covariances for each population. (D) Comparison between eigenvector entries

obtained from direct eigen-decomposition of J with projections obtained using perturbation theory (Eqs (9) and (10)) in a given realization of Z. (E)

Comparison between simulations (coloured areas, finite-size effects) and theoretical predictions (coloured lines, Eq (97)) for the population covariance

spnm of the entries on the left and right connectivity eigenvectors to different populations. (F) Comparison of the overall covariance σnm (Eq (72)) with

the deviation Δλ of the dominant outlying eigenvalue from the unperturbed value λ0. Empirical covariance (gradient blue area reflects finite-size effects,

where the colour depth represents η) compared with the theoretical prediction (black line) obtained using Eqs (97) and (92). The x-axis uses the

theoretical prediction of the deviation of the eigenvalue λ from λ0. Other network parameters: JE = 2.0, JI = 1.2, NE = 4NI = 1200 and homogeneous

variance parameters gpq = g = 0.3. (G-I) Same as (A, B, F) for an inhibition dominates connectivity matrix where JI = 2.0, JE = 1.2, with homogeneous

reciprocity η and variance parameters g = 0.3. (J-M) Same as (A-C) and (E) for excitatory-and-inhibitory connectivity matrices with homogeneous

reciprocal correlations η but cell-type-dependent variance parameters gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8 and gEE = 0.3. In (B, E, F, H, I, K, M), the

departure of the centres of the numerical simulation results from the theoretical predictions reflect the systematic errors due to the first-order

perturbation approximation of eigenvalues and eigenvectors.

https://doi.org/10.1371/journal.pcbi.1010855.g003
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We next examine the right- and left-eigenvectors m and n corresponding to the dominant

outlier. Analogous to the uncorrelated case in the networks with independent connections,

perturbation theory accounts for the individual entries of these vectors from a specific realiza-

tion of the locally-defined random connectivity Z, and these individual entries mi and ni
exhibit Gaussian-mixture statistics (Fig 3C and 3D, Eq (10), and Methods Sec. 2.3 Eqs (69) and

(70)). Unlike in the uncorrelated case, reciprocal correlations now induce correlations between

Δmi and Δni (Methods Sec. 2.5.2). Indeed, perturbation theory predicts that the first-order

effects Δm and Δn of the random connectivity on m and n are respectively determined by Z

and its transpose Z> (Eq (10)). Reciprocal correlations between zij and zji directly lead to corre-

lations between Z and Z> and therefore a non-zero covariance σnm between elements of m and

n, that can be predicted by mean field theory (Fig 3E, Eq (72)). The strength of the covariance

between eigenvector entries reflects the strength of the additional feedback loop due to recip-

rocal correlations, and is therefore directly related to the deviations of the outlying eigenvalue

from the uncorrelated value λ0 (Eqs (42) and (96), Fig 3F). When the network has both homo-

geneous variance parameters and correlation parameters, the excitatory and inhibitory popula-

tions have the same covariance sEnm ¼ s
I
nm ¼ ðJE � JIÞg2Z=l

2
(Eq (97)). If the synaptic

variances gpq differ across populations, the covariances σnm are different for excitatory and

inhibitory populations even if the reciprocal correlations are uniform (Fig 3L and 3M).

These results directly extend to networks with heterogeneous reciprocal correlations ηpq, p,

q = E, I (Fig 4). Finite-size simulations in this circumstance show the existence of additional,

complex conjugate outliers accurately predicted by the cubic term in Eq (8) (Fig 4G, coloured

circles and triangles are overlapping, containing outlier scatters at conjugate positions), and

this is particularly true in the case where the impact of higher-order structures is marginal

compared to that of structures up to the second-order. Moreover, the covariances spnm between

the entries of low-rank connectivity vectors in this case differ between the excitatory and

inhibitory population.

1.5 Approximating low-dimensional dynamics for locally-defined

connectivity

In previous sections, we developed a rank-one approximation of locally-defined excitatory-

inhibitory connectivity. Here we use this approximation to describe the resulting low-dimen-

sional dynamics. We consider networks of rate units, where the activation xi of unit i obeys

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij�ðxjðtÞÞ: ð14Þ

Here ϕ(x) = 1 + tanh(x − θ) is a positive transfer function, and for simplicity, we focus on

autonomous dynamics without external inputs. We start from a locally-defined excitatory-

inhibitory connectivity matrix, and compare the resulting activity with the theoretical predic-

tions of our rank-one approximation, for which the dynamics are low-dimensional and analyt-

ically tractable. We first summarize the theoretical predictions for those dynamics, and then

examine the specific cases of independent and reciprocally-correlated connectivity.

Recent works have showed that in networks with a rank R connectivity matrix, the trajecto-

ries x(t) = {xi(t)}i=1. . .N are confined to a low-dimensional subspace of the N − dimensional

space describing the activity of all units [30–33]. In absence of external inputs, this subspace is

R-dimensional and spanned by the set of connectivity eigenvectors m(r) for r = 1. . .R, so that

the trajectories can be parametrized as x ¼
PR

r¼1
krmðrÞ where κr is a collective latent variable

representing activity along m(r). For a rank-one (R = 1) connectivity corresponding to an
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Fig 4. Eigenvalues and dominant eigenvectors for network connectivity matrix with heterogeneous reciprocal correlations. (A) Eigenvalue spectra

of excitatory-inhibitory connectivity matrices J, with homogeneous variance parameter g = 0.3 but cell-type-dependent reciprocal correlations ηEE = ηEI
= −ηII> 0, and ηEE increasing from 0 to 1. Different colours from top to bottom correspond to networks with different values of ηEE. The dots in the

elliptical bulk show 600 eigenvalues for one realization of the random connectivity. Outlying eigenvalues are shown for 30 realizations of the random

connectivity, the dispersion reflects finite-size effects. The red arrow on the top points to the eigenvalue λ0 of the mean connectivity �J. Coloured circles

are the eigenvalues predicted using determinant lemma and truncated series expansion (see Eqs (7) and (8), truncating at k = 2), coloured triangles are

the eigenvalues predicted using determinant lemma without finite truncation (see S6 Text, Eqs. (153)-(157)). (B) Comparison of the eigenvalues from

the finite-size simulation with the predictions of the determinant lemma as the reciprocal correlation ηEE (−ηII) is increased. The coloured solid lines

show the roots of the third-order polynomial in Eq (8) (truncated series expansion). The light purple area indicates the empirical distribution of the

dominant outlier for 30 realizations, reflecting finite-size effects; while the black dashed line is the unperturbed eigenvalue λ0. The grey areas represent

the areas covered by the eigenvalue bulk. (C) Scatter plot showing for each neuron i its entry ni on the left eigenvector against its entry mi on the right

eigenvector. Red and blue colours represent respectively excitatory and inhibitory neurons. The white dots and the dashed lines respectively indicate the

means and covariances for each population. (D) Comparison between eigenvector entries obtained from direct eigen-decomposition of J with

projections obtained using perturbation theory (Eqs (9) and (10)) in a given random connectivity Z. (E) Comparison between simulations (coloured

areas, finite-size effects) and theoretical predictions (coloured lines, Eq (97)) for the population covariance spnm of the entries on the left and right

connectivity eigenvectors to different populations. (F) Comparison of the overall covariance σnm (Eq (72)) with the deviation Δλ of the dominant

outlying eigenvalue from the unperturbed value λ0. Empirical covariance (gradient blue area reflects finite-size effects, where the colour depth stands for

η) compared with the theoretical prediction (black line) obtained using Eqs (97) and (92). The x-axis uses the theoretical prediction of the deviation of

the eigenvalue λ from λ0. (G-L) Same as (A-F) for a connectivity matrix with heterogeneous reciprocal correlations: ηEE = −ηEI = −ηII> 0, and ηEE
increasing from 0 to 1. In (B, E, F, H, K. L), the departure of the centres of the numerical simulation results from the theoretical predictions reflect the

systematic errors due to the first-order perturbation approximation of eigenvalues and eigenvectors. Other network parameters: NE = 4NI = 1200 and

homogeneous variance parameters gpq = g = 0.3 in all simulations, JE = 2.0, JI = 1.3 for networks in (A-F), JE = 2.0, JI = 1.4 for networks in (G-L).

https://doi.org/10.1371/journal.pcbi.1010855.g004
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approximation of our locally-defined E-I network, the dynamics can therefore be represented

by a single latent variable κ, so that the activation of unit i is given by

xiðtÞ ¼ kmi ð15Þ

¼ k �mi þ kDmi; ð16Þ

where we inserted the expression for mi obtained from a first-order perturbation (Eqs (9) and

(10)). Note that since �mi ¼ 1, the first term in the r. h. s. of Eq (16) corresponds to population-

averaged mean activity mpx, while the second term is the deviation of the activity of unit i from

the population average, which statistically leads to the population-averaged variance D
p
x of neu-

ronal activations (Methods Sec. 2.6.1, Eq (111))

mpx ¼ k

D
p
x ¼ k2s2

mp :
ð17Þ

By inserting the values for Δmi obtained using specific realizations of random connectivity

in Eq (10) into Eq (16), the rank-one approximation accounts for the heterogeneous firing

activity of single units coming from the synaptic weights in specific instances of locally-defined

networks Z. Moreover, the rank-one theory predicts that both the population-averaged mean

and the standard deviation of activations in the network are proportional to κ.

The values taken by the latent variable κ can be determined by projecting Eq (14) onto m

and inserting Eq (16) (Methods Secs. 2.6.1, 2.6.2). This leads to a closed equation for the

dynamics of κ(t):

_k ¼ � kþ
X

p¼E;I

apð�n
ph�ðk �mp; k2s2

mpÞi þ h�
0
ðk �mp; k2s2

mpÞis
p
nmkÞ; ð18Þ

where the brackets denote a Gaussian average (see Eq (112)), αp is the fraction of neurons

belonging to population p, spnm is the population covariance between elements mi and ni with i
belonging to population p (Table 1). The steady state then obeys

k ¼ FmeanðkÞ þ FcovðkÞ ð19Þ

where

FmeanðkÞ ¼
X

p¼E;I

ap�n
ph�ðk �mp; k2s2

mpÞi;

FcovðkÞ ¼
X

p¼E;I

aph�
0
ðk �mp; k2s2

mpÞis
p
nmk:

ð20Þ

The two terms in the r. h. s. of Eq (19) show that the contributions of recurrent synaptic

inputs to the latent dynamics κ come from two sources: (i) the population means of the left

and right connectivity eigenvectors �np and �mp that contribute to Fmean(κ) (Eqs (54) and (56));

(ii) the covariance spnm between the left and right connectivity eigenvectors that contributes

only to Fcov(κ). In the low-rank approximation (Eqs (2) and (41)) of the locally-defined E-I

connectivity (Eq (5)), these two terms have distinct origins: the mean comes from the indepen-

dent components of the connectivity (Eqs (55) and (56)); while the covariance comes from

reciprocal correlations between connections (Eqs (96) and (97)). We next examine separately

the effects on dynamics of these two connectivity components.

1.5.1 Independently generated local connectivity. When synaptic connections are gener-

ated independently from a Gaussian distributions based on the identities of pre- and post-
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synaptic populations, the rank-one approximation of connectivity leads to uncorrelated left

and right connectivity vectors n and m, so that spnm ¼ 0 for p = E, I. In consequence, only the

first term is present in the r. h. s. of Eq (19), and the fixed point of the latent dynamics is given

by a difference between excitatory and an inhibitory feedback (Eq (116)):

k ¼ JEh�ðk; k2s2
mEÞi � JIh�ðk; k2s2

mI Þi: ð21Þ

As long as the mean inhibition JI is strong enough to balance the mean excitation JE, Eq

(21) predicts a single fixed point. As JE is increased, positive feedback begins to dominate and

leads to a bifurcation to a bistable regime for the latent dynamic variable κ (Fig 5A–5C, S2

Text).

This bistability due to positive feedback is expected on the basis of mean connectivity alone.

Indeed, replacing the connectivity matrix by its mean �J is equivalent to a rank-one approxima-

tion with m ¼ �m and n ¼ �n which lead to Eq (115) with s2
mp ¼ 0 for p = E, I, this reduced

model actually corresponds to the classic Amari-Grossberg rate model [49–52]. The additional

first-order perturbation term in the rank-one approximation (Eqs (9) and (10)) additionally

takes into account fluctuations in the connectivity, which leads to a non-zero s2
mp , and modifies

the fixed points predicted by Eq (21). In consequence, the bifurcation to bistability takes place

at higher values of JE than predicted from mean connectivity alone (purple lines compared to

orange lines in Fig 5C).

Fig 5. Predicting low-dimensional dynamics using a rank-one approximation of networks with independent Gaussian connectivity. (A) Fixed

points of the latent variable κ in the rank-one approximation. The lines show the dynamics _k as function of κ, predicted by Eq (18) (solid line: JE = 2.4;

dashed line: JE = 1.5). The intersections with y = 0 correspond to fixed points (filled dots: stable; unfilled dot: unstable). (B) Contribution of mean

connectivity to the latent dynamics, Fmean(κ) in Eq (20), for two values of JE. (C) Bifurcation diagram for increasing JE: analytical predictions of Eq (21)

compared with simulations of the full network with locally-defined connectivity. orange line: analytical prediction including only the mean part of the

connectivity (s2
mp ¼ 0 in Eq (21)); purple line: analytical prediction including the first-order perturbation term in the rank-one approximation; gray:

projection of simulated activity x onto the connectivity vector m computed by perturbation theory for 30 realizations of random connectivity Z, the

shaded area reflects finite-size effects (Eq (104)). (D) Comparison between simulations and mappings obtained from the low-rank approximation (Eqs

(10) and (16)) for the activity of individual units in a given realization of the random connectivity Z. For each unit i, a dot shows the deviation Δxi of its

steady-state activity from the population average, against its value Δmi of the perturbed part of the connectivity vector m (Eq (16)). The low-rank theory

predicts Δxi = κΔmi. Orange, cyan and gray scatters show excitatory or inhibitory populations, each for several values of JE. Lines represent y = κx,

where κ is obtained from Eq (21). Upper panels show the result in a realization with a high fixed point, bottom panels show the result in a realization

with a low fixed point. (E) Comparison between the predictions (solid lines) and simulations (shaded areas) for the population-averaged variances of

Δxi. Shaded areas show mean±std and reflect finite-size effects. In C, E, the departure of the centres of the numerical simulation results from the

theoretical predictions reflect the systematic errors due to the approximation of the latent dynamical variable κ as well as the low-rank connectivity

statistics. Other network parameters: NE = 4NI = 1200, JI = 0.6, gEE: gEI: gIE: gII = 1.0: 0.5: 0.2: 0.8 and gEE = 0.8. The transfer function ϕ has parameter θ =

1.5.

https://doi.org/10.1371/journal.pcbi.1010855.g005
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More importantly, we find that the first-order perturbation in the rank-one approximation

accurately accounts for the heterogeneous firing rates of individual neurons for specific

instances of the random, locally-defined connectivity Z (Eqs (16) and (69), Fig 5D), and there-

fore predicts well the variance across neurons of the steady state of population dynamics D
p
x. In

particular, cell-type dependent variances in the synaptic connectivity, lead to distinct variances

D
E
x and D

I
x for excitatory and inhibitory populations (Eqs (90) and (130), Fig 5E).

Note that the independently generated local connectivity can be treated analytically without

resorting to a rank-one approximation, by using a different variant of mean-field theory origi-

nally developed for randomly connected networks. [30, 53]. That theory is not perturbative,

and takes into account an additional term in the variance (see Methods Sec. 2.6.3 and S3 Text

for more details). However, in contrast to the rank-one approximation, it does not predict the

activity of individual neurons, and is challenging to extend beyond independent random

connectivity.

1.5.2 Reciprocal motifs. We next turn to the predictions of the rank-one approximation

for dynamics resulting from locally-defined connectivity with reciprocal motifs. In this case,

the additional reciprocal correlations in the random part of the connectivity lead to a non-zero

covariance σnm between the connectivity vectors n and m in the rank-one approximation (Eqs

(92) and (97)). This covariance in turn generates an additional feedback component in the

dynamics of the latent variable, the second term in the r. h. s. of Eq (19).

Specifically, the excitation-dominated dynamical regime is largely determined by the noise-

less mean connectivity �J, but beyond this mean approximation, positive reciprocal correlations

combined with the excitation-dominated connectivity enhance positive feedback with respect

to mean connectivity alone (Methods Sec. 2.5.2, Eq (97)). As a result, progressively increasing

the reciprocal correlations can therefore induce a bifurcation to bistability, even if the mean

excitation provided by the mean approximation �J is not sufficient by itself to support two sta-

ble states (Fig 6A–6C). This is a major novel effect of reciprocal motifs on collective dynamics.

As in the case of independent connectivity, we moreover find that the perturbative term in the

rank-one approximation accounts for the heterogeneous activity of individual neurons in spe-

cific realizations of the connectivity Z (Fig 6D, Eqs (16) and (69)), and therefore also predicts

the cell-type dependent variances of activity (Fig 6E).

More generally, our rank-one approximation allows us to describe the latent dynamics

when the degree of reciprocal correlation depends across the pre- and post-synaptic popula-

tions (Results Sec. 1.4). Such heterogeneity in reciprocal correlations can enhance different

types of feedback. For example, antisymmetric connectivity within inhibitory populations (ηII
< 0) disinhibits excitatory population and thus facilitates bistable transitions (Fig 7A–7C)

compared to networks with homogeneous reciprocal correlations. In contrast, excitation-dom-

inated connectivity with homogeneous negative reciprocity (η< 0) generate negative feedback

and therefore suppress the global dynamics from bistable state to quiescent (Fig 7D–7F).

Importantly, describing the role of reciprocal correlations on latent dynamics relies on our

global low-rank approximation of locally-defined connectivity. In particular, the effects of

such correlations cannot be captured by considering only mean connectivity and population-

averaged activity (first term in the r. h. s. of Eq (19)). Moreover, including reciprocal correla-

tions in classical mean-field approaches to randomly connected networks is technically chal-

lenging [18].

1.6 Extension: E-I networks with sparse connectivity

In previous sections, we examined locally-defined connectivity generated using Gaussian dis-

tributions of individual synaptic weights (function fpq in Eq (1)). Our results for the low-rank
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Fig 7. Predictions for low-dimensional dynamics using a rank-one approximation of networks with non-homogeneous and anti-symmetric

reciprocal motifs. (A-D) Fixed points of latent dynamics in networks with heterogeneous, cell-type-dependent reciprocal correlations: ηEE = ηEI = −ηII.
Network parameters: NE = 4NI = 1200, gEE: gEI: gIE: gII = 1.0: 0.5: 0.2: 0.8, gEE = 0.8, JE = 1.9 and JI = 0.6. (E-H) Fixed points of latent dynamics in

networks with homogeneously anti-symmetric motifs, ηpq = η 2 [−1, 0]. Network parameters: NE = 4NI = 1200, gEE: gEI: gIE: gII = 1.0: 0.5: 0.2: 0.8, gEE =

0.8, JE = 2.2 and JI = 0.6. In C and F, gray areas show projections of simulated activity x onto the connectivity vector m computed by perturbation theory

(Eq (104)), shaded areas show mean±std and reflect finite-size effects. In C, F the departure of the centres of the numerical simulation results from the

theoretical predictions reflect the systematic errors due to the approximation of the latent dynamical variable κ as well as the low-rank connectivity

statistics.

https://doi.org/10.1371/journal.pcbi.1010855.g007

Fig 6. Predicting low-dimensional dynamics using a rank-one approximation of networks with homogeneous reciprocal motifs. (A) Influence of

reciprocal correlations on fixed points of the latent variable κ in the rank-one approximation. The lines show the dynamics _k as function of κ, predicted

by Eq (18) (solid line: η = 1; dashed line: η = 0). The intersections with y = 0 correspond to fixed points (filled dots: stable; unfilled dot: unstable). (B)

Comparison of the contributions of mean connectivity Fmean(κ) and covariance Fcov(κ) to the latent dynamics of κ (Eq (20)) for η = 1. (C) Bifurcation

diagram for increasing η at fixed JE. Solid purple lines: analytical predictions of Eqs (19) and (20); gray areas: projection of simulated activity x onto the

connectivity vector m computed by perturbation theory (Eq (104)) for 30 realizations of random connectivity Z, the shaded area reflects finite-size

effects. (D) Comparison between simulations and mappings obtained from the low-rank approximation for the activity of individual units in a given

realization of the random connectivity Z. For each unit i, a dot shows the deviation Δxi of its steady-state activity from the population average, against

its value Δmi of the perturbed part of the connectivity vector m (Eq (16)). The low-rank theory maps Δxi = κΔmi. Orange, cyan and gray scatters show

excitatory or inhibitory populations, each for two values of η. Lines represent y = κx, where κ is obtained from Eqs (19) and (20). Upper panels show the

result in a realization with a high fixed point, bottom panels show the result in a realization with a low fixed point. (E) Comparison between the

predictions (solid lines, Eq. (134)) and simulations (shaded areas) for the population-averaged variances of Δxi. Shaded areas show mean±std and reflect

finite-size effects. In C, E, the departure of the centres of the numerical simulation results from the theoretical predictions reflect the systematic errors

due to the approximation of the latent dynamical variable κ as well as the low-rank connectivity statistics. Other network parameters: NE = 4NI = 1200,

JE = 1.9, JI = 0.6, gEE: gEI: gIE: gII = 1.0: 0.5: 0.2: 0.8 and gEE = 0.8. The transfer function ϕ has parameter θ = 1.5.

https://doi.org/10.1371/journal.pcbi.1010855.g006
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approximation of locally-defined connectivity are however independent of the precise form of

the distribution fpq. In particular, our finding that the resulting low-rank structure obeys

Gaussian-mixture statistics is universal, in the sense that it is valid for any distribution fpq for

which the central limit theorem holds (see Discussion). To illustrate this universality, here we

turn to networks with sparse connectivity, generated from Bernoulli distributions fpq taking

values 0 and Aq (where Aq = AE, AI refer to strengths of excitatory and inhibitory connections),

with a uniform fraction c of non-zero connections (see Eq (28)). In this case, the variance of

the synaptic strengths Jij scales as 1/N, as we assumed for Gaussian connectivity. The statistics

of the corresponding rank-one approximation are fully determined by the mean, variance and

covariance of synaptic weights in the excitatory and inhibitory populations. Here we compare

the predictions of our perturbative approximation with direct simulations of full-rank net-

works with locally-defined connectivity. We first consider independently generated connectiv-

ity, and then turn to reciprocal motifs.

1.6.1 Independently generated sparse connectivity. For networks with independently

generated sparse connectivity, the mean and variance of individual synaptic weights are given

by cAq and cð1 � cÞA2
q, where q = E, I refers to the population of the presynaptic neuron. Previ-

ous works have shown that for such sparse networks where the variances of synaptic weights

scale as 1/N, the bulk of the eigenvalues are distributed within a circle in the complex plane

with a radius rg determined by Eq. (149) (Fig 8A) [54, 55], as expected from the universality

theorem for random matrices [56]. The overall mean of the synaptic weights instead deter-

mines the mean outlying eigenvalue (Eq (78), Fig 8A). In sparse networks, the main novelty

with respect to the Gaussian case is that the mean and variance of synaptic weights are not

independent parameters, but are instead both set by the synaptic strengths AE and AI as well as

the network’s sparsity c (Eqs (38) and (39)). In consequence, varying these couplings changes

both the radius of the bulk and the outlying eigenvalue, and can lead to intersections where the

outliers dip into the bulk (see S4 Text for details).

As expected, as long as the outlier lies outside of the eigenvalue bulk, the statistics of entries

on the resulting low-rank approximating eigenvectors are well described by a Gaussian-mix-

ture distribution with parameters fully determined by the mean and variance of the synaptic

weights (Eq (91), Fig 8B). Our perturbative approximation Eq (69) as well, accounts for the

individual entries of the right- and left-eigenvectors corresponding to the outlier from the spe-

cific realization of the fluctuation matrix Z (Fig 8C).

Our predictions for the low-dimensional dynamics based on the rank-one approximation

therefore directly extend to sparse networks. Comparing with direct simulations, we found

that Eq (117) predicts well the global latent variable κ obtained by projecting the activity x

onto the approximated rank-one eigenvector m (Eq (104)). As the E/I ratio is increased, posi-

tive feedback increases, and the latent variable κ undergoes a transition from a single fixed

point to two bistable states (Fig 8D).

From the statistics of the right eigenvector m (Eq (91)), our analysis predicts the heteroge-

neity of activity in terms of population-averaged variances D
E=I
x (Fig 8E). This heterogeneity is

identical in excitatory and inhibitory populations, as their right eigenvectors mE, mI have iden-

tical fluctuations (Fig 8B and 8C). For individual realizations of the sparse connectivity, the

rank-one approximation x = κm moreover captures the activation xi of individual neurons in

the specific simulation instances (Fig 8F).

1.6.2 Sparse EI networks with reciprocal motifs. For sparse E-I networks, we generate

reciprocal motifs by introducing a fraction ρpq of reciprocally connected pairs of neurons.

Together with the sparsity c and the synaptic strengths, the parameter ρpq determines the cell-

type dependent reciprocal correlation ηpq (Methods Sec. 2.1.2 Eqs (34) and (39), Fig 9A).
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We first examine the effect of the reciprocal motifs on the statistical properties of the eigen-

values and eigenvectors. The spectrum still consists of continuous eigenvalues and a discrete

outlier. Since in the independent case the outlier depends only on AE/I and sparsity c, here we

fix these two variables but increase ηEE = −ηEI while keeping ηII constant. As in the case of

dense, Gaussian networks, the outlier increases with the increasing reciprocal correlation and

deviates from the outlier of the corresponding independent sparse connectivity matrix (Fig 9B

and 9C). Moreover, in the large network limit, we find that if means, variances, and reciprocal

correlations are identical, dense Gaussian connectivity leads to the same eigenvalue spectrum

as the sparse connectivity (Methods Secs. 2.1.2, 2.1.3, Eqs (38) and (39)). We furthermore

mathematically predict two additional conjugate eigenvalue outliers generated by the recipro-

cal connections in the sparse case (Eqs (82), (88) and (89), Fig 9B).

As for uncorrelated connectivity, perturbation theory accounts for the individual left and

right eigenvector entries for specific instances of the sparse connectivity, which altogether

Fig 8. Rank-one approximation and predicted low-dimensional dynamics for sparse excitatory-inhibitory networks. (A) Left: Comparison of the

predicted eigenvalue outlier λ0 = c(NEAE + NIAI) (black line) with finite-size simulations (red area shows mean±std for 30 realizations and reflects

finite-size effects). The gray area represents the area covered by the eigenvalue bulk. Right: example spectrum of one realization of connectivity matrix

with E/I ratio AE/AI = 0.33, and the radius rg of the eigenvalue bulk computed from the statistically equivalent Gaussian connectivity (see S4 Text). (B)

Scatter plot showing for each neuron i its entry ni on the left eigenvector against its entry mi on the right eigenvector. Red and blue colours represent

respectively excitatory and inhibitory neurons. The white dots and the dash lines respectively indicate the means and covariances for each population

obtained from simulations. For visualization purposes, the x− and y-axis are scaled unequally. (C) Comparison between eigenvector entries obtained

from direct eigen-decomposition of J with projections obtained using perturbation theory (Eqs (9) and (10)) in a given realization of the sparse

connectivity J. (D) Bifurcation diagram for increasing the ratio AE/AI: analytical predictions of Eq (117) compared with simulations of the full network

with locally generated sparse connectivity. Purple line: analytical prediction including the first-order perturbation term in the rank-one approximation;

gray: projection of simulated activity onto the connectivity vector m computed by perturbation theory Eq (104) for 30 realizations of sparse connectivty

J, the shaded area reflects finite-size effects. (E) Comparison between the predictions (solid lines) and simulations (shaded areas) for the population-

averaged variances of Δxi. Shaded areas show mean±std and reflect finite-size effects. (F) Comparison between simulations and mappings obtained

from the low-rank approximation for the activity of individual units in a given realization of the sparse connectivity J. For each unit i, a dot shows the

deviation Δxi of the steady-state activity from the population average, against the corresponding value Δmi of the perturbed part of the connectivity

vector m (Eq (16)). The low-rank theory maps Δxi = κΔmi. Orange, cyan and gray scatters show excitatory or inhibitory populations, each for two

values of the ratio AE/AI. Lines represent y = κx, where κ is obtained from Eqs (19) and (20). Upper panels show the result in a realization with a high

fixed point, bottom panels show the result in a realization with a low fixed point. The gray vertical dashed line in A left, D, E correspond to the critical

point c at which the absolute value of the outlier is equal to the radius of the eigenvalue bulk. In A, D, E the departure of the centres of the numerical

simulation results from the theoretical predictions reflect the systematic errors due to the approximation of the low-rank connectivity statistics as well

as the latent dynamical variable κ. Network parameters: NE = 4NI = 800, c = 0.3, AE = 0.025. The transfer function ϕ has parameter θ = 1.5.

https://doi.org/10.1371/journal.pcbi.1010855.g008
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Fig 9. Characterizing connectivity statistical properties and low-dimensional dynamics for the sparse network with reciprocal motifs. (A)

Schematics of a sparse EI network with four forms of paired connections. White and black rectangles represent the non-zero excitatory and inhibitory

sparse connections. (B) Eigenvalue spectrum of the sparse connectivity (upper panel) and from the equivalent Gaussian connectivity (bottom panel)

with reciprocal motifs. Cell-type-dependent reciprocal correlations are ηEE = 0.71, ηEI = −0.71, ηII = −0.43 in both connectivity matrices, continuous

eigenvalue bulks show eigenvalues for one realization of the network connectivity. Red arrows point to the unperturbed eigenvalue λ0. Outlying

eigenvalues are shown for 30 realizations of the network connectivity. Coloured circles are the eigenvalues predicted using determinant lemma and

truncated series expansion (see Eqs (7) and (8), truncating at k = 2), coloured triangles are the eigenvalues predicted using determinant lemma without

finite truncation (see S6 Text, Eqs. (153)-(157)). (C) Comparison of the eigenvalues from the finite-size simulation of the sparse connectivity, with the

predictions of the determinant lemma as progressively increasing the reciprocal correlation ηEE (−ηEI). The coloured solid lines show the roots of the

third-order polynomial in Eq (8). The purple area indicates the empirical distribution (mean±std, finite-size effects) of the dominant outlier for 30

realizations of sparse connectivity J, while the black dashed line is the eigenvalue λ0 of the corresponding independent sparse connectivity matrix (Eq

(78)). The gray areas correspond to the areas covered by the eigenvalue bulk. (D) Scatter plot showing for each neuron i its entry ni on the left

eigenvector against its entry mi on the right eigenvector. Red and blue colours represent respectively excitatory and inhibitory neurons. The white dots

indicate the means for each population obtained from simulations. For visualization purposes, the x- and y-axis are scaled unequally. (E) Comparison

between eigenvector entries obtained from direct eigen-decomposition of J with projections obtained using perturbation theory (Eqs (9) and (10)) in a

given realization of the sparse connectivity J. (F) Comparison between the population covariance spnm of the entries on the left and right connectivity

eigenvectors to different populations (coloured areas, finite-size effects) and the predictions of perturbation theory (coloured lines, Eq (99)). (G)

Bifurcation diagram for increasing the reciprocal correlation ηEE (−ηEI): analytical predictions of Eq (119) compared with simulations of the full

network with locally generated sparse connectivity and reciprocal motifs. Purple line: analytical prediction including the first-order perturbation term

in the rank-one approximation; gray: projection of simulated activity onto the connectivity vector m computed by perturbation theory Eq (104) for 30

realizations of sparse connectivity J, the shaded area reflects finite-size effects. (H) Comparison between simulations and mappings obtained from the

low-rank approximation for the activity of individual units in a given realization of the sparse connectivity. For each unit i, a dot shows the deviation Δxi
of the steady-state activity from the population average, against its value Δmi of the perturbed part of the connectivity vector m (Eq (16)). The low-rank

theory maps Δxi = κΔmi. Orange, cyan and gray scatters show excitatory or inhibitory populations, each for two values of the reciprocal correlation ηEE.

Lines represent y = κx, where κ is obtained from Eqs (19) and (20). Upper panels show the result in a realization with a high fixed point, bottom panels

show the result in a realization with a low fixed point. (I) Comparison between the predictions (solid lines) and simulations (shaded areas) from the

population-averaged variances of Δxi, shaded areas show mean±std and reflect finite-size effects. In C, F, G, I, the reciprocal correlations ηEE = −ηEI
progressively increase from −0.43 to 1.0 while keeping ηII = −0.43 constant (ρEE = ρEI increase from 0 to 1 and ρII = 0 is fixed). In C, F, G, I, the

departure of the centres of the numerical simulation results from the theoretical predictions reflect the systematic errors due to the approximation of

the low-rank connectivity statistics as well as the latent dynamical variable κ. Network parameters: NE = 4NI = 800, c = 0.3, AE = 0.023, AE/AI = 0.3. The

transfer function ϕ has parameter θ = 1.5.

https://doi.org/10.1371/journal.pcbi.1010855.g009
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follow Gaussian statistics as expected (Fig 9D and 9E, Eqs (69) and (70)). Importantly, recipro-

cal correlations induce a non-zero covariance σnm between the entries mi and ni of the right

and left eigenvectors (Eq (99), Fig 9F).

Finally, we examine the population dynamics in the sparse network with reciprocal motifs

using the low-rank approximation derived above. The reciprocal motifs in the example net-

work generate an overall positive feedback. Therefore, gradually increasing the reciprocal cor-

relation ηEE (−ηEI) in the example network induces a bifurcation into bistability (Eq (119), Fig

9G). Analogous to the projections depicting the individual eigenvector entries obtained using

perturbation theory (Methods Sec. 2.3 Eq (69)), the low-rank approximation analytically

accounts for the activity of individual neurons in specific connectivity realizations (Eq (16),

Fig 9H), and hence the cell-type dependent variances of neuronal activation D
E=I
x (Fig 9I)

obtained from finite-size simulations of the original sparse networks.

Discussion

In this work, we unified two different descriptions of connectivity in multi-population net-

works and thereby connected two broad classes of models. Starting from local statistics of syn-

aptic weights, we approximated the resulting connectivity matrix in terms of a Gaussian-

mixture low-rank structure. The obtained, approximate low-rank network model then allowed

us to determine the influence of the local connectivity motifs on the global low-dimensional

dynamics.

Gaussian-mixture low-rank networks may seem to rely on major simplifying assumptions

to make the dynamics more tractable and interpretable, such as Gaussian-distributed entries

of the connectivity vectors that are independent across neurons. Our analyses however show

that this class of models is nevertheless less restrictive than it may appear at first. Specifically,

by using our analytical approach, we show that even if the distribution from which the locally-

defined Jij is sampled is not Gaussian (e. g. Bernoulli), the corresponding entries mi, nj on the

connectivity vectors nonetheless converge to a multi-variate Gaussian distribution in the large

network limit, provided the conditions of the central limit theorem are met. Importantly, our

results for the network connectivity with reciprocal motifs show that the independent assump-

tion for mi (ni) does not rule out the possibility of reciprocally-correlated synaptic weights (Jij,
Jji) in the locally-defined connectivity.

A key ingredient in our approach is a low-rank approximation of the locally-defined con-

nectivity matrix. Approximating an arbitrary full-rank matrix by a rank-R one is a classical

problem in numerical analysis, for which a number of different methods are available depend-

ing on the objective of approximation [57]. The most common method is to perform a singular

value decomposition (SVD), and keep the top R terms [58]. This method minimizes the Frobe-

nious norm of the difference between the original matrix and its low-rank approximation. Our

goal in this study was however to obtain a low-rank approximation that preserves the domi-

nant eigenvalues of the original matrix, as these eigenvalues determine the autonomous

dynamics in the network. An SVD-based approximation preserves the top singular values, but

in general not the top eigenvalues (S1 Fig), and this can lead to an inaccurate approximation of

autonomous dynamics [59]. We therefore opted for an approximation based on truncated

eigen-decomposition. When studying input-driven and transient dynamics, different methods

for low-rank approximation may be more appropriate, and are a topic of active research [60–

65].

To perform the eigen-decomposition of excitatory-inhibitory connectivity matrices, we lev-

eraged the fact that they can be expressed as a sum of a block-like deterministic low-rank

matrix and a full-rank random matrix with zero-mean [40]. The eigenspectrum of such
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matrices in general consists of a continuously-distributed bulk that is attributed to the random

component, and discrete eigenvalues that generated by the low-rank excitatory-and-inhibitory

mean connectivity [44, 45]. When the mean of excitatory and inhibitory weights approxi-

mately cancel each another, the corresponding eigenvalue is small and resides within the bulk.

A number of works have examined the bulk of the eigenvalue spectrum for random matrices

[11, 18, 44, 53, 54, 56, 66, 67], and showed that the obtained eigenvalue statistics have impor-

tant implications for network dynamics such as spontaneous fluctuations [68], oscillations [69,

70] and correlations in asynchronous irregular activity [71]. In contrast, in this work, we focus

on the parameter regime where the discrete eigenvalues are outliers and well separated from

the eigenvalue bulk. The outlying eigenvalues, and in particular the corresponding eigenvec-

tors have to our knowledge received less attention.

The techniques used in this work on the perturbation eigenvalues can be traced back to the

classic work of Tao [45]. The intriguing finding that low-rank perturbations on the i. i. d.

matrices have a range of nonlinear effects on the outliers inspired our investigation: If we

think of the correlated random connectivity as perturbations on the low-rank dominant struc-

ture, what effects do these have on the outliers? Using linear response theory and mean-field

techniques, recent research [66] expanded Tao’s findings to network dynamics by investigating

the outliers of the covariance matrix of the dynamic fluctuations in i. i. d. networks. In particu-

lar that work showed the effects of second-order motifs on the eigenvalue bulk distribution of

the covariance matrix. Our analyses use the low-rank excitatory-and-inhibitory mean struc-

ture to go one step further and analytically demonstrate the impact of cell-type-dependent

reciprocal motifs on the outlier λ (Methods Sec. 2.4.2).

The main technical novelty in this work is the use of matrix perturbation theory [47, 72] to

approximate the eigenvectors corresponding to the outliers in the eigenspectrum of the

locally-defined connectivity matrices. A key output of this approach is the finding that entries

of the left- and right-eigenvectors follow multivariate Gaussian distributions, the statistics of

which depend on the population the neurons belong to. In particular, these entries on the left

and right vectors are uncorrelated in networks with i. i. d. local connectivity (Sec. 1.3); none-

theless, the reciprocal motifs further induce correlations between these entries on the left and

right vectors and result in zero-mean overlaps spnm between the vectors for each population.

(Sec. 1.4). This result provides a general theoretical mapping from locally-defined multi-popu-

lation models to Gaussian-mixture low-rank networks [31, 33]. It however holds only as long

as the entries on the resulting approximation low-rank vectors satisfy the assumption of inde-

pendent entries across neurons, and the distribution of synaptic weights satisfies the assump-

tions of the central limit theorem. This specifically rules out, for instance, strong synaptic

weights that may be analogous to connectivity hubs, as well as the heavy-tailed distributions

often found in experimental studies [1, 73]. Other techniques such as Feynman diagrams [74]

may provide a way to further study the effects of structure on dynamics and in particular

correlations.

In the networks we considered, the non-random structure in connectivity comes only from

the multi-population organization. More specifically, the low-rank skeleton of the locally-

defined connectivity matrix is fully specified by the mean synaptic weights between different

populations (Eq (3)). This mean connectivity structure largely controls the outlying eigenvalue,

and the average values of the corresponding eigenvector entries. The random part of the con-

nectivity and reciprocal motifs can modify the outlying eigenvalue, and add heterogeneity as

well as correlations to this underlying structure. The effect of changes to the underlying con-

nectivity is to further regulate the internal network dynamics, i. e., the bistability transition

[75]. Particularly, in networks with i. i. d. random connectivity, even though the latent dynam-

ics is primarily determined by the mean excitatory-and-inhibitory connectivity, the
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independent random part further determines the heterogeneity of the neural activities and

indirectly affects the bifurcation point (Sec. 1.5.1, Fig 5C); however, the reciprocal motifs in

the random component directly control the latent dynamics by incorporating recurrent feed-

back with regard to mean connectivity alone (Sec. 1.5.2). Our perturbative theory moreover

allows us to quantify these effects and accurately account for the heterogeneity in dynamics on

a single-neuron basis. To further incorporate experimental data on synaptic connectivity into

recurrent network models, an important question is how networks of rate units used here

relate to more biologically realistic spiking networks where neurons interact through discrete

action potentials [76, 77]. One approach for investigating this relationship is to map each spik-

ing neuron onto a rate unit, and therefore compare rate and spiking networks with an identical

connectivity matrix. Using this approach, recent work has shown that theoretical results in

rate networks directly predict low-dimensional dynamics in spiking networks with identical

low-rank connectivity [78]. This provides a possible justification for interpreting the connec-

tivity in rate networks directly in terms of experimentally measured local connectivity

statistics.

A key insight from our study is a general relationship between reciprocal motifs in locally-

defined connectivity and overlaps among connectivity vectors in low-rank networks, which

hasn’t been investigated in the previous works of the low-rank model [30, 31, 33, 79]. Indeed,

we have shown that correlations between reciprocal synaptic weights generate overlaps beyond

the mean in the corresponding low-rank approximation (Eq (95)). Conversely, zero-mean

overlaps between connectivity vectors in a low-rank model necessarily imply non-vanishing

reciprocal correlations (Eq (43) and S5 Text). Since overlaps between connectivity vectors

determine the autonomous recurrent dynamics in low-rank networks, this relationship

allowed us to quantify how reciprocal connectivity motifs contribute to network dynamics.

Local statistics of synaptic connectivity are believed to play an important role in the global

network dynamics [1, 17, 32, 66]. Our study provides a mathematical theory that relates the

local connectivity statistics to global recurrent dynamics through a low-rank approximation.

In addition to the reciprocal motifs that we have focused on in this work, it has been demon-

strated that other second-order motifs, including convergent, divergent, and chain motifs,

have important effects on the statistics of fluctuations [14, 22, 23, 80]. Specifically, recent stud-

ies have revealed that the dimensionality of the balanced networks and the norm of the contin-

uous eigenvalue bulk are tuned differently by the statistics of various types of motifs [15, 66,

75]. Examining the effects of these additional types of motifs on eigenvalue outliers and corre-

sponding low-dimensional dynamics would be an important future step to connect models to

large-scale electrophysiological recordings of the cortical microcircuits [6, 7, 15, 81].

2 Materials and methods

Throughout this study, we consider recurrent networks of N neurons and denote by J the

recurrent connectivity matrix, where Jij is the synaptic strength of the connection from neuron

j to neuron i.

2.1 Locally-defined multi-population connectivity

In this section, we introduce a first class of connectivity models, in which the synaptic cou-

plings are generated based on local statistics determined by the identity of pre- and post-synap-

tic neurons. The N neurons in the network are organized in P populations, where population p
has Np neurons. Denoting by p and q the populations neurons i and j belong to, the value of

the synaptic coupling Jij is drawn randomly from a distribution in which statistics depend on

the pre- and postsynaptic population q and p. The full connectivity matrix J therefore has a
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block structure, in the sense that all connections within the same block share identical
statistics.

We examine two variants of this model class: (1) independent random connectivity [53];

(2) connectivity with reciprocal motifs [10, 82]. In each case, we examine two specific exam-

ples of distributions of synaptic strengths, Gaussian, and Sparse distributions.

2.1.1 Independent random connectivity. For networks with independent random con-

nectivity, the recurrent connections Jij are sampled independently for each (i, j) pair from

ProbðJij ¼ JÞ ¼ f pqðJÞ; ð22Þ

where fpq denotes a probability density function, and q, p are the pre- and post-synaptic popu-

lations. Separating the mean and random components, for an arbitrary distribution Eq (22)

can be re-expressed as

Jij ¼ �J pq þ zij: ð23Þ

Here �J pq is the mean value of the connections from population q to population p, and zij is

the remaining zero-mean random part of each connection. Defining �J as the N × N determin-

istic matrix consisting of mean values, and Z as the noise matrix consisting of the random

parts zij, the connectivity matrix J can be written as

J ¼ �J þ Z: ð24Þ

The matrix �J is of size N × N and consists of P2 blocks with identical values within each

block. The rank of �J is therefore at most P [40]. In contrast, the noise matrix Z is in general of

rank N. The full connectivity matrix J can then be interpreted as a rank-P deterministic matrix

perturbed by the random matrix Z with block-dependent statistics.

In the case of Gaussian connectivity, connections from population q to population p are

sampled independently from a Gaussian distribution.

f pqðJÞ ¼ N ð�J pq; s2
zpq
Þ; ð25Þ

with variances

s2
zpq
¼
g2
pq

N
: ð26Þ

The noise matrix Z therefore has block-structured variances g2
pq=N that we specify by a P × P

matrix Gm:

Gm ¼

g2
11
=N . . . g2

1P=N

..

. ..
.

g2
P1
=N . . . g2

PP=N

2

6
6
6
6
4

3

7
7
7
7
5
: ð27Þ

In the case of sparse connectivity, Jpqij is a Bernoulli random variable. The connectivity

weights Jpqij from population q to population p are non-zero with probability cpq and zero other-

wise. All non-zero connection weights within a block take the same value Apq, so that
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analogously to Eq (22), the sparse connectivity is defined as

f pqðJij ¼ JÞ ¼
cpq for J ¼ Apq;

1 � cpq for J ¼ 0:

8
<

:
ð28Þ

The mean connectivity weight between populations p, q is then

�J pq ¼ cpqApq: ð29Þ

and the variance of the remaining random part zij is

s2
zpq
¼ ½z2

ij�i2Np;j2Nq
¼ ð1 � cpqÞcpqA2

pq; ð30Þ

to simplify the parameters in sparse networks, we assume that Apq depend only on presynaptic

population q, and that the connection probability cpq is a homogeneous network parameter

independent of p, q that we denote by c.
2.1.2 Reciprocal connectivity motifs. To go beyond independent connectivity, we con-

sider pairwise motifs, i. e. correlations between reciprocal pairs of weights Jij and Jji. We quan-

tify this correlation using the normalized covariance ηij defined as

Zij ¼
½ðJij � ½Jij�ÞðJji � ½Jji�Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðJij � ½Jij�Þ
2
�½ðJji � ½Jji�Þ

2
�

q ; ð31Þ

where [�] denotes the average over the full connectivity distribution. Reciprocal connections

are fully independent when ηij = 0 for all i, j, fully symmetric when ηij = 1 and fully anti-sym-

metric when ηij = −1.

Our key assumption is that the statistics of connectivity are block-like, implying that all

pairs of connections between populations p, q share the same correlation coefficient ηpq, so

that the statistics are defined by a P × P reciprocal correlation matrix ηm

Zm ¼

Z11 . . . Z1P

..

. ..
.

ZP1 . . . ZPP

2

6
6
6
6
4

3

7
7
7
7
5
; ð32Þ

where, by definition ηpq = ηqp.
For Gaussian statistics, we generate connectivity matrices with a specified set of ηpq in the

following manner. We first generate an N × N matrix Y0 with entries independently sampled

from the normal distribution N ð0; 1Þ. Then, in order to generate a matrix Y with reciprocal

correlations ηpq, we form a linear combination of Y0 and its transpose Y0⊤. Specifically, we set

yij ¼ gpqy
0

ij
|ffl{zffl}

Y0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

pq

q
y0ji

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Y0⊺

ð33Þ

with gpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z2

pq

q
Þ=2

r

for ηpq> 0, and �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z2

pq

q
Þ=2

r

for ηpq< 0. Finally,

we scale each block by gpq=
ffiffiffiffi
N
p

to obtain the random connectivity component Z, which is

added to the mean connectivity component �J to finally obtain the full connectivity matrix J.

For sparse networks, we first generate a connectivity matrix without reciprocal correlations.

We then consider the upper triangle of this matrix, randomly select a fraction ρpq of the non-
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zero connections Jij with value Aq and set their reciprocal connectivity weights Jji to have a

non-zero weight Ap. For the remaining 1 − ρpq fraction of non-zero connections in the upper

triangle, we set the reciprocal connectivity weights to zero. The corresponding cell-type depen-

dent reciprocal correlations for the multi-population sparse connectivity are then

Zpq ¼
ApAqðrpq � cÞ
jApAqjð1 � cÞ

; p; q ¼ 1 . . . P; ð34Þ

where c is the homogeneous connection probability (Table 1).

2.1.3 Excitatory-inhibitory networks. In this work, we specifically focus on excitatory-

inhibitory networks composed of P = 2 populations, one excitatory and one inhibitory, with

respectively NE and NI neurons. We denote the two populations by indices E and I, so that

there are four types of connections: EE, EI, IE and II. Based on the usual anatomical estimates

for neocortex, we choose NE = 0.8N, NI = 0.2N, and further define αE = NE/N, αI = NI/N, as the

fractions of excitatory and inhibitory neurons.

For Gaussian networks, we enforce Dale’s law only on the mean, i. e. we set �J EE and �J IE to be

positive, while �J EI and �J II are negative. The N × N mean connectivity matrix �J is therefore in

general rank-two. To further simplify the setting, we follow [43], and consider networks where

the mean weights of all excitatory connections, and respectively all inhibitory connections, are

equal and set by parameters JE and JI:

�J EE ¼ �J IE ¼ JE=NE ð35Þ

�JEI ¼ �J II ¼ � JI=NI: ð36Þ

Under these additional assumptions, the entries in the first NE columns of the mean con-

nectivity matrix �J have the same positive weight JE/NE, and the entries in the following NI col-

umns have the same negative weight −JI/NI, so that �J becomes rank one.

We however allow the variances g2
pq=N and reciprocal correlations ηpq to depend on both

the pre- and post-synaptic population, so that the corresponding parameters form 2 × 2 matri-

ces

Gm ¼
g2
EE=N g2

EI=N

g2
IE=N g2

II=N

" #

; ηm ¼
ZEE ZEI

ZIE ZII

" #

; ð37Þ

where ηEI = ηIE.

For sparse excitatory-inhibitory networks, all non-zero excitatory (resp. inhibitory) synaptic

weights are equal and positive, AE> 0 (resp. AI< 0). From Eqs (29) and (30) the mean and the

variance of the synaptic weights in the sparse network can be matched to the parameters of the

Gaussian model [83]:

JE
NE

¼ cAE; g2
EE=N ¼ g2

IE=N ¼ A2
Ecð1 � cÞ;

�
JI
NI
¼ cAI; g2

EI=N ¼ g2
II=N ¼ A2

I cð1 � cÞ;

ð38Þ
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In particular, for the sparse networks with pairwise reciprocal motifs, on top of the match-

ing means and variances, the cell-type dependent reciprocal correlations satisfy (Eq (34))

ZEE ¼
rEE � c
1 � c

; ZEI ¼ �
rEI � c
1 � c

; ZII ¼
rII � c
1 � c

: ð39Þ

2.2 Globally-defined connectivity: Gaussian-mixture low-rank networks

In this section, we introduce a second broad class of connectivity models, Gaussian-mixture

low-rank networks [31, 33], in which the connectivity matrix is generated from a global statis-

tics of vectors over neurons.

Low-rank networks are a class of recurrent neural networks in which the connectivity

matrix J is restricted to be of rank R, assumed to be much smaller than the number of neurons

N. Such a connectivity matrix can be expressed as a sum of R unit rank terms

J ¼
1

N

XR

r¼1

mðrÞnðrÞ⊺: ð40Þ

We refer to nðrÞ ¼ fnðrÞi gi¼1...N and mðrÞ ¼ fmðrÞi gi¼1...N as the r-th left and right connectivity
vectors. The 2R connectivity vectors together fully specify the connectivity matrix. Each neuron

i is then characterized by its set of 2R entries ðmð1Þi ; n
ð1Þ

i ; . . . ;mðRÞi ; n
ðRÞ
i Þ on these vectors. For

unit-rank networks, the main focus of this study, the connectivity matrix is simply given by

the outer product of a pair of connectivity vectors m and n:

JR1 ¼
1

N
mn⊺: ð41Þ

Gaussian-mixture low-rank networks are a subset of the class of low-rank networks, for

which the entries of the connectivity vectors are drawn independently for each neuron from a

mixture of Gaussians distribution [31]. Specifically, a fraction αp of neurons is assigned to a

population p, and within each population, the entries on the connectivity vectors are generated

from a given 2R-dimensional Gaussian distribution. For a unit-rank network, for a neuron i in

the population p, the connectivity parameters (mi, ni) are generated from a bi-variate Gaussian

distribution with mean ð �mp; �npÞ, variance ðs2
mp ; s2

npÞ and covariance spnm.

For any unit-rank matrix of the form in Eq (41), the only potentially non-zero eigenvalue is

given by l ¼ n⊤m=N, and the corresponding right (resp. left) eigenvector is m (resp. n). For a

Gaussian-mixture model, in the large N limit this eigenvalue becomes

l ¼
XP

p¼1

apð �m
p�np þ spnmÞ ð42Þ

Starting from a Gaussian-mixture low-rank model in which the connectivity is globally

defined, and the assumptions that mi, ni are drawn independently between neurons from a

multi-variate Gaussian distribution is satisfied, it is straightforward to compute the resulting

local statistics of the connectivity, i. e. the mean �J pq, variance s2
zpq

(Methods Sec. 2.1.2) and
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reciprocal correlation ηpq (Methods Sec. 2.1.1) as:

�J pq ¼
1

N
�mp�nq;

s2
zpq
¼

1

N2
s2

mpð�nqÞ
2
þ ð �mpÞ

2
s2

nq þ s
2

mps
2

nq
� �

;

Zpq ¼
ðspnm �mq�nq þ sqnm �mp�np þ spnms

q
nmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2
mpð�nqÞ

2
þ ð �mpÞ

2
s2
nq þ s

2
mps2

nqÞðs
2
mqð�npÞ

2
þ ð �mqÞ

2
s2
np þ s

2
mqs2

npÞ

q :

ð43Þ

in the large network limit. The expression for the local statistics of network connectivity using

rank-R connectivity is in S5 Text.

2.3 Approximating locally-defined connectivity with Gaussian-mixture

low-rank models

In this section, we describe our general approach for approximating an arbitrary connectivity

matrix J with a rank-R matrix JR. We then show that for J corresponding to locally-defined

multi-population connectivity (Methods Sec. 2.1), the resulting approximation JR in general

obeys Gaussian-mixture low-rank statistics as defined in Methods Sec. 2.2.

The connectivity matrices J that we studied have randomly generated entries. Such matrices

can be diagonalized almost surely (with probability 1) on complex numbers, as the set of non-

diagonalizable matrices is of measure 0. The matrices we consider are however not symmetric

and therefore non-normal [41], so that the left and right eigenvectors are in general not identi-

cal. Instead, they form a bi-orthogonal set [84]. Specifically, to approximate a full rank matrix J

with a rank-R matrix JR, we use truncated eigen-decomposition, which preserves the dominant

eigenvalues. We start from the full eigen-decomposition of J:

J ¼
XN

r¼1

lrRrL
T
r ; ð44Þ

where λr is the r-th eigenvalue of J (ordered by decreasing absolute value), while Rr and Lr are

the corresponding right- and left-eigenvectors that obey

JRr ¼ Rrlr ð45Þ

L⊺rJ ¼ lrL
⊺
r ð46Þ

LT
r Rr0 ¼ drr0 : ð47Þ

In the following, we constrain the right eigenvectors Rr to be of unit norm, while the nor-

malization of the left eigenvector is determined by Eq (47).

We obtain a rank-R approximation JR of J by keeping the first R terms in Eq (44):

JR ¼
XR

r¼1

lrRrL
T
r : ð48Þ

The R non-trivial eigenvalues and eigenvectors of JR therefore correspond to the first R
eigenvalues and eigenvectors of J. We then set

mðrÞ ¼
ffiffiffiffi
N
p

Rr ð49Þ
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nðrÞ ¼
ffiffiffiffi
N
p

lrLr ð50Þ

to have the same normalization for JR as in Eq (40).

To obtain a low-rank approximation for a connectivity matrix J generated from locally-

defined statistics defined in Methods Sec. 2.1, we first determine its dominant eigenvalues and

eigenvectors. Starting from Eq (24), this problem becomes equivalent to finding the dominant

eigenvalues and eigenvectors of a low-rank matrix �J perturbed by a random matrix Z with

block-like statistics. We compute the statistics of these eigenvalues and eigenvectors by com-

bining the Matrix’s Determinant Lemma, the Matrix Perturbation Theory and the Central

Limit Theorem. Below we summarize this general approach before applying it to different spe-

cific cases in Methods Secs. 2.4, 2.5.

We focus on the case where �J is unit rank as in the simplified excitatory-inhibitory network

introduced in Methods Sec. 2.1.3. In that case, the unique non-zero eigenvalue of �J is

l0 ¼ JE � JI; ð51Þ

and the corresponding left and right eigenvectors are

�L ¼

ffiffiffiffi
N
p

JE
NEðJE � JIÞ

; . . . ; �

ffiffiffiffi
N
p

JI
NIðJE � JIÞ

; . . .

� �⊺

;

�R ¼
1
ffiffiffiffi
N
p ; . . . ;

1
ffiffiffiffi
N
p ; . . .

� �⊺

:

ð52Þ

�J can then be rewritten as

�J ¼
1

N
�m�n⊺; ð53Þ

where the structure vectors �m and �n are uniquely defined by rescaling the left and right eigen-

vectors �L; �R of �J (Eq (52)) as in Eq (49), so that

�mi ¼ 1; i ¼ 1 . . .N ð54Þ

�ni ¼ �nE ¼
N
NE

JE i 2 NE ð55Þ

�ni ¼ �nI ¼ �
N
NI

JI i 2 NI; ð56Þ

The full connectivity matrix J can be then expressed as

J ¼ �m�n⊺=N þ Z: ð57Þ

Eigenvalues. For a random matrix Z with independently distributed elements, the eigenval-

ues are distributed on a disk of radius rg centred at the origin in the complex plane [11, 44, 85].

Correlations between elements in general modify the shape of this continuous spectrum [18,

86]. In contrast, adding a low-rank component typically induces isolated eigenvalues outside

the continuous part of the spectrum [44, 45]. To obtain a low-rank approximation of the full

matrix, we focus on determining these outliers when they exist.
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All eigenvalues λ of J satisfy the characteristic equation

detðJ � IlÞ ¼ 0: ð58Þ

To determine the outlying eigenvalues of a random connectivity with low-rank structure,

we apply the matrix determinant lemma to the l. h. s. of the characteristic equation [32]:

det
1

N
�m�n⊺ þ Z � Il

� �

¼ 1þ
1

N
�n⊺ðZ � IlÞ� 1

�m
� �

det Z � Ilð Þ: ð59Þ

As outliers by definition cannot be eigenvalues of Z, they correspond to zeros of the first

term in the r. h. s., and therefore satisfy:

l ¼
1

N
�n⊺ðI � Z=lÞ� 1

�m; ð60Þ

where I is the identity matrix. We assume that the maximal eigenvalue of Z is smaller than the

outlying eigenvalues λ we aim to determine, the upper bound on this maximal eigenvalue is

provided by the spectral norm of the Z matrix [87]. As a result, we can expand (I − Z/λ)−1 in

series, and further get [32]

l ¼
X1

k¼0

yk

l
k ; ð61Þ

with

yk ¼
1

N
�n⊺Zk �m: ð62Þ

Here θ0 corresponds to the eigenvalue λ0 of �J (Eq (51)), and the higher order terms specify

how this eigenvalue is modified by the random part of the connectivity. Truncating Eq (61) at

a given order, and averaging over Z yields a polynomial equation for the mean eigenvalues of

J. In Methods Sec. 2.4, we exploit this equation to determine the effects of different cell-type

specific random connectivity Z on the outlying eigenvalues.

Note that within first-order perturbation theory, the eigenvalues are given by λ = λ0 + Δλ
with

Dl ¼ �L⊺Z�R ¼
1

Nl0

�n⊺Z �m: ð63Þ

Eigenvectors. To determine the eigenvectors corresponding to the outlying eigenvalue of J,

we treat it as �J perturbed by Z (Eq (24)). Matrix perturbation theory then states that, at first

order, the right- and left-eigenvectors R and L of J corresponding to the outlying eigenvalue λ
are given by [47]:

R ¼ �R þ DR ð64Þ

L ¼ �L þ DL ð65Þ
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where �R and �L are the right- and left-eigenvectors of �J defined in Eq (52), and

DR ¼
1

l0

Z�R

DL⊺ ¼
1

l0

�L⊺Z:

ð66Þ

Using the normalization in Eq (49), we then get

m ¼
ffiffiffiffi
N
p

R ¼ �m þ Dm;

n⊺ ¼ l
ffiffiffiffi
N
p

L⊺ ¼ �n⊺ þ Dn⊺;
ð67Þ

with constant entries on �m and �n defined in Eqs (54) and (56) and

Dm ¼
1

l0

Z �m

Dn⊺ ¼
1

l0

�n⊺Z:

ð68Þ

where we approximated λ at first order by λ0.

Statistics of Eigenvector entries. While �m and �n are deterministic vectors, the perturbations

D �m and D�n are random variables obtained by multiplying �m and �n with the random matrix Z

(Eq (68)). We therefore next consider the statistics of the elements mi and ni of m and n

defined in Eq (67).

Since the elements of Z have zero mean, the mean values of mi and ni are given by �mi and �ni

defined in Eqs (54) and (56). The mean value of ni, but not mi, therefore depends on whether

the neuron i belongs to the excitatory or inhibitory population. Taking into account that Z has

block-like statistics, we split the matrix product in Eq (68) into the sum of items corresponding

to excitatory and inhibitory pre-synaptic neurons. Using Eqs (54) and (56), Δmi and Δni can

be written as

Dmi ¼
1

l0

X

j2NE

zij þ
1

l0

X

j2NI

zij

Dni ¼
1

l0

X

j2NE

�nEzji þ
1

l0

X

j2NI

�nIzji;

ð69Þ

We next take the limit NE, NI!1, and apply the central limit theorem, which states that

each sum converges to a Gaussian random variable, so that we have

Dmp
i �

1

l0

X

q¼E;I

ffiffiffiffiffiffi
Nq

q
N ð0; s2

zpq
Þ

Dnp
i �

1

l0

X

q¼E;I

ffiffiffiffiffiffi
Nq

q
�nqN ð0; s2

zqp
Þ:

ð70Þ

where p 2 E, I is the population the neuron i belongs to, and s2
zpq
; s2

zqp
are the variance of zij, zji

respectively, for i, j in populations p, q. The perturbations Δmi and Δni. therefore converge to
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Gaussian random variables of zero mean and variances s2
mp and s2

np given by:

s2
mp ¼

X

q¼E;I

Nqs
2
zpq

l
2

0

s2
np ¼

X

q¼E;I

Nqð�nqÞ
2
s2
zqp

l
2

0

:

ð71Þ

In order to guarantee stability in the large network limit, we assume that the variance of the

local random synaptic weights is satisfying s2
zpq
¼ Oð1=NÞ. Consequently, we have s2

mp ¼

Oð1Þ and s2
np ¼ Oð1Þ (Eqs (70) and (71)).

The population covariance spnm between elements mi and ni with i belonging to population

p can furthermore be written as

spnm ¼
1

Np
Dnp⊺Dmp ¼

1

Npl
2

0

X

s;q¼E;I
�ns
X

i2Ns

X

j2Nq

X

k2Np

zikzkj

0

@

1

A; ð72Þ

while the overall covariance σnm between all mi and ni reads

snm ¼
X

p¼E;I

aps
p
nm: ð73Þ

Altogether, mi and ni determined by perturbation theory therefore follow Gaussian-mixture

statistics, where the mean and variance depend on whether the neuron i belongs to the excit-

atory or inhibitory population.

Comparison with simulations. The theoretical predictions for eigenvalues obtained from

Eqs (61) and (62) can be verified by comparing them with the eigenvalue outliers computed by

direct eigen-decomposition of the full matrix J. We compute the average and standard devia-

tion of eigenvalue outliers over 30 realizations of J.

The predictions of perturbation theory for eigenvectors given by Eq (66) can also be verified

by direct eigen-decomposition, but to compare individual entries, an appropriate normaliza-

tion is required [47]. Indeed, perturbation theory assumes that �R is normalized and �L satisfies

�L⊤ �R ¼ 1 (Eq (52)), but the perturbed eigenvectors in Eq (64) do not obey the same normaliza-

tion. We therefore first use numerical eigen-decomposition to get the right- and left-eigenvec-

tor R̂ and L̂ of J. We then normalize R̂ to 1, and L̂ so that L̂⊤R̂ ¼ 1. To compare L̂; R̂ with

perturbation theory, we then normalize L̂; R̂ as

R ¼
L̂⊺ �R
�L⊺R̂

� �1=2

R̂;

L ¼
R̂⊺�L
�R⊺L̂

� �1=2

L̂;

ð74Þ

the eigenvectors L, R after normalization have the same statistics as ð�L þ DLÞ, ð�R þ DRÞ (Eqs

(62) and (64)).

2.4 Eigenvalues

Here, we apply Eqs (61) and (62) to determine the mean and variance of outlying eigenvalues

for different forms of local connectivity statistics.
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2.4.1 Independent random connectivity. In the case of independent random connectiv-

ity, the elements of Z are zero-mean, independently distributed and uncorrelated with �m and

�n. Averaging Eq (62) over Z then leads to [32]:

½yk� ¼
1

N
�n⊺Zk �m

� �

ð75Þ

¼ 0; ð76Þ

in the limit N!1 for all k> 0, and therefore the mean eigenvalue [λ] of J is given by the

eigenvalue λ0 of �J. For Gaussian random connectivity, we have

½l� ¼ JE � JI; ð77Þ

and for sparse connectivity

½l� ¼ cðNEAE þ NIAIÞ: ð78Þ

The variance s2
l

of λ can be computed by keeping only the linear term in Eq (61), which

leads to Eq (63) under the assumption that λ� λ0. Applying the central limit theorem then

yields

s2
l
¼

1

l
2

0

J2

E s2

zEE
þ
NI

NE
s2

zEI

� �

þ J2

I
NE

NI
s2

zIE
þ s2

zII

� �� �

: ð79Þ

Given the stability guarantee s2
zpq
¼ Oð1=NÞ, the asymptotic variance of the first-order per-

turbation of the eigenvalue s2
l

becomes zero in the limit of large network N!1.

For independent Gaussian random connectivity, we substitute s2
zpq

using Gaussian variance

parameters (Eqs (25) and (27))

s2
l
¼

1

Nl2

0

J2

E g2

EE þ
NI

NE
g2

EI

� �

þ J2

I
NE

NI
g2

IE þ g2

II

� �� �

: ð80Þ

For independent sparse random connectivity, we replace s2
zpq

and Jp with the variances and

means of the sparse model given in Eqs (29) and (30) and get

s2
l
¼

1

l
2

0

ðA2

ENE þ A2

I NIÞ
2

1 � cð Þc3: ð81Þ

2.4.2 Reciprocal motifs. In the case of connectivity with reciprocal correlations, zij and zji
are correlated, so that the average [θk] over Z in Eq (62) is non-zero for even k. Here we com-

pute [θk] for k = 2 and truncate Eq (61) at second order to get a third-order polynomial equa-

tion for the mean eigenvalue:

f ðlÞ ¼ l
3
� ðl0l

2
þ ½y1�lþ ½y2�Þ ¼ 0: ð82Þ

For Gaussian connectivity we have θ0 = λ0 = JE − JI, and θ1 is given by

y1 ¼ �n⊺Z �m=N ¼
X

p;q¼E;I

�np
X

i2Np ;j2Nq

zij �m
q=N;

ð83Þ

so that [θ1] = 0.
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The next term θ2 is

y2 ¼ �n⊺Z2 �m=N ¼
P

p;q¼E;I �np

�
X

i2Np

X

j2Nq

XN

k¼1

zikzkj

�

�mq=N: ð84Þ

Given the reciprocal correlations defined in Eq (31), only items with i = j in θ2 are non-zero

after averaging over Gaussian realizations, so that

½y2� ¼ ½�n⊺Z
2 �m�=N ¼

X

p¼E;I

�np½
X

i2Np

XN

k¼1

zikzki� �m
p=N: ð85Þ

We then write

½
XN

k¼1

zikzki� ¼ aEg2
EEZEE þ aIgEIgIEZEI; i 2 NE

½
XN

k¼1

zikzki� ¼ aEgIEgEIZEI þ aIg2
IIZII; i 2 NI:

ð86Þ

and substitute Eq (86) and �np; �mp into Eq (85) to obtain

½y2� ¼ JEðaEg2
EEZEE þ aIgEIgIEZEIÞ

� JIðaEgIEgEIZEI þ aIg2
IIZIIÞ:

ð87Þ

For sparse connectivity with reciprocal motifs, the correlations can be written as

½
XN

k¼1

zikzki� ¼ cA2
ENEðrEE � cÞ � cAEAINIðc � rEIÞ; i 2 NE

½
XN

k¼1

zikzki� ¼ � cAEAINEðc � rEIÞ þ cA2
I NIðrII � cÞ; i 2 NI:

ð88Þ

Then, combining Eq (38) and Eqs (54) and (56), the second-order coefficient [θ2] for the

sparse network is

½y2� ¼ A3
Ec

2N2
EðrEE � cÞ þ A2

EAIc2NENIðrEI � cÞ

þAEA2
I c

2NINEðrEI � cÞ þ A3
I c

2N2
I ðrII � cÞ:

ð89Þ

Using Eqs (38) and (39), it can be seen that Eq (89) is equivalent to Eq (87).

2.5 Eigenvectors

Here we apply Eqs (71) and (72) to determine the variances and covariances of eigenvector

entries obtained from perturbation theory for different forms of local connectivity

statistics.

2.5.1 Independent random connectivity. In the case of independent random connectiv-

ity, because zik and zkj are not correlated in Eq (72), the covariances spnm between the eigenvec-

tor entries are zero. For independent Gaussian connectivity, introducing Eq (26) into Eq (71)
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the variances of eigenvector entries can be written as

s2
mE ¼

1

l
2

0

aEg
2

EE þ aIg
2

EI

� �
; s2

mI ¼
1

l
2

0

aEg
2

IE þ aIg
2

II

� �
;

s2
nE ¼

1

l
2

0

1

aE
J2

Eg
2

EE þ
1

aI
J2

I g
2

IE

� �

; s2

nI ¼
1

l
2

0

1

aE
J2

Eg
2

EI þ
1

aI
J2

I g
2

II

� �

:

ð90Þ

For independent sparse connectivity, substituting Eq (30) into Eq (71), leads to

s2
mE ¼ s2

mI ¼
1

l
2

0

NEA
2

Ecð1 � cÞ þ NIA
2

I cð1 � cÞ
� �

;

s2
nE ¼

1

l
2

0

A2

ENE þ A2

I NI

� �
A2

EN
2c3ð1 � cÞ;

s2
nI ¼

1

l
2

0

A2

ENE þ A2

I NI

� �
A2

I N
2c3ð1 � cÞ:

ð91Þ

2.5.2 Reciprocal motifs. In the case of connectivity with reciprocal correlations, the vari-

ances of eigenvector entries are identical to the independent case.

As we have shown in Eq (72), noise correlation between the rank-one vectors arises from

the correlation between pairwise random connectivity weights in the situation with reciprocal

motifs, only items with i = j (for zik, zkj) in the same population q are non-zero, so that we have

snm ¼
X

p¼E;I

aps
p
nm ð92Þ

with

spnm ¼
1

Npl
2

0

X

q¼E;I
ð�nq
X

i2Nq

X

k2Np

zikzki �m
qÞ: ð93Þ

For Gaussian connectivity with reciprocal correlations, the covariances between entries on

Z matched by population can be written as

½
X

i2NE

X

k2NE

zikzki� ¼ NEaEg2
EEZEE

½
X

i2NE

X

k2NI

zikzki� ¼ NEaIgEIgIEZEI

½
X

i2NI

X

k2NE

zikzki� ¼ NIaEgIEgEIZEI

½
X

i2NI

X

k2NI

zikzki� ¼ NIaIg2
IIZII:

ð94Þ
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Combining Eq (94) and the mean rank-one connectivity loadings Eqs (54)–(56), we obtain

the population covariances as

sEnm ¼
1

l
2

0

JEg
2

EEZEE � JIgEIgIEZEI
� �

;

sInm ¼
1

l
2

0

JEgEIgIEZEI � JIg
2

IIZII
� �

:

ð95Þ

We note that the large deviation of the dominant eigenvalue λ in the network with recipro-

cal motifs also increases the nonlinearity of the vector perturbations. To account for this non-

linearity, we start from Eq (42) for λ and get snm ¼ l �
P

p¼E;Iap �mp�np ¼ l � l0, then we

compare with Eq (82) and get the approximation relationship

snm �
y2

l
2
¼

1

N
ð�n⊺ZÞðZ �mÞ

l
2

: ð96Þ

Similarly, we substitute λ for λ0 in Eq (95) for the covariance of each population, and we

have

sEnm ¼
1

l
2
JEg

2

EEZEE � JIgEIgIEZEI
� �

;

sInm ¼
1

l
2
JEgEIgIEZEI � JIg

2

IIZII
� �

:

ð97Þ

For sparse connectivity with reciprocal correlations, the calculations are similar, with

entries of Z being Bernoulli-distributed

½
X

i2NE

X

k2NE

zikzki� ¼ N2
EA

2
EcðrEE � cÞ

½
X

i2NE

X

k2NI

zikzki� ¼ � NENIAEAIcðc � rEIÞ

½
X

i2NI

X

k2NE

zikzki� ¼ � NINEAEAIcðc � rEIÞ

½
X

i2NI

X

k2NI

zikzki� ¼ N2
I A

2
I cðrII � cÞ:

ð98Þ

and we have the population covariance

sEnm ¼
1

l
2
NAEc

2 A2

ENE rEE � cð Þ þ A2

I NI rEI � cð Þ
� �

;

sInm ¼
1

l
2
NAIc

2 A2

ENE rEI � cð Þ þ A2

I NI rII � cð Þ
� �

:

ð99Þ

Using Eqs (38) and (39), it can be seen that Eq (99) is equivalent to Eq (97).

2.6 Dynamics

In this section, we show how approximating locally-defined connectivity by a global low-rank

structure allows us to analyse the emerging low-dimensional dynamics. We first summarize

the mean-field theory (MFT) for Gaussian-mixture low-rank networks [31, 33]. We then apply
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it to unit-rank connectivity obtained as an approximation of locally-defined connectivity. We

finally compare the resulting description of the dynamics with an alternate mean-field

approach for random connectivity consisting of a superposition of low-rank and full-rank ran-

dom parts as in Eq (24) [30, 32].

Throughout this study, we consider recurrent networks of rate units with recurrent interac-

tions defined by a connectivity matrix J. The dynamical activity of unit i is represented by a

variable xi(t), which we interpret as the total synaptic input current. The firing rate of unit i is

given by ri(t) = ϕ(xi(t)) where ϕ(x) = 1 + tanh (x − θ) is a positive transfer function. We focus

on networks without external inputs, so that the dynamics of synaptic input to neuron i is

given by

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij�ðxiðtÞÞ: ð100Þ

In Figs 5–7, we compare the dynamics determined by direct simulations for a locally-

defined connectivity matrix with a mean-field description obtained for a unit-rank

approximation.

2.6.1 Mean-field theory for Gaussian-mixture low-rank connectivity. Here we review

the mean-field theory for networks in which the connectivity matrix is exactly low-rank, with

components of connectivity vectors moreover drawn from Gaussian-mixture distribution.

Previous works have shown that in this case, the dynamics of the collective activity x(t) =

{xi}i = 1. . .N are embedded in a linear subspace of dimension R spanned by the connectivity vec-

tors m(r) [30–33]. Thus, x(t) can be expressed as

xðtÞ ¼
XR

r¼1

krðtÞm
ðrÞ; ð101Þ

where κr(t) for r = 1. . .R are collective latent variables that quantify the components of x(t)
along the connectivity vectors m(r). We assume that m(r) are orthogonal to each other, so that

κr(t) can be expressed as

krðtÞ ¼
xðtÞ⊺mðrÞ

jjmðrÞjj2
: ð102Þ

For simplicity, here we moreover assume that the initial value of x(t) lies in the subspace

spanned by the vectors m(r). More generally, the initial state can be included as an additional

input to the dynamics [31, 33].

For a unit rank connectivity J ¼ mn⊤=N, there is a single latent variable κ corresponding

to the connectivity vector m, and the dynamics of x(t) is expressed as

xðtÞ ¼ kðtÞm; ð103Þ

with κ(t) given by

kðtÞ ¼
xðtÞ⊺m
jjmjj2

: ð104Þ

Substituting Eq (103) into Eq (100) and inserting the unit-rank connectivity, the dynamics

of the latent variable κ can be expressed as

_kðtÞ ¼ � kðtÞ þ krecðtÞ ð105Þ
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where

krecðtÞ ¼
1

N

XN

i¼1

ni�ðkðtÞmiÞ: ð106Þ

The quantity κrec(t) represents the total recurrent input to κ. The sum in the r. h. s. of Eq

(106) can moreover be interpreted as the empirical average of niϕ(κ(t)mi) over the neurons in

the network. In the limit of large network size N, this average converges to the integral of nϕ(κ
(t)m) over the distribution P(m, n) of the components of connectivity vectors. For low-rank

networks, the mean-field limit corresponds to replacing κrec(t) with this integral [31, 33]:

krec ¼

Z

dmdnPðm; nÞn�ðkmÞ: ð107Þ

In the Gaussian-mixture low-rank model, each neuron i is assigned to a population p for

p = 1. . .P. Within each population, the components (mi, ni) are generated from a multivariate

Gaussian distribution Pp(m, n), that is

Ppðm; nÞ ¼ N
�mp

�np

 !

;
s2
mp spnm

spnm s2
np

 ! !

: ð108Þ

In the mean-field limit, κrec is therefore given by

krec ¼
XP

p¼1

ap

Z

dmdnPpðm; nÞn�ðkmÞ; ð109Þ

where αp is the fraction of neurons in population p.

Integrating by parts, κrec can be re-expressed as (S1 Text)

krec ¼
XP

p¼1

apð�n
ph�ðmpx;D

p
xÞi þ h�

0
ðmpx;D

p
xÞis

p
nmkÞ: ð110Þ

Here mpx; D
p
x are the mean and variance of the inputs to population p, given by

mpx ¼ k �mp;

D
p
x ¼ k2s2

mp ;
ð111Þ

and the symbol hf(μ, Δ)i stands for the expected value of a function f(x) with respect to a

Gaussian variable x with mean and variance μ, Δ, that is

hf ðm;DÞi ¼
Z

dxð2pÞ� 1=2expð� x2=2Þf ðmþ
ffiffiffiffi
D
p

xÞ: ð112Þ

Altogether, using MFT for Gaussian-mixture low-rank networks gives the closed dynamics

of the latent variable κ:

_k ¼ � kþ
XP

p¼1

apð�n
ph�ðk �mp; k2s2

mpÞi þ h�
0
ðk �mp; k2s2

mpÞis
p
nmkÞ: ð113Þ
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In particular, the corresponding steady state is given by

k ¼
XP

p¼1

apð�n
ph�ðk �mp; k2s2

mpÞi þ h�
0
ðk �mp; k2s2

mpÞis
p
nmkÞ: ð114Þ

Note that the first and second terms on the r. h. s. respectively correspond to the mean and

covariance of the entries of the unit-rank connectivity vectors m and n.

2.6.2 Approximate dynamics for locally-defined connectivity. We next apply the MFT

to unit-rank connectivity obtained as an approximation of locally-defined connectivity for the

different considered cases.

Independent connectivity. We start from the network with independent connectivity, in

which case the unit-rank connectivity vectors obtained by approximating locally-defined con-

nectivity have no covariance, i. e. spnm ¼ 0 (Methods Sec. 2.5).

The dynamical system for the latent variable κ therefore contains only the mean term

_k ¼ � kþ
XP

p¼1

ap�n
ph�ðk �mp; k2s2

mpÞi: ð115Þ

For the Gaussian random model, inserting the expressions for �mp and �np (Eqs (54)–(56)),

the fixed point obeys

k ¼ JEh�ðk; k2s2
mEÞi � JIh�ðk; k2s2

mI Þi; ð116Þ

where the variance s2
mp of connectivity components mi is given by Eq (90).

For the sparse random model, we further consider Eqs (38), (54)–(56) to obtain �np here,

and the fixed point is

k ¼ cNEAEh�ðk; k
2s2

mEÞi þ cNIAIh�ðk; k
2s2

mI Þi; ð117Þ

where s2
mp is obtained from Eq (91).

Reciprocal motifs. Correlations between reciprocal connections lead to non-zero covari-

ance spnm between the unit-rank connectivity vectors obtained by approximating locally-

defined connectivity (Methods Sec. 2.3, Eq (72)). The dynamical system for the latent variable

κ therefore contains both the mean and covariance terms (Eq (114)).

For the Gaussian random model, combining Eqs (54)–(56), (90) and (97) the fixed point

obeys

k ¼
X

p¼E;I

apð�n
ph�ðk �mp; k2s2

mpÞi

þ
1

l
2
h�
0
ðk �mp; k2s2

mpÞiðJEgpEgEpZEp � JIgIpgpIZIpÞkÞ

ð118Þ

with the variance s2
mp of connectivity components mi given by Eq (90). For the sparse model,

combining Eqs (38), (54)–(56), (91) and (99), the fixed point obeys

k ¼
X

p¼E;I

apð�n
ph�ðk �mp; k2s2

mpÞi

þ
1

l
2
h�
0
ðk �mp; k2s2

mpÞiNApc
2 A2

ENEðrEp � cÞ þ A2

I NIðrIp � cÞ
� �

kÞ:

ð119Þ

with the variance s2
mp of connectivity components mi given by Eq (91).
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2.6.3 Mean-field theory for superpositions of low-rank and full rank random connec-

tivity. Here we review an alternate form of mean-field theory for random connectivity con-

sisting of a superposition of a low-rank structure and full-rank random part [30, 32]. This

form of MFT can be directly applied to independently generated connections, where the con-

nectivity matrix consists precisely of a superposition of a low-rank part corresponding to the

mean, and a full-rank random part corresponding to fluctuations (Eqs (24) and (121)).

Extending this type of MFT to the situation where reciprocal connections are present is how-

ever challenging [18]. Moreover, in contrast to the case where connectivity is exactly low-

rank, when the additional full-rank random part is present the mean-field theory describes

only the steady-state activity (and linearized dynamics around it), but not the full dynamics

as in Eq (100).

The key assumption of MFT for randomly connected networks is that the total input xi to

each unit can be approximated as a stochastic Gaussian process [53]. The first two cumulants

(mean and variance) of that Gaussian process are then computed self-consistently to charac-

terize the steady-state activity.

At a fixed point, the total input xi obeys

xi ¼
XN

j¼1

Jij�ðxjÞ: ð120Þ

Replacing Jij, where i, j belong to populations p, q respectively, by the superposition of rank-

one mean and full-rank random connectivity components �mp�nq=N þ zij we get

xi ¼
�mp

N

X

q¼1...P
�nq
X

j2Nq

�ðxjðtÞÞ þ
XN

j¼1

zij�ðxjÞ: ð121Þ

Denoting by [�] the average over the distribution of xi, the mean of xi can then be expressed

as

½xi� ¼ �mp�k ð122Þ

where we introduced

�k ¼
XP

p¼1

�np
X

i2Np

½�ðxiÞ�=N ð123Þ

and we assumed that the zero-mean random connectivity zij is uncorrelated with the firing

rate ϕ(xj), so that

XN

j¼1

½zij�ðxjÞ� ¼ 0: ð124Þ
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Similarly, the correlation between xi and xj, where i 2 Np and j 2 Nq, is given by

½xixj� ¼
�mp

N

XP

s¼1

�ns
X

k2Ns

½�ðxkÞ�
�mq

N

XP

t¼1

�nt
X

l2Nt

½�ðxlÞ�

þ
�mp

N

XP

s¼1

�ns
X

k2Ns

½�ðxkÞ�
XN

l¼1

½zjl�ðxlÞ�

þ
�mq

N

XP

t¼1

�nt
X

l2Nt

½�ðxlÞ�
XN

k¼1

½zik�ðxkÞ�

þ½
XN

l¼1

zjl�ðxlÞ
XN

k¼1

zik�ðxkÞ�

¼ �mp �mq�k2 þ dij

XN

k¼1

½zikzjk�½�
2
ðxkÞ�

ð125Þ

where we assume the neuronal activities are decorrelated [ϕ(xi)ϕ(xj)] = [ϕ(xi)][ϕ(xj)] when i 6¼
j. This assumption holds for independently-generated connections, but not in presence of

reciprocal correlations [18]. The covariance between xi and xj therefore becomes

xixj
h i

� ½xi�½xj� ¼

PN
k¼1
½z2

ik�½�
2
ðxkÞ� for i ¼ j;

0 for i 6¼ j:

8
<

:
ð126Þ

Within the mean-field approximation, neuronal activation xi are therefore uncorrelated

Gaussian variables with mean and variance given by Eqs (122) and (126)

mxi ≔ ½xi� ¼ �mp�k;

Dxi
≔ ½x2

i � � ½xi�
2
¼
X

k¼1

½z2

ik�½�
2
ðxkÞ�:

ð127Þ

To determine �k and [ϕ(xk)2], we finally express Eqs (123) and (127) as Gaussian integrals

over xi in population p:

�k ¼
XP

q¼1

aq�n
qh�ðmqx;D

q
xÞi;

X

k¼1

½z2

ik�½�ðxkÞ
2
� ¼

XP

q¼1

Nqs
2

zpq
h�

2
ðmqx;D

q
xÞi:

ð128Þ

Here we replaced �mp ¼ 1 and
PN

k¼1
½z2

ik�f ð�Þ ¼
PP

q¼1
Nqs

2
zpq
f ð�Þ given the eigenvector nor-

malization in Eq (54), and the assumption that variances ½z2
ik� depend on the populations the

units i and k belong to (Eqs (26), (30) and (54)). Therefore, the stationary mean and variance
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of the dynamics of synaptic inputs in population p are

mpx ≔ �k;

D
p
x ≔

XP

q¼1

Nqs
2

zpq
h�

2
ðmqx;D

q
xÞi:

ð129Þ

Eqs (128) and (129) give the self-consistent equations for the stationary solutions of the

dynamics.

More specifically, in the Gaussian random model, we combine connectivity statistics given

by Eqs (26), (54)–(56), so that we have

mpx ≔ JEh�ðmEx ;D
E
xÞi � JIh�ðmIx;D

I
xÞi;

D
p
x ≔

X

q¼E;I

aqg
2

pqh�
2
ðmqx;D

q
xÞi;

ð130Þ

while for the sparse random model, we combine connectivity statistics given by Eqs (29) and

(30), (38), (54)–(54), so that we have

mpx ≔ cNEAEh�ðm
E
x ;D

E
xÞi þ cNIAIh�ðm

I
x;D

I
xÞi;

D
p
x ≔

X

q¼E;I

Nqcð1 � cÞA2

qh�
2
ðmqx;D

q
xÞi:

ð131Þ
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S1 Fig. Comparison of singular value decomposition- (SVD-) and eigendecomposition-

based low-rank approximation. Blue scatters in (A, B) show eigenvalue spectra of the Gauss-

ian excitatory-inhibitory full rank matrices J, with in general rank-2 mean connectivity �J, and

i. i. d. random parts with identical variances g2/N over neurons. Blue dots in the circular bulk

show N − 1 complex eigenvalues for one realization of the random connectivity, outlying

eigenvalues (blue dots) are shown for 30 realizations of the random connectivity. Dashed enve-

lopes indicate the theoretical predictions for the radius rg = g of the circular bulk, red circles

represent one of the eigenvalue of �J corresponding to the outlier of J. Network parameters NE
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= 2NI = 600, N = NE + NI, g = 0.8, �J EE ¼ 0:0018; �J IE ¼ 0:0015, �J EI ¼ 0; �J II ¼ � 0:0013. Purple

triangles in (A) show the eigenvalues of the eigendecomposition-based rank-one approxima-

tion for the corresponding 30 realizations of the full rank matrices. Their location on the y-axis

is shifted to help visualization. Purple triangles in (B) show the eigenvalues of the SVD-based

rank-one approximation for the corresponding 30 realizations of the full rank matrices.

(TIF)
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