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Background: Streptococcus pneumoniae and Neisseria meningitidis are frequent pathogens in life-threatening in-
fections. Genetic variation in the immune system may predispose to these infections. Nuclear factor-κB is a key
component of the TLR-pathway, controlled by inhibitors, encoded by the genes NFKBIA, NFKBIE and NFKBIZ.
We aimed to replicate previous findings of genetic variation associated with invasive pneumococcal disease
(IPD), and to assess whether similar associations could be found in invasive meningococcal disease (IMD).
Methods: Caseswith IPD and IMD and controlswere identified by linking Danish national registries. DNAwas ob-
tained from the Danish Neonatal Screening Biobank. The association between SNPs and susceptibility to IPD and
IMD, mortality and pneumococcal serotypes was investigated.
Results: 372 childrenwith pneumococcalmeningitis, 907with pneumococcal bacteremia and 1273 controlswere
included. We included 406 cases with meningococcal meningitis, 272 with meningococcal bacteremia, and 672
controls.
The NFKBIE SNP was associated with increased risk of pneumococcal meningitis (aOR 1.68; 95% CI: 1.20–2.36),
but not bacteremia (aOR 1.08; 95% CI: 0.86–1.35). The remaining SNPs were not associated with susceptibility
to invasive disease. None of the SNPs were associated with risk of IMD or mortality.
Conclusions: A NFKBIE polymorphism was associated with increased risk of pneumococcal meningitis.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Invasive pneumococcal disease (IPD) and invasive meningococ-
cal disease (IMD) are major causes of morbidity and mortality
(WHO|Pneumococcal disease; WHO|Meningococcal disease).
Pneumococcal disease remains a frequent infection in children,
and in 2005 WHO estimated that 0.7–1 million children aged
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OR, odds ratio; RSV, respiratory
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. This is an open access article under
b5 years die of this infection every year worldwide (http://
www.who.int/wer/2007/wer8212.pdf?ua=1). For meningococcal
disease the incidence is highest in children younger than 1 year
(MacNeil et al., 2015), and WHO has estimated that the infection
was the cause of 171,000 deaths in all age groups worldwide in
2000 (Pinkbook|Meningococcal|Epidemiology of Vaccine Preventable
Diseases|CDC).

The most severe presentations of infection with S. pneumoniae and
N. meningitidis are meningitis and sepsis (Brouwer et al., 2009).

IPD is often preceded by an asymptomatic carrier state (Bogaert
et al., 2004). Nasopharyngeal carriage of pneumococci is highest in chil-
dren aged 1–2 years, and IPD primarily affects children under 5 years
and the elderly (Harboe et al., 2012; Sleeman et al., 2001). Carriage of
N. meningitidis is low in the first years of age, increases in teenagers
and peaks in young adults aged 20–24 (Caugant et al., 2007). Multiple
factors such as age, immunization status, ethnicity, immunosuppres-
sion, socioeconomic factors, exposure to respiratory viral diseases and
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the host's genetic profile affect individual risk of IPD and IMD (Harboe
et al., 2012; Chapman et al., 2007). Genetic variation in the innate im-
mune system most likely predisposes individuals to these infections.
The genetics of the complicated pathways have been elucidated only
partially.

Activation of nuclear factor (NF)-κB through Toll-like receptor bind-
ing is considered to be the central initiating event of host responses to
invasion of microbial pathogens, including encapsulated bacteria
(Rahman and McFadden, 2011; Clausen et al., 2013). Innate and adap-
tive immune responses are dependent on activation of the NF-κB path-
way (Janssen et al., 2004). The degradation of NF-κB inhibitors including
IκB-α, IκB-ε and IκB-ζ (encoded by the genes NFKBIA, NFKBIE, and
NFKBIZ) (Chapman et al., 2010a) leads to NF-κB translocation to the
nucleus and gene transcription (Chapman and Hill, 2012). Single
nucleotide polymorphisms (SNPs) in NFKBIA, NFKBIE, NFKBIZ and relat-
ed genes have been associated with susceptibility to IPD in adults
(Chapman et al., 2006, 2007, 2010a, 2010b; Khor et al., 2007).

Studies exploring already described associations between certain
SNPs and the susceptibility to diseases are important in order to verify
those associations in new, independent studies (Tabor et al., 2002).

This study evaluates the association of SNPs in NF-kB inhibitors, and
susceptibility to IPD and pneumococcal serotypes in a pediatric popula-
tion (Chapman et al., 2006, 2007, 2010a, 2010b).

To assess pathogen-specificity, we genotyped the same SNPs in a
meningococcal population. We hypothesized that the association be-
tween susceptibility of pneumococcal meningitis and the chosen SNPs
may be replicated in a population with IMD.
2. Patients and Methods

2.1. Study Population

The collection of IPD and IMD data has been described previously
(Lundbo et al., 2014, 2015).

Individuals with IPD and IMD were identified by linking the Danish
National Neisseria and Streptococcus Reference Center, Statens Serum
Institute, the Danish National Patient Register (DNPR) (Lynge et al.,
2011) and the Danish Civil Registration System (CRS) (Schmidt et al.,
2014).

All IPD and IMD cases and controls included in the study were born
in the 1982–2006 period, and the data was pulled in May 2009.

IPD cases were defined as children under the age of five, fromwhom
a positive culture of S. pneumoniae from cerebrospinal fluid (CSF) or
bloodwas obtained between July 1982 andApril 2008. Only unvaccinat-
ed childrenwere included.When CSF and blood isolateswere recovered
simultaneously, cases were categorized asmeningitis. Bacteremia refers
to patients with or without a known focus. Information on foci is not
available through the Danish National Neisseria and Streptococcus
Reference Center or the DNPR. Isolates were serotyped as previously
described (Lundbo et al., 2014; Harboe et al., 2010). Recurrent (≥two)
IPD episodes were defined as isolation of S. pneumoniae from blood or
CSF ≥ 30 days after the primary positive culture or ≤30 days in cases of
infection with another serotype.

IMD cases were children below the age of five years who had inva-
sive meningococcal disease in the period 1982–2006.

The first date of the meningococcal bacteremia or meningitis diag-
nosis for each case was extracted from the Danish National Patient Reg-
istry (DNPR) using International Classification of Diseases, 8th Revision
[ICD-8] (036Meningococcal infection; 036.0Meningococcalmeningitis;
036.1Meningococcemiawithoutmention ofmeningitis) and 10th Revi-
sion [ICD-10] codes (A39.0+ Meningococcal meningitis (G01); A39.2
Acute meningococcemia; A39.3 Chronic meningococcemia; A39.4
Meningococcemia, unspecified) (Lynge et al., 2011).

We aimed to include one control per case of IPD and IMD. Controls
could only be included in the analysis once.
For IPD and IMD cases with meningitis, we identified controls
through the CRS.

For cases with bacteremia, controls were obtained from the
Danish Neonatal Screening Biobank (DNSB) (Nørgaard-Pedersen and
Hougaard, 2007) by selecting the same-sex dried blood spot card stored
nearest to that of the case. Cases and controls with a prior hospitaliza-
tion for any cause were excluded. Only cases and controls who them-
selves and whose parents were born in Scandinavia or Germany were
included. We used the risk-set sampling technique to select controls
(i.e., eligible control subjects had to be alive and at risk of a first hospi-
talization with IPD on the date that the corresponding case was hospi-
talized) (Navidi and Weinhandl, 2002).

The 7-valent pneumococcal conjugate vaccine was introduced into
the Danish Childhood Immunization Program in October 2007. Menin-
gococcal vaccines are not part of the Danish childhood immunization
program (Childhood vaccination programme – Statens Serum Institut).

2.2. DNA Extraction and Genotyping

All samples from the Danish neonatal screening program are stored
in the DNSB (Nørgaard-Pedersen and Hougaard, 2007).

DNA extraction and genome amplification were performed by the
Department of Clinical Biochemistry, Immunology and Genetics at SSI,
as previously described (Hollegaard et al., 2011).

Candidate SNPs (Tables 3 and 4) were chosen through a literature
review based on known host genetic variation of susceptibility for IPD
(Chapman et al., 2006, 2007, 2010a, 2010b; Khor et al., 2007).

All SNP genotyping was performed by LGC Genomics (LGC Ltd.,
Teddington, Middlesex, United Kingdom) using competitive allele-
specific PCR (Nijman et al., 2008).

2.3. Statistical Analysis

Median and interquartile ranges (IQRs) were calculated for quanti-
tative variables. Genotypes in each group were compared using χ2 and
Fisher's exact test. Logistic regression, adjusted for sex, was performed
to examine a possible association between genotypes and IPD risk, out-
come and serotype distribution. The results are presented as adjusted
odds ratios (aORs) with 95% confidence intervals (CIs). Genotype equi-
libriumwas tested using theHardy–Weinbergmethod (Rodriguez et al.,
2009). The significance level was set at p b 0.008 (0.05/6) due to multi-
ple comparisons (seven SNPs of which twowere in linkage disequilibri-
um (LD)).

The dominant model used in several of our calculations describes a
comparison of variant allele carriers (variant homozygotes and hetero-
zygotes) with non-carriers (wild type homozygotes) (Clarke et al.,
2011).

Analyses were performed using Statistical Analysis Systems (SAS
version 9.3, SAS institute, Cary, NC, USA).

3. Results

3.1. Subjects

Characteristics of cases and controls are shown in Tables 1 and 2.
Children with IPD were significantly younger than children with

IMD (median 13 vs 19 months, p b 0.0001).
We genotyped seven SNPs, previously described to be associated

with susceptibility to IPD (Table 3). Genotype call rates were N95%,
except for rs760477 (call rate of 94% for IPD and call rate of 91% for
IMD).

All SNPs in the control subjects were in the Hardy–Weinberg Equi-
librium (HWE) at the adjusted significance level (p N 0.01) (Rodriguez
et al., 2009). However, in the IPD population a few of the control groups
were not in HWE at the p b 0.05 level.



Table 1
Characteristics of invasive pneumococcal disease cases and their controls.

Group Status, n (%) Male sex, n (%) Age at infection (months), median (IQR) Birth year, median (IQR)

Meningitis Control (362, 49) 204 (56) – 1994 (1989–2000)
Case (372, 51) 209 (56) 10 (6–15)a 1995 (1990–2000)

Bacteremia Control (901, 50) 533 (59) – 1997 (1992–2002)
Case (907, 50) 537 (59) 14 (10–21)a 1997 (1992–2002)

Combined Control (1263, 50) 737 (58) – 1996 (1991–2002)
Case (1279, 50) 746 (58) 13 (8–19) 1996 (1991–2002)

a Kruskal–Wallis test for difference in age p b 0.0001.
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3.2. Primary IPD

Before Bonferroni correction, genotypic and allelic tests of the
NFKBIE SNP showed an association with increased susceptibility to
meningitis (but not bacteremia) when children carried variant alleles
(p = 0.0001 and p = 0.036, respectively).

Results for the dominant model are shown in Table 3.
As well, heterozygosity forNFKBIE in themeningitis groupwas asso-

ciated with increased risk of IPD compared to homozygosity (wild type
GG combined with the variant AA) (OR 1.96; 95% CI 1.38–2.78). Testing
of the heterozygous state vs. the homozygous variant (OR 0.23; 95% CI
0.05–1.07) and heterozygosity vs. wild type homozygosity (OR 1.90;
95% CI 1.34–2.71) indicated an increased risk of pneumococcalmeningi-
tis among children carrying the variant genotype.

None of the SNPs in NFKBIA, NFKBIZ, PTPN22, TIRAP, or TONSL
reached the p b 0.008 significance level (Table 3).

Pneumococcal capsular serotypes were available for 1276 of the IPD
cases (99·8%). In the meningitis group the most frequent serotypes
were 6B (n = 84, 23%), 14 (n = 47, 13%), 7F (n = 39, 10%), 19F (n =
33, 9%), 18C (n = 30, 8%) and correspondingly in the bacteremia
group 14 (n = 179, 20%), 6B (n = 135, 15%), 1 (n = 85, 9%), 18C
(n = 73, 8%), 19F (n = 63, 7%). Serotype distribution has previously
been described (Lundbo et al., 2014).

Among cases the serotype distribution did not differ significantly ac-
cording to genotypes. Serotype 23F was relatively more frequent in in-
dividuals, who were heterozygous for both NFKBIA SNPs (p = 0.03
respectively 0.03) in the combined group. In both the meningitis
group and in the combined group serotype 6A was more frequent in in-
dividuals carrying variant alleles (for rs3138053: p = 0.01 respectively
0.01 and for rs2233406 p=0.04 and p=0.048). These effects were not
statistically significant after Bonferroni correction.
3.3. Recurrent IPD

Twelve individuals hadmultiple episodes of bacteremia. For NFKBIA,
rs2233406, subjects carrying at least onemutant allele vs. wild type ho-
mozygous state had higher odds for multiple infections compared to
single cases of IPD (OR 5.2; 95% CI, 1.1–24.0, p = 0.03); for rs3138053
(OR 5.1; 95% CI, 1.1–23.4, p = 0·04). When comparing multiple cases
to all controls, the corresponding ORs were 5.5 (95% CI 1.2–25, p =
0.03) for rs2233406 and 5.5 (95% CI 1.2–25, p = 0.03) for rs3138053.
When corrected according to the Bonferroni method, the p-values be-
came insignificant.
Table 2
Characteristics of invasive meningococcal disease cases and their controls.

Group Status, n (%) Male sex, n (%)

Meningitis Controls: 397 (49) 233 (59)
Cases: 406 (51) 237 (58)

Bacteremia Controls: 275 (50) 149 (54)
Cases: 272 (50) 145 (53)

Combined Controls: 672 (50) 381 (57)
Cases: 678 (50) 382 (56)

a Kruskal–Wallis test for difference in age p = 0.38.
Polymorphisms in the remaining SNPs studied were not associated
with increased risk of recurrent IPD.

3.4. IPD-associated Mortality

Twenty-four cases (2%) (15 cases of meningitis and nine of bacter-
emia) died within the first 30 days after their IPD diagnosis. None of
the examined polymorphisms were associated with increased 30-day
mortality in meningitis cases [for NFKBIE, rs529948 (in a dominant
model): OR 0.94; 95% CI 0.28–3.14] or in bacteremia cases [for NFKBIE,
rs529948 (in a dominant model): OR 0.34; 95% CI 0.05–3.21] for any
SNPs.

3.5. IMD

No SNPs were associated with increased risk of IMD at the p b 0.008
significance level. Results for the dominant model are shown in Table 4.

During the first 30 days after their IMD diagnosis, 26 (6%) of the
meningitis patients and 18 (7%) of the bacteremia patients died. In
tests for association between mortality and SNPs, rs3138053 and
rs2233406 (both for meningitis and the whole population) in a domi-
nantmodel yielded p-values of 0.02–0.05.However, the associations be-
came insignificant when adjusted for multiple testing. No other SNPs
were associated with increased mortality.

4. Discussion

In this study of children with invasive bacterial disease, we found an
association between a polymorphism in the NFKBIE gene and increased
susceptibility to IPD. This association was specific for the risk of pneu-
mococcal meningitis. A number of other previously described associa-
tions between IPD and the SNPs, mainly in adults, were not replicated
in our population of children. We did not find an association between
any of the SNPs and IMD, neither with an increased risk for 30-daymor-
tality after IPD or IMD.

The pathogenesis and pathophysiology of bacterial meningitis in-
volve a complex interplay between virulence factors characterizing
the pathogens and the host immune response. The exact role of NFKBIE
in this process is unknown, but our findings may suggest that IκB-ε is of
greater importance in more disseminated infections, compared to the
other IκB inhibitor proteins included in this study. Our inability to repli-
cate the results in our bacteremia population may suggest that the host
defense against pathogens crossing the blood–brain barrier is compro-
mised in patients carrying a NFKBIE polymorphism.
Age at infection (months), median (IQR) Birth year, median, (IQR)

– 1994 (1990–1998)
19 (8–32)a 1994 (1990–1998)
– 1992 (1987–1996)
20 (9–32)a 1991 (1987–1996)
– 1993 (1989–1997)
19 (9–32) 1993 (1989–1997)



Table 3
Single nucleotide polymorphism frequencies in invasive pneumococcal disease cases and their controls.

SNP Status AAa ABa BBa Total HWE (controls) p-value Genotypic p-valueb Odds ratio (95% CI)c

NFKBIE
rs529948
G → A

Meningitis
Control 284 (79) 66 (18) 10 (3) 360 0.01 b p b 0.02d 0.0001 1.68 (1.20–2.36)
Case 245 (69) 108 (30) 2 (1) 355

Bacteremia
Control 687 (78) 184 (21) 15 (2) 886 p N 0.05 0.78 1.08 (0.86–1.35)
Case 646 (76) 188 (22) 14 (2) 848

Combined
Control 971 (78) 250 (20) 25 (2) 1246 p N 0.05 0.01 1.24 (1.03–1.49)
Case 891 (74) 296 (24) 16 (1) 1203

NFKBIA
rs3138053
T → C

Meningitis
Control 183 (52) 146 (41) 25 (7) 354 p N 0.05 0.93 1.04 (0.78–1.40)
Case 177 (51) 146 (42) 27 (8) 350

Bacteremia
Control 468 (53) 349 (39) 68 (8) 885 p N 0.05 0.43 1.10 (0.91–1.33)
Case 425 (50) 358 (42) 60 (7) 843

Combined
Control 651 (53) 495 (40) 93 (8) 1239 p N 0.05 0.51 1.09 (0.93–1.28)
Case 602 (50) 504 (42) 87 (7) 1193

NFKBIA
rs2233406
G → A

Meningitis
Control 183 (51) 148 (41) 27 (8) 358 p N 0.05 0.98 1.0 (0.74–1.34)
Case 179 (51) 146 (42) 25 (7) 350

Bacteremia
Control 468 (53) 347 (39) 72 (8) 887 p N 0.05 0.46 1.07 (0.88–1.29)
Case 434 (51) 354 (42) 60 (7) 848

Combined
Control 651 (52) 495 (40) 99 (8) 1245 p N 0.05 0.51 1.05 (0.89–1.23)
Case 613 (51) 500 (42) 85 (7) 1198

Mal/TIRAP
rs8177374
C → T

Meningitis
Control 261 (73) 92 (26) 4 (1) 357 p N 0.05 0.53 0.94 (0.67–1.31)
Case 259 (74) 82 (24) 7 (2) 348

Bacteremia
Control 651 (74) 220 (25) 14 (2) 885 p N 0.05 0.70 1.03 (0.83–1.27)
Case 619 (73) 211 (25) 18 (2) 848

Combined
Control 912 (73) 312 (25) 18 (1) 1242 p N 0.05 0.47 1.00 (0.84–1.20)
Case 878 (73) 293 (25) 25 (2) 1196

TONSL
rs760477
G → A

Meningitis
Control 81 (25) 151 (47) 87 (27) 319 p N 0.05 0.11 0.75 (0.53–1.05)
Case 106 (31) 161 (47) 72 (21) 339

Bacteremia
Control 277 (31) 428 (49) 177 (20) 882 p N 0.05 0.83 1.05 (0.85–1.28)
Case 257 (30) 422 (50) 165 (20) 844

Combined
Control 358 (30) 579 (48) 264 (22) 1201 p N 0.05 0.50 0.96 (0.81–1.14)
Case 363 (31) 583 (49) 237 (20) 1183

NFKBIZ
rs616597
C → A

Meningitis
Control 207 (59) 129 (37) 17 (5) 353 p N 0.05 0.42 0.82 (0.61–1.11)
Case 226 (63) 114 (32) 17 (5) 357

Bacteremia
Control 527 (59) 334 (37) 33 (4) 894 0.02 b p b 0.05§ 0.32 0.95 (0.79–1.15)
Case 514 (60) 299 (35) 42 (5) 855

Combined
Control 734 (59) 463 (37) 50 (4) 1247 0.01 b p b 0.02§ 0.21 0.91 (0.78–1.07)
Case 740 (61) 413 (34) 59 (5) 1212

PTPN22
rs2476601
G → A

Meningitis
Control 291 (81) 63 (18) 4 (1) 358 p N 0.05 0.70 0.93 (0.64–1.36)
Case 294 (82) 61 (17) 2 (1) 357

Bacteremia
Control 730 (82) 152 (17) 7 (1) 889 p N 0.05 0.87 0.94 (0.73–1.20)
Case 705 (83) 138 (16) 6 (1) 849

Combined
Control 1021 (82) 215 (17) 11 (1) 1247 p N 0.05 0.72 0.94 (0.76–1.15)
Case 999 (83) 199 (17) 8 (1) 1206

a Number of individuals (%); AA: wild type homozygote; AB: heterozygote; and BB mutant homozygote.
b χ2 or Fisher's exact test applied as appropriate.
c Comparison of variant allele carriers (BB + AB) vs. wild type homozygotes (AA).
d Controls in the Hardy–Weinberg disequilibrium at the p N 0.05 level. When adjusted for multiple comparisons (p N 0.008), all controls are in HWE.
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Also, our meningitis cases were significantly younger than the bac-
teremia cases, and this may contribute to some of the difference.

We chose to include children b5 years in order to create a homoge-
neous population. It has been suggested that severe primary infections
in childhood aremore likely a result of single-gene variations compared
to more complex genetics in adults (Alcaïs et al., 2010), which also
makes genetic predisposition to infectious diseases particularly inter-
esting in pediatric populations.

In a Caucasian population aged 0–94 years (mean 59 years) Chap-
man et al. demonstrated that polymorphisms in the NFKBIE SNP were
associated with protection from IPD but not pneumococcal empyema
(Chapman et al., 2007). Heterozygotes tended to have increased



Table 4
Single nucleotide polymorphism frequencies in invasive meningococcal disease cases and their controls.

SNP Status AAa ABa BBa Total HWE (controls), p-value Geno-typic p-valueb Odds ratio (95% CI)c

NFKBIE
rs529948
G → A

Meningitis
Control 311 (79) 76 (19) 9 (2) 396 p N 0.05 0.37 1.24
Case 292 (75) 91 (23) 8 (2) 391 (0.89–1.73)

Bacteremia
Control 205 (76) 57 (21) 6 (2) 270 p N 0.05 0.71 1.06
Case 199 (75) 56 (21) 9 (3) 264 (0.72–1.58)

Combined
Control 516 (78) 133 (20) 15 (2) 664 p N 0.05 0.50 1.16
Case 491 (75) 147 (22) 17 (3) 655 (0.90–1.50)

NFKBIA
rs3138053
T → C

Meningitis
Control 194 (50) 166 (43) 30 (8) 390 p N 0.05 0.97 0.98
Case 193 (50) 165 (43) 28 (7) 386 (0.74–1.30)

Bacteremia
Control 142 (53) 106 (40) 20 (7) 270 p N 0.05 0.92 0.90
Case 147 (56) 99 (38) 18 (7) 264 (0.64–1.27)

Combined
Control 336 (51) 272 (43) 50 (8) 658 p N 0.05 0.88 0.95
Case 340 (52) 264 (41) 46 (7) 650 (0.76–1.18)

NFKBIA
rs2233406
G → A

Meningitis
Control 193 (49) 165 (42) 32 (8) 390 p N 0.05 0.89 0.96
Case 193 (50) 163 (42) 28 (7) 384 (0.73–1.28)

Bacteremia
Control 147 (54) 105 (39) 20 (7) 272 p N 0.05 0.89 0.93
Case 150 (56) 100 (37) 18 (7) 268 (0.66–1.30)

Combined
Control 340 (51) 270 (41) 52 (8) 662 p N 0.05 0.82 0.95
Case 343 (53) 263 (40) 46 (7) 652 (0.76–1.18)

Mal/TIRAP
rs8177374
C → T

Meningitis
Control 285 (73) 102 (26) 5 (1) 392 p N 0.05 0.93 1.03
Case 276 (72) 101 (26) 6 (2) 383 (0.75–1.41)

Bacteremia
Control 193 (71) 72 (27) 5 (2) 272 p N 0.05 0.18 0.98
Case 192 (72) 63 (24) 12 (4) 267 (0.67–1.43)

Combined
Control 478 (72) 174 (26) 10 (2) 662 p N 0.05 0.28 1.01
Case 468 (72) 164 (25) 18 (3) 650 (0.79–1.28)

TONSL
rs760477
G → A

Meningitis
Control 87 (24) 183 (51) 88 (25) 358 p N 0.05 0.12 0.72
Case 116 (31) 179 (48) 79 (21) 374 (0.52–0.99)

Bacteremia
Control 66 (26) 129 (51) 59 (23) 254 p N 0.05 0.69 0.86
Case 70 (29) 114 (47) 57 (24) 241 (0.58–1.27)

Combined
Control 153 (25) 312 (51) 147 (24) 612 p N 0.05 0.12 0.77
Case 186 (39) 293 (48) 136 (22) 615 (0.60–0.99)

NFKBIZ
rs616597
C → A

Meningitis
Control 236 (61) 133 (34) 21 (5) 390 p N 0.05 0.81 0.93
Case 244 (62) 129 (33) 18 (5) 391 (0.70–1.24)

Bacteremia
Control 181 (67) 80 (30) 9 (3) 270 p N 0.05 0.23 1.36
Case 162 (60) 98 (36) 10 (4) 270 (0.96–1.93)

Combined
Control 417 (63) 213 (32) 30 (5) 660 p N 0.05 0.72 1.08
Case 406 (61) 227 (34) 28 (4) 661 (0.87–1.53)

PTPN22
rs2476601
G → A

Meningitis
Control 319 (81) 71 (18) 3 (1) 393 p N 0.05 0.23 1.27
Case 301 (77) 82 (21) 7 (2) 390 (0.90–1.80)

Bacteremia
Control 227 (83) 42 (15) 4 (1) 273 p N 0.05 0.65 1.22
Case 214 (80) 49 (18) 4 (2) 267 (0.79–1.89)

Combined
Control 546 (82) 113 (17) 7 (1) 666 p N 0.05 0.22 1.25
Case 515 (78) 131 (78) 11 (2) 657 (0.95–1.64)

a Number of individuals (%); AA: wild type homozygote; AB: heterozygote; and BB mutant homozygote.
b χ2 or Fisher's exact test applied as appropriate.
c Comparison of variant allele carriers (BB + AB) vs. wild type homozygotes (AA).
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susceptibility to pneumococcal empyema. However, this association
was not significantwhen analyzedwith logistic regression using a dom-
inant model (Chapman et al., 2007).

In our population we were not able to replicate the finding that
mutant allele carriers were protected from IPD. However, our results
are similar to Chapman's findings in the sense that empyema is more
invasive than bacteremia. This may support our hypothesis, that
NFKBIE is important in invasive disease. Furthermore, bacteremia
and meningitis are two different manifestations of pneumococcal
disease, and the frequency of each serotype varies in these two pa-
tient groups. This might also be reflected in our results of the NFKBIE
SNP.
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Differences in study results could be partly explained by differences
in the study populations, such as age and number of patients when our
population is compared to Chapman et al.'s.

Although there was no significant association with IPD for the two
adjacent NFKBIA polymorphisms, a possible trend towards increased
susceptibility for mutant allele carriers appeared in the small subgroup
of children with multiple IPD episodes. The NFKBIA polymorphisms
were associated significantly with recurrent IPD at the 0.05 significance
level, but lost significance when adjusted for multiple comparisons ac-
cording to the Bonferroni method. This finding sets the stage for further
investigation in a larger study population. However, since recurrent IPD
is a rare condition, it may be challenging to include a sufficient number
of patients in a future study.

The interaction between NFKBIA and NFKBIE may be important, be-
cause the two genes probably have similar functions in determining
susceptibility to IPD (Chapman et al., 2007, 2010a). In contrast to
mutations in monogenic diseases most disease-associated polymor-
phisms in complex diseases have moderate effects on disease suscepti-
bility, and hundreds or thousands of loci may contribute to subjects'
increased risk (Gibson, 2011). This could be one reason why we did
not find an association between NFKBIA SNPs and IPD. We cannot rule
out that an even larger study could demonstrate a relatively small effect
of a single SNP. A potential limitation in this study would be that we
assume that cases were healthy prior to invasive disease. As described
by Gaschignard et al. some of these children might have unidentified
immunodeficiencies or other chronic diseases that have not been diag-
nosed at the time of IPD (Gaschignard et al., 2014), and the samemight
occur for the IMD cases.

It is unlikely that our study's results are significantly influenced by
population stratification, because we included Northern European chil-
dren only. Controls were in HWE at the Bonferroni adjusted significance
level, suggesting a lowered risk of selection bias and genotyping errors
in our study.

Due to the young age of our subjects there might be a risk for mis-
classification regarding the results on recurrent IPD, because it cannot
be ruled out that some of the children will develop a new episode of
IPD later in life.

Although our results suggest an association between NFKBIE, and
possibly NFKBIA, and susceptibility to IPD, we cannot exclude that the
SNPs are in LD with disease-associated polymorphisms in nearby caus-
ative genes (Gabriel et al., 2002). This makes replication in independent
populations important.

The lack of replication of the associations in the IMD populationwas
not unexpected. No similar previous studies have been conducted, and
these results contribute with new knowledge.

Polymorphisms were not associated with increased 30-day mortali-
ty in cases for any of the SNPs. However, very few children in our
population died and this may obviously affect the statistics. No previ-
ous studies have examined the association between mortality and
genotypes.

The Bonferroni method was applied in order to adjust for multiple
comparisons. However, this correction is known to be conservative,
when a number of SNPs are evaluated for association with traits (Gao
et al., 2008). This may increase the risk of making type II errors in our
study.

To our best knowledge we conducted the largest study of its kind on
selected SNPs previously associated with pneumococcal disease. We
found that a polymorphism in NFKBIE gene, which is essential for NF-
κB in the innate immune response/TLR pathways, predisposed Danish
children under the age of five to pneumococcal meningitis.
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