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Abstract

Background

Combinations of multiple fatty acids may influence cardiometabolic risk more than single

fatty acids. The association of a combination of fatty acids with incident type 2 diabetes

(T2D) has not been evaluated.

Methods and findings

We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults,

including 12,132 incident cases of T2D, over the follow-up period between baseline (1991–

1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-

cohort study. The first principal component derived by principal component analysis of 27

individual fatty acids (mole percentage) was the main exposure (subsequently called the

fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised

by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-

chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and

long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of

the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and ran-

dom-effects meta-analysis, the FA-pattern score was associated with lower incident T2D.

Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23

(95% CI 0.19–0.29) adjusted for potential confounders and 0.37 (95% CI 0.27–0.50) further

adjusted for metabolic risk factors. The association changed little after adjustment for indi-

vidual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pat-

tern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely

associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score

representing insulin resistance, and dietary intakes of soft drinks and alcohol and was posi-

tively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated

fat, dietary fibre, and coffee (p < 0.05 each). Limitations include potential measurement

error in the fatty acids and other model covariates and possible residual confounding.

Conclusions

A combination of individual fatty acids, characterised by high concentrations of linoleic acid, odd-

chain fatty acids, and very long-chain fatty acids, was associated with lower incidence of T2D.

The specific fatty acid pattern may be influenced by metabolic, genetic, and dietary factors.

Author summary

Why was this study done?

• Fatty acid subclasses (e.g., saturated fatty acids or omega-6 fatty acids) and individual

fatty acids in the blood have been studied to understand the aetiology of type 2 diabetes

and as biomarkers of dietary intakes.

A fatty acid combination and incidence of type 2 diabetes

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002409 October 11, 2017 2 / 19

Funding: The InterAct project was funded by the

EU FP6 programme (grant number

LSHM_CT_2006_037197). InterAct investigators

acknowledge funding from the following sources:

FI, SJS, CL, NGF, NJW: MRC Epidemiology Unit

MC_UU_12015/1, MC_UU_12015/5; NGF, AK,

NJW: National Institute for Health Research

Biomedical Research Centre Cambridge (IS-BRC-

1215-20014); AK, JLG: MRC Elsie Widdowson

Laboratory MC_UD99999906 and Cambridge

Lipidomics Biomarker Research Initiative

G0800783; TJK: MRC (MR/M012190/1) and

Cancer Research UK (C8221/19170); MBS: the

German Federal Ministry of Education and

Research, the German Center for Diabetes

Research, and the State of Brandenburg; JMH:

Health Research Fund of the Spanish Ministry of

Health; Murcia Regional Government (Nº 6236);

MEG, EA: Regional Government of Navarre and

Instituto de Salud Carlos III (PIE14/00045); IS,

AMWS, IS, YTvdS: Dutch Ministry of Public Health,

Welfare and Sports, Netherlands Cancer Registry,

LK Research Funds, Dutch Prevention Funds,

Dutch ZON (Zorg Onderzoek Nederland), World

Cancer Research Fund, Statistics Netherlands;

Verification of diabetes cases in EPIC-Netherlands

was additionally funded by the Netherlands Agency

grant IGE05012 and an Incentive Grant from the

Board of the UMC Utrecht; PWF: Swedish

Research Council, Novo Nordisk, Swedish Diabetes

Association, Swedish Heart-Lung Foundation; RK:

German Cancer Aid, German Ministry of Research;

KTK: MRC UK, Cancer Research UK; PMN:

Swedish Research Council; KO and AT: Danish

Cancer Society; OR: The Västerboten County
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• Existing studies suggest that different types of fatty acids are mutually correlated and are

altered together by pharmacological intervention, dietary intervention, or both.

• However, no study to our knowledge has reported whether a certain combination of dif-

ferent types of circulating individual fatty acids could be associated with the risk of type

2 diabetes.

What did the researchers do and find?

• We evaluated 27 individual fatty acids in the blood samples of adults within a large

study from 8 countries in Europe, among a reference sub-cohort sample of 15,919 adults

and among 12,132 adults who subsequently developed type 2 diabetes over a follow-up

period of 12 years on average.

• We identified a fatty acid combination that was partly represented by a combination of

high concentrations of linoleic acid (the most abundant omega-6 polyunsaturated fatty

acid), low concentrations palmitic acid (the major saturated fatty acid), and varying

concentrations of the other essential and non-essential fatty acids.

• We found that incidence of type 2 diabetes was lower by 63% on average when compar-

ing the 20% of adults with fatty acid profiles most consistent with this particular combi-

nation (e.g., high linoleic acid and low palmitic acid) with the 20% of adults with fatty

acid profiles least like this particular combination (e.g., low linoleic acid and high pal-

mitic acid).

• The combination of fatty acids was also linked to genes related to insulin resistance, car-

diometabolic risk factors, and dietary intakes of polyunsaturated fatty acids, coffee, soft

drinks, and dietary fibre.

What do these findings mean?

• A combination of fatty acids may be potentially important in the development of type 2

diabetes over and above individual fatty acids or fatty acid subclasses.

• Dietary, pharmacological, and genetic investigations are warranted to characterise the

clinical and biological implications of the combination of different types of individual

fatty acids, for example, to predict the risk of type 2 diabetes, to better understand the

aetiology of type 2 diabetes, and to consider interventions to favourably alter fatty acid

profiles.

Introduction

Fatty acids play vital roles in metabolic homeostasis, serving as precursors of signalling mole-

cules, energy sources, and constituents of membranes and functional lipids [1,2]. Reflecting

their diverse roles, fatty acids have been evaluated as markers of physiological homeostasis,

metabolic disorders, and dietary exposure in biological, clinical, and population-based

research [3–5]. For example, blood or tissue levels of omega-3 polyunsaturated fatty acids

(PUFAs) have been studied as a cardio-protective factor in biochemical and clinical research
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and as a biomarker of dietary consumption of omega-3 PUFAs in epidemiological research

[1,2,4–6]. However, research to date has largely evaluated individual fatty acids or single sub-

groups of fatty acids, rather than combinations of fatty acids, in terms of mechanism or as

potential biomarkers.

Combinations of fatty acids may have aetiological and clinical implications for metabolic

diseases including type 2 diabetes (T2D). Insulin resistance and pancreatic lipotoxicity have

been found to be influenced by multiple fatty acids. For example, palmitic acid (16:0) induces

lipotoxicity, and unsaturated fatty acids may prevent it [7–9]. Pharmacological and nutritional

research also warrant considering multiple fatty acids together. Interventions of lipid-lowering

drugs or dietary carbohydrates or fats, for example, alter blood concentrations of individual

PUFAs and saturated fatty acids (SFAs) jointly [3,9–11]. These findings support the notion

that combinations of fatty acids are important to study in relation to the aetiology of T2D and

to predict T2D risk.

A few epidemiological studies have identified combinations of circulating or tissue fatty

acids associated with adiposity, hypertension, and risks of metabolic syndrome and cardiovas-

cular diseases using a statistical pattern-recognition approach [12–15]. These studies have

indicated potential biological and clinical importance of combinations over and above that of

individual fatty acids. However, a combination of fatty acids has never been evaluated as a

potential risk factor for incident T2D. Thus, we first aimed to identify 1 or more combinations

of phospholipid fatty acids that explained variability in multiple fatty acid concentrations,

using epidemiological data from the European Prospective Investigation into Cancer and

Nutrition (EPIC)–InterAct study. Then, focussing on the single combination of fatty acids that

explained the greatest variability, we tested the hypothesis that the combination is associated

with the incidence of T2D. To provide mechanistic insights, we further examined the associa-

tion of this combination of fatty acids with metabolic risk factors, genetic predisposition to

obesity and insulin resistance, and dietary intakes in EPIC-InterAct. For metabolic and dietary

factors, external validation was performed by evaluating data of the US National Health and

Nutrition Examination Survey (NHANES).

Methods

Study population

We conducted this work as a substudy of the fatty acid project in EPIC-InterAct to explore a

combination of fatty acids to add to our previous work on individual fatty acids and subclasses

(S1 Protocol) [16,17]. EPIC-InterAct is a prospective study nested within 8 European countries

of the EPIC study (Denmark, France, German, Italy, Netherlands, Spain, Sweden, and UK)

[16,18]. In EPIC-InterAct, the case-cohort design was adopted to combine the advantages of a

prospective design with the efficiency of a case-control design [19]. From the 340,234 adults

with 3.99 million person-years of follow-up of the EPIC study, EPIC-InterAct (1) randomly

selected 16,835 adults (‘sub-cohort’) and (2) identified 12,403 incident cases of T2D occurring

by 31 December 2007; the identified cases included 778 cases in the sub-cohort by design (S1

Fig) [16,18]. All participants gave written informed consent. The study was approved by local

ethics committees and the institutional review board of the International Agency for Research

on Cancer [18].

The current study included 15,919 adults from the sub-cohort—after excluding 916 meeting

1 or more exclusion criteria: prevalent diabetes (n = 548), missing information on fatty acids

(n = 156), missing information on incident T2D (n = 129), and post-censoring T2D (n = 4)—

and included 12,132 incident T2D cases, after excluding 271 adults missing information on
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fatty acids (S1 Fig). In summary, we evaluated 27,296 adults in this study (12,132 cases, includ-

ing 755 cases from the sub-cohort; and 15,919 adults from the sub-cohort).

Ascertainment of type 2 diabetes

Prevalent diabetes cases (excluded from the study) were identified by baseline self-report of a

diagnosis, physician’s diagnosis, anti-diabetic drug use, or other evidence of T2D before the

baseline date in EPIC-InterAct [18]. Incident T2D was ascertained from multiple information

sources reviewed by each participating centre [18]: self-report, linkage to primary-care regis-

ters, secondary-care registers, medication use (drug registers), hospital admissions, and mor-

tality data. Information from any follow-up visit or external evidence with a date later than the

baseline visit was used. In Denmark and Sweden, incident cases were identified via local and

national diabetes and pharmaceutical registers, and hence all ascertained cases were consid-

ered to be verified. Follow-up was to the date of diagnosis, 31 December 2007, or the date of

death, whichever occurred earliest.

Assessment of fatty acids and other variables

We evaluated relative concentrations of 27 individual fatty acids expressed as mole percentage

of total plasma phospholipid fatty acids (Table 1), as previously described (S1 Text) [16,20].

These measurements were masked to case status. Thirty-seven fatty acids of plasma phospho-

lipids were quantified by gas chromatography [20]. In the current analysis, 10 fatty acids were

excluded because their relative concentrations were<0.05% on average. Coefficients of varia-

tion of the 27 fatty acids ranged from 1.9% to 4.6% [20].

At baseline, weight, height, and waist circumference were measured directly in every centre.

Waist circumference was not measured in Umea, Sweden (n = 1,845) [18]. Sociodemographic

factors, smoking status, and medical history were assessed by a questionnaire for general

health. Physical activity was assessed by a questionnaire validated previously [21]. Dietary vari-

ables were derived centrally based on food frequency questionnaires or diet histories standard-

ised in each cohort [22,23]. Using blood samples stored at −196˚C (or −150˚C in Denmark),

biochemical assays were performed at Stichting Ingenhousz Laboratory, Etten-Leur, Nether-

lands, for glucose, triglycerides, high-density lipoprotein cholesterol (HDL-C), triglycerides,

high-sensitivity C-reactive protein (hsCRP), and proteins related to hepatic function—alanine

transaminase (ALT), γ-glutamyl transferase (GGT), and aspartate transaminase (AST)—as the

liver is the major organ metabolising fatty acids.

Genetic information became available in 22,179 adults with fatty acid data, assayed with

Illumina Human660W-Quad BeadChip (Illumina, Little Chesterford, UK; n = 9,166) and

MetaboChip (Illumina; n = 13,013) [24]. Using these data, we conducted post hoc analyses to

examine whether genetic predisposition to metabolic risk was associated with the FA-pattern

score. We calculated weighted genetic risk scores for body mass index (BMI) (n loci = 97) [25]

and for insulin resistance (n loci = 10) [24] using published measures of genome-wide associa-

tions (S1 Text).

Derivation of fatty acid pattern score

Principal component analysis (PCA) was performed in the sub-cohort (n = 15,919) to combine

multiple fatty acids (Table 1) together in a way to explain as much variation of those fatty acids

as possible. Sampling weights were applied so that each of the 8 countries equally contributed

to the PCA. Eigenvalues divided by 27 were assessed as percent of variance explained.

Principal components were inferred as representing fatty acid patterns. The pattern matrix

from PCA was then used to calculate the scores, referred to as FA-pattern scores, among the
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rest of the study population (incident T2D cases not in the sub-cohort, Fig 1) and was also

applied to quality control samples (n = 860) to assess the contribution of any batch effects [20].

We chose to focus on the first principal component for further aetiological analyses to provide

potential biological implications of this single combination of fatty acids. This enabled us to

Table 1. Relative concentrations of plasma phospholipid fatty acids and their correlations with the identified fatty acid pattern score: EPIC-Inter-

Act sub-cohort (n = 15,919).

Individual FA* Name Percent of total phospholipid FAs Correlation with the FA-pattern score†

Median 10th and 90th percentiles

Long-chain saturated FA

14:0 Myristic acid 0.38 0.26, 0.53 −0.34

16:0 Palmitic acid 30.1 28.2, 32.4 −0.51

18:0 Stearic acid 14.1 12.4, 15.8 0.36

Odd-chain saturated FA

15:0 Pentadecanoic acid 0.22 0.15, 0.31 0.27

17:0 Heptadecanoic acid 0.42 0.31, 0.53 0.57

Very-long-chain saturated FA

20:0 Arachidic acid 0.13 0.10, 0.18 0.55

22:0 Behenic acid 0.23 0.17, 0.32 0.69

23:0 Tricosanoic acid 0.11 0.07, 0.16 0.49

24:0 Lignoceric acid 0.22 0.17, 0.30 0.59

Monounsaturated FA

16:1 Palmitoleic acid 0.47 0.29, 0.79 −0.75

18:1n-9 Oleic acid 9.6 7.7, 11.9 −0.50

Very-long-chain monounsaturated FA

20:1 Gondoic acid 0.25 0.17, 0.34 −0.04

24:1 Nervonic acid 0.34 0.25, 0.46 0.42

Omega-6 PUFA

18:2n-6 Linoleic acid 22.5 18.4, 26.6 0.45

18:3n-6 γ-linolenic acid 0.07 0.02, 0.14 −0.51

20:3n-6 Dihomo-γ-linolenic acid 3.1 2.2, 4.2 −0.38

20:4n-6 Arachidonic acid 9.2 7.0, 11.7 −0.17

Omega-3 PUFA

18:3n-3 α-linolenic acid 0.28 0.15, 0.54 −0.04

20:5n-3 Eicosapentaenoic acid 1.02 0.52, 2.13 0.03

22:5n-3 Docosapentaenoic acid 0.92 0.62, 1.22 0.02

22:6n-3 Docosahexaenoic acid 4.1 2.7, 5.9 0.23

Trans unsaturated FA

Trans 18:1 Elaidic acid 0.21 0.10, 0.52 0.20

Trans 18:2 Trans linoleic acid 0.07 0.04, 0.09 0.18

Other

17:1 Heptadecenoic acid 0.06 0.00, 0.13 −0.13

20:2 Eicosadienoic acid 0.38 0.30, 0.47 −0.08

22:4 Adrenic acid 0.28 0.20, 0.39 −0.39

22:5n-6 Osbond acid 0.19 0.11, 0.31 −0.39

*FAs are subclassified according to generic classification.
†The first principal component (FA-pattern score) derived by principal component analysis of the 27 individual fatty acids (n = 15,919), used as the main

exposure variable in this study. Coefficients to calculate the FA-pattern score are presented in S5 Table.

FA, fatty acid; FA-pattern score, fatty acid pattern score; PUFA, polyunsaturated fatty acid.

https://doi.org/10.1371/journal.pmed.1002409.t001
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Fig 1. Principal components and clusters of 27 fatty acids in the EPIC-InterAct sub-cohort (n = 15,919). Top: The proportion of total

variance of 27 fatty acids explained by each principal component. Bottom: Hierarchical cluster tree on the left and factor loadings (measures of

contributions of fatty acids to principal components) on the right.

https://doi.org/10.1371/journal.pmed.1002409.g001
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conduct and report a detailed investigation into the associations of this combination with T2D

incidence and metabolic, dietary, and genetic variables, and their biological implications; it

also removed the need for subjective decisions about how many components to derive, which

matrix rotation method to use, and how to account for multiple testing [26].

Statistical analysis

All analyses were performed using Stata (StataCorp, College Station, Texas, US), with αtwo-sided =

0.05. For descriptive purposes, a hierarchical cluster tree was generated to visually assess correla-

tion between fatty acids [27]. Pearson correlation coefficients between fatty acids were also calcu-

lated. The strength of association of the FA-pattern score with incident T2D was evaluated by

estimating hazard ratios (HRs) and 95% CIs from Prentice-weighted Cox regression, with age as

the underlying timescale [19]. The estimates were obtained in each country and pooled by ran-

dom-effects meta-analysis [28] for quintiles specific to the sub-cohort, for a continuous term per

interdecile range (the difference between the 90th and 10th percentiles of the distribution), and

for cubic-spline terms to test non-linear associations [29]. We additionally computed a 95% pre-

dicted interval for the primary results by combining random-effects variation (tau2) and varia-

tion of the main estimate [28].

The models included potential confounders, including demographics, prevalent heart dis-

ease and stroke, medication use, smoking status, physical activity, and dietary factors (con-

sumption of alcohol, soft drinks, dietary fibre, fruits, vegetables, and processed meats), that are

associated with cardiometabolic health in general. We also adjusted for BMI, waist circumfer-

ence, glucose, lipids, hsCRP, and liver enzymes to examine their influence on the associations

of interest. Potential confounding by genetic predisposition for greater BMI and insulin resis-

tance was also assessed.

In pre-specified analyses, we examined whether observed associations varied by baseline

age, sex, and BMI, testing an interaction term for each factor and the FA-pattern score in

regression analysis. Effect modification by blood triglycerides, use of lipid-lowering drugs (yes

or no), and alcohol consumption (consumer or non-consumer) was also tested post hoc

because of the association of triglycerides with the FA-pattern score (r = −0.29) and possible

effects of lipid-lowering drugs and alcohol on de novo lipogenesis. Missing covariates were

imputed by country, using multiple imputation by chained equations with variables for the

FA-pattern score, covariates, survival time, and case status [30]. We report results from single

imputation, because between-imputation variability was <0.2% of total variability in multiple

imputation (20 datasets); we performed sensitivity analysis using multiple imputation and

complete-case analysis.

As a sensitivity analysis to assess whether HR varied over the follow-up time by reverse cau-

sation, stratified analysis was performed by splitting follow-up time at 7 years after baseline

and by censoring any events occurring within the first 2 years as non-cases. We additionally

evaluated the stability of our findings: examining the consistency of a main finding for the sin-

gle principal component when PCA was performed after Box–Cox transformation, improving

normality of distribution of all fatty acid variables. We also examined whether or not the main

result was driven by single fatty acids or fatty acid subclasses through 2 approaches: adjusting

models for single fatty acids and subclasses separately, and repeating the analysis after PCA of

fatty acids excluding each of the 27 fatty acids or subclasses one at a time. We performed inter-

nal cross-validation [31]: First, we re-derived the FA-pattern score in a subset selected by

country, age, sex, and BMI (test set); second, we applied the scoring matrix to another subset

(validation set) to derive the FA-pattern score, and then we examined the associations of the

independently derived score with incident T2D.
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Analysis of metabolic, genetic, and dietary factors

To investigate potential mechanisms for the association of the FA-pattern score with incident

T2D, we estimated cross-sectional associations of the FA-pattern score with each of selected

metabolic risk factors (BMI, waist circumference, lipids, glucose, hsCRP, and liver enzymes)

using linear regression. Additionally, modified Poisson regression [32] was used to examine

the cross-sectional association of the FA-pattern score with prevalence of hepatic steatosis

defined as ALT greater than cut-points previously validated against ultrasound (30 U/l for

men, 19 U/l for women) [33]. We further fitted linear regression to assess whether genetic risk

scores for BMI and for insulin resistance (independent variables) could explain variability in

the FA-pattern score (dependent variable). These regression models statistically adjusted for

age and the other covariates used for longitudinal analyses.

We also evaluated dietary factors as potential lifestyle determinants of the FA-pattern score.

Multivariable-adjusted linear models included dietary determinants as independent variables

and the FA-pattern score (scaled to 1 standard deviation) as a dependent variable. This analysis

evaluated major macronutrient and fibre intakes (nutrient-based analysis) and 18 selected

foods or beverages (food-based analysis).

Assessment of external validity

Recognising the risk of false-positive findings based on our data-driven approach, we con-

ducted post hoc assessment of the external validity of the FA-pattern score derived in EPIC-In-

terAct, using cross-sectional data from NHANES 2003–2004 (n = 1,566) on total plasma fatty

acids, metabolic factors, dietary factors, and potential confounders. Using the scoring matrix

derived from EPIC-InterAct, we calculated the FA-pattern score in NHANES (S2 Text) [15].

Using linear regression adjusting for potential confounders, replication analyses were per-

formed (S3 Text). In dietary analyses, 18 dietary items were first assessed in EPIC-InterAct

with backward variable selection (p = 0.2 as a cutoff, additionally for the purpose of adjustment

[34]) to identify which dietary variables predicted the FA-pattern score together. Then we

tested selected dietary factors in NHANES for external validation (S3 Text) in linear regression

adjusting for potential confounders and including the same dietary variables. The 18 food

groups first tested in EPIC-InterAct were selected by possible biology of diets, fatty acid pro-

files, and T2D, and evaluated both individually and simultaneously.

Results

The first component derived by PCA explained 16.1% of the variation of 27 fatty acids, and 6

to 10 components explained more variation than 1 fatty acid could explain (>3.7% of total;

‘eigenvalue’ > 1.0) (Fig 1). The first 4 components had loading values (e.g., >0.6 or <−0.6) in

multiple fatty acid classes. Selected to gain insight into the biological importance of a combina-

tion of fatty acids, the first component reflected relationships between fatty acids varying in

chain length and degree of unsaturation, including fatty acids that can be synthesised endoge-

nously and those derived from dietary consumption (Table 1; Fig 1). A similar pattern was

identified in cluster analysis, as fatty acids adjacent in the tree had similar loading values (Fig

1). Major contributors (correlation coefficients r> 0.5 or r< −0.5) were palmitic acid (16:0,

r = −0.51), palmitoleic acid (16:1, r = −0.75), and γ-linolenic acid (18:3n-6, r = −0.51). Hepta-

decanoic acid (17:0) and very-long-chain SFAs (VLSFAs) with 20 or more carbons had posi-

tive contributions (r = 0.5–0.7), but their relative concentrations were low (<1% of total).

While linoleic acid (18:2n-6) had a positive contribution (r = 0.45), the other PUFAs, and

trans unsaturated fatty acids had lower contributions (−0.25< r< 0.25) (Fig 1). The coeffi-

cient of variation of the FA-pattern score was 6.0% based on the quality control samples.
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Adults with higher FA-pattern score were more likely to be women, non-smokers, non-

users of lipid-lowering drugs, and those with generally healthier profiles of metabolic risk fac-

tors, while there was no significant relationship with age or education (S1 Table). Covariates

had missing values in<5% of adults, except 49.9% for family history of diabetes, which was

not assessed in 12 of the 26 study centres (S2 Table). Where it was assessed, 24.5% of partici-

pants had missing information.

Association of the fatty acid pattern score with incidence of type 2

diabetes

In the longitudinal analysis of 12,132 cases per 190,148.9 person-years (11.9 y of follow-up per

person on average), the FA-pattern score was strongly associated with incident T2D. Adjusted for

sociodemographic variables, dietary factors, and medical history, the HR (95% CI) of T2D com-

paring the top to the bottom fifth of the FA-pattern score was 0.23 (0.19–0.29) (p trend< 0.001)

(Table 2). The association persisted after adjustment for BMI (HR 0.32; 95% CI 0.25–0.40) and

for triglycerides and HDL-C (0.37; 95% CI 0.27–0.50). Results changed little when additionally

adjusted for concentrations of random glucose, hsCRP, hepatic enzymes, other dietary factors,

family history of T2D, and genetic risk scores for obesity and insulin resistance (S3 Table). The

association varied across the 8 countries (Fig 2; I2 = 88%); this variation was partly explained by

country-specific mean ages and percentage of men (p< 0.05 each), although an inverse associa-

tion was observed in all countries.

There was no evidence of effect modification by baseline age, sex, BMI, triglycerides, lipid-

lowering drug use, or alcohol consumption (p interaction > 0.1 each). The main result was sta-

ble in sensitivity analyses that explored the influence of imputation, duration of follow-up, and

normality of distribution (S3 Table). In analyses adjusting for individual fatty acid variables

(S2 Fig), adjustment for 17:0 attenuated the estimates to the greatest extent among the fatty

acid variables we evaluated, shifting the HR (95% CI) of 0.38 (0.30–0.47) to 0.53 (0.42–0.67),

but with the association remaining significant. Cross-validation analysis confirmed the stabil-

ity of the findings (S4 Table). For instance, when the FA-pattern score was derived in 7

Table 2. Association of the fatty acid pattern score with incidence of type 2 diabetes: EPIC -InterAct (n = 27,296).

Model Quintile of the fatty acid pattern score* P trend

I II III IV V

Number of cases 4,277 2,910 2,113 1,587 1,245

Incidence rate per 100,000 person-years† 679 476 349 283 219 <0.001

Pooled hazard ratio (95% CI)‡

Multivariable-adjusted 1.0 (reference) 0.68 (0.62–0.75) 0.46 (0.40–0.53) 0.32 (0.28–0.35) 0.23 (0.19–0.29) <0.001

+ Body mass index 1.0 (reference) 0.75 (0.69–0.82) 0.53 (0.46–0.62) 0.40 (0.35–0.46) 0.32 (0.25–0.40) <0.001

+ Triglycerides and HDL-C 1.0 (reference) 0.78 (0.70–0.86) 0.56 (0.46–0.68) 0.44 (0.36–0.53) 0.37 (0.27–0.50) <0.001

*Five categories were obtained by quintiles of the fatty acid pattern score in EPIC-InterAct. Each participant was assigned a fatty acid pattern score

(mean = 0, standard deviation = 1) by principal component analysis using 27 individual fatty acids.
†Incidence was calculated in the random sub-cohort (n = 15,919).
‡Multivariable-adjusted Prentice-weighted Cox regression models. The first model adjusted for recruitment centre (2 to 6 categories in each country), age as

covariate, and underlying timescale, sex, education history, smoking status, alcohol consumption, dietary factors (dietary fibre, fruits, vegetables,

processed meats, soft drinks), physical activity, menopause status, hormone replacement use, and prevalent diseases (myocardial infarction or angina,

stroke, hypertension, and dyslipidaemia). Pooled results from 8 countries were obtained by random-effects meta-analysis. Hazard ratios (95% CIs) per

interdecile range in the 3 models were 0.28 (0.24–0.33), 0.33 (0.28–0.40), and 0.38 (0.30–0.47), respectively.

HDL-C, high-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pmed.1002409.t002
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countries, not 8, and the scoring algorithm was applied to adults in the 1 country excluded, the

summary HR (95% CI) in the most adjusted model was 0.40 (0.34–0.50).

Association of the fatty acid pattern score with metabolic, genetic, and

dietary factors

In both EPIC-InterAct and NHANES (see S5 Table for scoring coefficients), the FA-pattern

score was associated with metabolic risk factors in the direction consistent with the above find-

ings for incident T2D. Inverse associations were seen with BMI, triglycerides, glucose, hsCRP,

ALT, AST, GGT, and the likelihood of having hepatic steatosis (p< 0.001 each) (Table 3). A

significant positive association with HDL-C was observed in NHANES (p< 0.001), but not in

EPIC-InterAct (p = 0.7).

In genetic analyses (EPIC-InterAct only), a gene score related to higher BMI was not signif-

icantly associated with the FA-pattern score: +0.1% of SD of the FA-pattern score (95% CI

−0.6% to +1.7%; p = 0.3) per interdecile range of the genetic score. A gene score related to

higher insulin resistance was significantly associated with lower FA-pattern score: −1.9% of

SD (95% CI −3.4% to −0.4%; p = 0.02).

In dietary analyses in EPIC-InterAct and NHANES, higher intakes of PUFAs and fibre were

associated with higher FA-pattern score in both cohorts (Fig 3). For example, replacing carbo-

hydrates with PUFAs in the diet by an amount equivalent to 5% of total energy was positively

associated with the FA-pattern score (0.43 SD of the score, 95% CI 0.30–0.57) in EPIC-InterAct

and 0.21 (95% CI 0.11–0.32) in NHANES. In food-based analysis of EPIC-InterAct, the FA-pat-

tern score was significantly related to higher intakes of fish, margarine, and coffee and lower

intakes of soft drinks and alcoholic beverages (p< 0.05 each) when assessed individually (S3

Fig) and simultaneously (Fig 3). In NHANES, findings from EPIC-InterAct for soft drinks, cof-

fee, and alcohol were replicated (p< 0.04) (Fig 3).

Fig 2. Prospective associations of the fatty acid pattern score with incident diabetes in 8 countries: EPIC-InterAct (n = 27,296). Left: Hazard

ratios (HRs) per country-specific range of 10th to 90th percentiles (p for heterogeneity by age and sex = 0.005 and 0.02, respectively), and pooled by

random-effects meta-analysis. The diamond and error bars of the pooled estimate represent the 95% confidence interval and predicted interval (0.20 to

0.74), respectively. Right: HR based on quintiles and restricted cubic spline (p non-linearity = 0.001) (solid line). Error bars in both panels, and dotted lines

in the right panel, indicate the 95% confidence intervals of HRs, and the shaded area in the right panel is the predicted interval. All analyses adjusted for

covariates as in the most adjusted model in Table 2.

https://doi.org/10.1371/journal.pmed.1002409.g002
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Discussion

We evaluated fatty acid profiles among adults in 8 European countries and derived a FA-pat-

tern score that represents a combination of both essential and non-essential fatty acids and

that is characterised by high relative concentrations of linoleic acid (18:2n-6), stearic acid

(18:0), odd-chain SFAs, and VLSFAs (�20 carbons), and by low relative concentrations of γ-

linolenic acid (18:3n-6), monounsaturated fatty acids (MUFAs), and long-chain SFAs (14:0

and 16:0). The unique combination was associated with dietary, metabolic, and genetic factors,

and prospectively associated with a lower incidence of T2D. Comparing the top fifth to the

bottom fifth of the FA-pattern score, T2D incidence was lower by approximately 60%. This

robust association with incident T2D was independent of established risk factors and also any

single fatty acids or fatty acid subclasses. These findings support the hypothesis that a combi-

nation of multiple fatty acids is an important marker for the development of T2D above and

beyond the roles of single types of fatty acids. The combination of essential and non-essential

fatty acids is of strong interest for further clinical or population-based investigations to predict

T2D risk, identify interventional agents for T2D prevention, and better understand the aetiol-

ogy of T2D.

The combination of fatty acids contributing to the identified FA-pattern score fits with

known mechanisms involving the de novo lipogenesis (DNL) pathway. In DNL, fatty acids

including 14:0, 16:0, 16:1n-7, and 18:1n-9 are synthesised endogenously, where stearoyl-CoA

desaturase (SCD) converts 16:0 to 16:1n-7 as a rate-limiting step of fatty acid synthesis. The

inverse correlation of 18:2n-6 with these fatty acids may reflect its role as a ligand of peroxi-

some proliferator-activated receptor α (PPARα) [2,5]. PPARα down-regulates SCD and

ELOVL (elongation of very-long-chain fatty acid) enzymes, explaining the observed inverse

correlation of 18:2n-6 with MUFAs, 16:0, 18:3n-6, and other n-6 PUFAs [2]. An exception of

PPARα’s action is activation of ELOVL3, which leads to synthesis of VLSFAs in the adipose

tissue [35] and supports the observed associations between 18:2n-6, 18:0, and VLSFAs. While

our findings are in line with the benefit of dietary PUFAs (predominantly 18:2n-6), other

major PUFAs (e.g., omega-3 PUFA) contributed little to the primary fatty acid combination.

Table 3. Associations of the fatty acid pattern score with metabolic factors in EPIC-InterAct and with metabolic factors in the US NHANES 2003–

2004.

Metabolic factor EPIC-InterAct (n = 15,919) NHANES (n = 1,566)

Body mass index, kg/m2 −1.2 (−1.5, −0.9) −2.3 (−3.0, −1.7)

Triglycerides, mmol/l −0.6 (−0.7, −0.5) −1.9 (−2.2, −1.6)

HDL-C, mmol/l 0.00 (−0.03, 0.02) 0.26 (0.21, 0.31)

Glucose, mmol/l −0.24 (−0.29, −0.19) −0.26 (−0.37, −0.15)

Alanine transaminase, U/l −3.2 (−4.2, −2.2) −3.7 (−6.1, −1.3)

Aspartate transaminase, U/l −3.1 (−4.1, −2.1) −5.6 (−8.1, −3.2)

γ-glutamyl transferase, U/l −15.3 (−20.8, −9.9) −13.5 (−18.5, −8.4)

C-reactive protein, nmol/l −0.43 (−0.61, −0.26) −0.15 (−0.26, −0.05)

High risk of hepatic steatosis, percent prevalence* −28% (−32%, −23%) −16% (−30%, −1%)

For metabolic risk factors, values are difference (95% confidence interval) in each metabolic factor per interdecile range of fatty acid pattern score. Linear

regression analysis was performed, adjusting for potential confounders and body mass index (for metabolic factors except body mass index) (see S3 Text

for details). All differences were significant, p < 0.02, with exception of HDL-C in EPIC-InterAct (p = 0.7).

*Prevalence ratio was estimated for the likelihood of having hepatic steatosis (alanine transaminase > 30 U/l for men and >19 U/l for women [33]) (i.e.,

relative difference in prevalence).

HDL-C, high-density lipoprotein cholesterol; NHANES, National Health and Nutrition Examination Survey.

https://doi.org/10.1371/journal.pmed.1002409.t003
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This could reflect their diverse roles in eicosanoid pathways and pro- and anti-inflammatory

pathways, and their associations with dietary intakes (e.g., fish) independent of DNL-driving

dietary factors [5].

These suggested mechanisms are linked to the development of T2D. Activation of PPARα
suppresses hepatic DNL and pro-inflammatory pathways that lead to insulin resistance, dysli-

pidaemia, and fatty liver [2,5,36]. In an experimental setting, for example, PPARα knock-out

mice developed fatty liver exhibiting overt hepatic lipogenesis [37]. Main products of DNL

include 16:0 and diacylglycerols that cause a pro-inflammatory response, endoplasmic reticu-

lum stress, and insulin resistance [1,38]. Thus, our analysis yielded a combination of multiple

fatty acids that may represent biological pathways related to insulin resistance, inflammatory

responses, and T2D risk. This was confirmed with the observed associations of FA-pattern

score with metabolic risk factors in an expected direction and the association of FA-pattern

score with genetic predisposition to insulin resistance. Associations of gene variants with fatty

acids and with incident T2D cannot be confounded by long-term lifestyle characteristics.

Fig 3. Associations of dietary factors with the fatty acid pattern score in EPIC-InterAct (1991–1998,

n = 15,566) and the US National Health and Nutrition Examination Survey (2003–2004, n = 1,500). Error

bars are 95% confidence intervals. In analysis for macronutrients, analysis estimated potential effects of

replacing carbohydrate (CHO) intakes with intakes of polyunsaturated fatty acid (PUFA), monounsaturated

fatty acid (MUFA), saturated fatty acid (SFA), and protein by the amount of 5% of total caloric intake. Dietary

factors were scaled for interpretability: sv, serving; oz., ounce (28.8 g); tbls, tablespoon. *Alcoholic drinks

were examined as grams of ethanol.

https://doi.org/10.1371/journal.pmed.1002409.g003
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Therefore, the specific gene variants, the identified combination of fatty acids, and the risk of

T2D are likely to be on the same causal pathway, warranting future research to elucidate how

insulin resistance specifically alters fatty acid profiles or vice versa.

Our analysis and prior studies derived a similar combination of fatty acids [12–15], but no

previous studies to our knowledge evaluated T2D incidence as an outcome. Past studies used

different methods and examined varied numbers of fatty acids (10 to 42) of phospholipids

[15], cholesteryl esters [12,15], plasma [13], or adipose tissue [14]. Despite the differences, all

of the studies reported a combination of fatty acids partly driven by higher levels of 18:2n6

with lower 16:0, which could reflect activity of DNL [39]. These combinations were found to

be associated with lower blood pressure, greater endothelial function, less weight gain over

time, or lower risk of metabolic syndrome [12–14]. In contrast, an association with ischaemic

heart disease or stroke was not significant [15]. The inconsistency depending on outcome is

predictable as DNL could promote insulin resistance, but suppress atherosclerosis [36]. Statins

and other lipid-lowering drugs also alter fatty acid profiles [10] and have divergent effects on

heart disease and T2D [40]. Thus, a fatty acid pattern can be a future focus of investigations of

cardiometabolic diseases and related interventions.

The association of the FA-pattern score with incident T2D was not fully explained by any

single fatty acid, but was partly attenuated by adjustment for odd-chain SFAs and VLSFAs.

These SFAs are associated with lower risk of cardiometabolic diseases [16,41,42], while their

biological roles remains understudied. High phospholipid VLSFAs may reflect high activity of

PPARα, which leads to VLSFA synthesis and less insulin resistance, apoptotic cell death, and

pancreatic dysfunction [41,43]. Blood odd-chain SFAs may partly reflect dairy consumption

[3,44], gut microbiota [45], or endogenous synthesis through α-oxidation [46], and thus any

correlates to those factors could explain our findings. Evidence for these mechanisms and rela-

tionships with other fatty acids remains scarce and deserves further investigation.

Dietary correlates with the combination of fatty acids deserve discussion, as they were repli-

cated in EPIC-InterAct and NHANES: alcohol and soft drinks as negative correlates, and cof-

fee, fibre, and PUFAs as positive correlates. The finding for alcohol consumption is likely to

reflect its lipogenic effect, a risk factor for liver cirrhosis and T2D [47]. Regarding coffee con-

sumption, polyphenols may deactivate DNL [48] and lower triglyceride levels and T2D risk

[49–51]. Increased PUFA intake (predominantly n-6 PUFAs) could increase insulin sensitivity

as well as lower DNL [2,5,52]. Our findings for soft drinks and fibre may also reflect their gly-

caemic and anti-glycaemic effects, respectively, as a high glycaemic effect leads to insulin secre-

tion and DNL [2,53].

Strengths of this work include the standardised assay of fatty acid profiles in an EPIC-Inter-

Act population with geographic diversity; the large study size (to our knowledge by far the

largest among studies of fatty acid biomarkers), allowing various sensitivity analyses; and the

generalisability of our findings, strengthened by our findings across 8 European countries and

the US NHANES. By focussing on a single combination of fatty acids, we were able to report

details of its association with incident T2D and metabolic, genetic, and dietary factors. How-

ever, this also limited our investigation of other fatty acid patterns, in particular in relation to

omega-3 fatty acids. Other limitations include possible residual confounding by factors

unmeasured or measured imprecisely, although we adjusted for many covariates including

major risk factors for T2D. Whether or not the combination of fatty acids itself caused the

T2D onset remains unestablished. Possible exposure misclassification due to single fatty acid

measurements and possible outcome misclassification were limitations, but likely to be inde-

pendent of T2D case status and fatty acid profiles, respectively. We found no strong reason to

think that these limitations would alter the overall conclusions. Lastly, the generalisability of
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our findings might be limited to high-income Western populations, and fatty acid patterns in

other populations with diverse genetic backgrounds and dietary patterns are of future interest.

In conclusion, we identified a combination of plasma phospholipid fatty acids characterised

by high relative concentrations of 18:2n-6, VLSFAs, and odd-chain SFAs and low relative con-

centrations of long-chain SFAs and MUFAs, some of which are synthesised endogenously.

This particular profile was associated with a 3-fold lower relative risk of incident T2D in Euro-

pean populations after adjustment for confounding. While both genes and diet were linked to

the FA-pattern score, association of the FA-pattern score with T2D was independent of estab-

lished risk factors for T2D and not driven by individual fatty acids. These findings highlight

that multiple fatty acids are jointly related to the development of T2D. The combination of

fatty acids warrants further investigation of its determinants and potential application as a

marker of metabolic characteristics.

Supporting information

S1 STROBE Checklist.

(PDF)

S1 Fig. Case-cohort study design of EPIC-InterAct and the selection of participants for the

current analysis.

(PDF)

S2 Fig. Association of the fatty acid pattern score with incident type 2 diabetes: sensitivity

analysis to examine the influence of single fatty acids and single fatty acid subclasses.

(PDF)

S3 Fig. Cross-sectional association between dietary consumption of major food groups

and the fatty acid pattern score: EPIC-InterAct (n = 15,566).

(PDF)

S1 Protocol. Study protocol.

(PDF)

S1 Table. Baseline characteristics according to quintile of the fatty acid pattern score in

the sub-cohort of EPIC-InterAct (n = 15,919).

(PDF)

S2 Table. Baseline characteristics according to presence or absence of missing information

among participants with fatty acid measures: EPIC-InterAct (n = 27,296).

(PDF)

S3 Table. Prospective associations of the fatty acid pattern score with incident type 2 dia-

betes in EPIC-InterAct: assessment of the influence of subsets of covariates, missing infor-

mation, duration of follow-up, and normality of fatty acid variables.

(PDF)

S4 Table. Internal cross-validation for derivation of the fatty acid pattern score and its

prospective association with incident type 2 diabetes in EPIC-InterAct: sensitivity analysis

to examine internal validity.

(PDF)

S5 Table. Coefficients to calculate the fatty acid pattern score derived from the sub-cohort

of EPIC-InterAct (n = 15,919).

(PDF)

A fatty acid combination and incidence of type 2 diabetes

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002409 October 11, 2017 15 / 19

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s002
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s003
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s004
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s005
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s006
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s007
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s008
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s009
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002409.s010
https://doi.org/10.1371/journal.pmed.1002409


S1 Text. Fatty acid assay and genetic information in EPIC-InterAct.

(PDF)

S2 Text. External validation of associations of the fatty acid pattern score.

(PDF)

S3 Text. Cross-sectional analyses in EPIC-InterAct and US NHANES.

(PDF)

Acknowledgments

We thank N. Kerrison, S. Dawson, M. Sims, and all staff from the Technical, Field Epidemiol-

ogy, and Data Functional Group Teams of the Medical Research Council (MRC) Epidemiol-

ogy Unit, Cambridge, United Kingdom, for data collection and management. We also thank

Laura Wang and Keith Summerhill at MRC Elsie Widdowson Laboratory, Cambridge, United

Kingdom, for fatty acid measurements.

Author Contributions

Conceptualization: Fumiaki Imamura.

Data curation: Albert Koulman, Julian L. Griffin, Nadia Slimani.

Formal analysis: Fumiaki Imamura.

Funding acquisition: Claudia Langenberg, Elio Riboli, Nita G. Forouhi, Nick J. Wareham.

Investigation: Fumiaki Imamura, Albert Koulman, Matthias B. Schulze, Janine Kröger, Julian
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tillo, Peter M. Nilsson, Anja Olsen, Kim Overvad, Domenico Palli, Salvatore Panico, Olov

Rolandsson, Sabina Sieri, Carlotta Sacerdote, Nadia Slimani, Annemieke M. W. Spijker-

man, Anne Tjønneland, Rosario Tumino, Yvonne T. van der Schouw, Claudia Langenberg,

Elio Riboli, Nita G. Forouhi, Nick J. Wareham.

Methodology: Fumiaki Imamura, Stephen J. Sharp, Albert Koulman, Matthias B. Schulze,
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44. Abdullah MMH, Cyr A, Lépine M-C, Labonté M-È, Couture P, Jones PJH, et al. Recommended dairy

product intake modulates circulating fatty acid profile in healthy adults: a multi-centre cross-over study.

Br J Nutr. 2015; 113(3):435–44. https://doi.org/10.1017/S0007114514003894 PMID: 25609231

45. Weitkunat K, Schumann S, Nickel D, Hornemann S, Petzke KJ, Schulze MB, et al. Odd-chain fatty

acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propio-

nate. Am J Clin Nutr. 2017; 105(6):1544–51. https://doi.org/10.3945/ajcn.117.152702 PMID: 28424190

46. Jenkins BJ, Seyssel K, Chiu S, Pan P-H, Lin S-Y, Stanley E, et al. Odd chain fatty acids; new insights of

the relationship between the gut microbiota, dietary intake, biosynthesis and glucose intolerance. Sci

Rep. 2017; 7:44845. https://doi.org/10.1038/srep44845 PMID: 28332596

47. Corrao G, Bagnardi V, Zambon A, La Vecchia C. A meta-analysis of alcohol consumption and the risk

of 15 diseases. Prev Med. 2004; 38(5):613–9. https://doi.org/10.1016/j.ypmed.2003.11.027 PMID:

15066364

48. Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, et al. Coffee polyphenols suppress

diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J

mice. Am J Physiol Endocrinol Metab. 2011; 300(1):E122–33. https://doi.org/10.1152/ajpendo.00441.

2010 PMID: 20943752

49. Ding M, Bhupathiraju SN, Chen M, van Dam RM, Hu FB. Caffeinated and decaffeinated coffee con-

sumption and risk of type 2 diabetes: a systematic review and a dose-response meta-analysis. Diabetes

Care. 2014; 37(2):569–86. https://doi.org/10.2337/dc13-1203 PMID: 24459154

50. Jacobs S, Kroger J, Floegel A, Boeing H, Drogan D, Pischon T, et al. Evaluation of various biomarkers

as potential mediators of the association between coffee consumption and incident type 2 diabetes in

the EPIC-Potsdam Study. Am J Clin Nutr. 2014; 100(3):891–900. https://doi.org/10.3945/ajcn.113.

080317 PMID: 25057154

51. Vinknes KJ, Elshorbagy AK, Nurk E, Drevon CA, Gjesdal CG, Tell GS, et al. Plasma stearoyl-CoA desa-

turase indices: association with lifestyle, diet, and body composition. Obesity. 2013; 21(3):E294–302.

https://doi.org/10.1002/oby.20011 PMID: 23404690

52. Imamura F, Micha R, Wu JHY, de Oliveira Otto MC, Otite FO, Abioye AI, et al. Effects of saturated fat,

polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a system-

atic review and meta-analysis of randomised controlled feeding trials. PLoS Med. 2016; 13(7):

e1002087. https://doi.org/10.1371/journal.pmed.1002087 PMID: 27434027

53. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, et al. Glycemic index, glycemic

load, and chronic disease risk—a meta-analysis of observational studies. Am J Clin Nutr. 2008; 87

(3):627–37. PMID: 18326601

A fatty acid combination and incidence of type 2 diabetes

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002409 October 11, 2017 19 / 19

https://doi.org/10.1172/JCI6223
http://www.ncbi.nlm.nih.gov/pubmed/10359558
https://doi.org/10.1016/j.cmet.2012.03.007
http://www.ncbi.nlm.nih.gov/pubmed/22560215
https://doi.org/10.3945/ajcn.112.038695
http://www.ncbi.nlm.nih.gov/pubmed/22952180
https://doi.org/10.1001/jama.2016.14568
http://www.ncbi.nlm.nih.gov/pubmed/27701660
https://doi.org/10.1016/j.plefa.2014.07.010
http://www.ncbi.nlm.nih.gov/pubmed/25107579
https://doi.org/10.1016/j.numecd.2007.04.005
http://www.ncbi.nlm.nih.gov/pubmed/18042359
https://doi.org/10.1016/j.plipres.2011.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22133871
https://doi.org/10.1017/S0007114514003894
http://www.ncbi.nlm.nih.gov/pubmed/25609231
https://doi.org/10.3945/ajcn.117.152702
http://www.ncbi.nlm.nih.gov/pubmed/28424190
https://doi.org/10.1038/srep44845
http://www.ncbi.nlm.nih.gov/pubmed/28332596
https://doi.org/10.1016/j.ypmed.2003.11.027
http://www.ncbi.nlm.nih.gov/pubmed/15066364
https://doi.org/10.1152/ajpendo.00441.2010
https://doi.org/10.1152/ajpendo.00441.2010
http://www.ncbi.nlm.nih.gov/pubmed/20943752
https://doi.org/10.2337/dc13-1203
http://www.ncbi.nlm.nih.gov/pubmed/24459154
https://doi.org/10.3945/ajcn.113.080317
https://doi.org/10.3945/ajcn.113.080317
http://www.ncbi.nlm.nih.gov/pubmed/25057154
https://doi.org/10.1002/oby.20011
http://www.ncbi.nlm.nih.gov/pubmed/23404690
https://doi.org/10.1371/journal.pmed.1002087
http://www.ncbi.nlm.nih.gov/pubmed/27434027
http://www.ncbi.nlm.nih.gov/pubmed/18326601
https://doi.org/10.1371/journal.pmed.1002409

