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Who does what to whom? graph representations of
action-predication in speech relate to psychopathological
dimensions of psychosis
Amir H. Nikzad1✉, Yan Cong 1, Sarah Berretta1, Katrin Hänsel 2, Sunghye Cho3, Sameer Pradhan3, Leily Behbehani1,
Danielle D. DeSouza 4,5, Mark Y. Liberman3 and Sunny X. Tang1✉

Graphical representations of speech generate powerful computational measures related to psychosis. Previous studies have mostly
relied on structural relations between words as the basis of graph formation, i.e., connecting each word to the next in a sequence of
words. Here, we introduced a method of graph formation grounded in semantic relationships by identifying elements that act upon
each other (action relation) and the contents of those actions (predication relation). Speech from picture descriptions and open-
ended narrative tasks were collected from a cross-diagnostic group of healthy volunteers and people with psychotic or non-
psychotic disorders. Recordings were transcribed and underwent automated language processing, including semantic role labeling
to identify action and predication relations. Structural and semantic graph features were computed using static and dynamic
(moving-window) techniques. Compared to structural graphs, semantic graphs were more strongly correlated with dimensional
psychosis symptoms. Dynamic features also outperformed static features, and samples from picture descriptions yielded larger
effect sizes than narrative responses for psychosis diagnoses and symptom dimensions. Overall, semantic graphs captured unique
and clinically meaningful information about psychosis and related symptom dimensions. These features, particularly when derived
from semi-structured tasks using dynamic measurement, are meaningful additions to the repertoire of computational linguistic
methods in psychiatry.
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INTRODUCTION
Disturbances in speech have been recognized as a key component
of both positive and negative symptoms in psychosis1. Here we
define speech as the sum of all acoustic and lexical aspects of
spoken communication. Increasingly, speech phenotypes in
psychosis can be objectively and reliably measured through
automated language analysis for the detection and prediction of
psychotic disorders2–7. Speech graphs, derived from transcribed
texts, have shown the ability to accurately quantify language
disorganization and impoverishment. There were significant
relationships between graph features and key psychosis pheno-
types, including thought disorder, cognition, global functioning,
and brain connectivity changes8. Speech graphs are network
representations of discourse that treat linguistic elements (words,
lexemes, etc.) as nodes and relationships among those elements
as the bridging links (edges)9. Generally, relationships among
linguistic elements may be structural (based on the relative
locations of the words, e.g., occurring in sequence or co-
occurrence in the same utterance) or semantic (based on the
meaning of the utterance, e.g., entity A is acting upon entity B).
Quantitative measures of the size, connectedness, and organiza-
tional structure of the speech graphs can then be calculated10. For
example, the size of the graph can be quantified by the number of
nodes and edges as well as measures of internal distances such as
network diameter and average shortest path length. The
connectedness of the graph is reflected in average degrees,
graph density, and size of the largest connected component. The

degree of organization in the graph can be measured by
comparing the statistical similarity of graph features to randomly
generated graphs of the same size.
Sequential speech graphs of individuals with psychosis

spectrum disorders (PS+) have been characterized as being
smaller, less connected, and more disorganized than individuals
without psychosis spectrum disorders (PS−). In their pioneering
study, Mota and colleagues showed that the PS+ speech graphs
exhibited fewer nodes and edges, lower average degrees, and
smaller connected components compared to those of healthy
controls and patients with mania11. PS+ speech graphs also had a
lower average shortest path length and network diameter per
fixed word lengths, reflecting shorter internal distances12. A
subsequent study comparing the size of connected components
in speech graphs with that of randomly generated graphs of the
same size revealed that PS+ graphs have more random-like
organization compared to PS−13. Palaniyappan et al.8 further
showed that the graph measures of connectedness (size of
connected component) and organization (size of the connected
component divided by that of random graphs) were associated
with disorganized and impoverished thought disorders as well as
clinical measures of schizophrenic symptoms and biological
measures of neural connectivity.
However, sequential relationships among words are vulnerable

to non-psychopathologic factors such as stylistic preferences of
the speaker, passive or active voice, and different grammatical
structures in different languages. On the other hand, semantic
relationships are tied to the underlying concepts being expressed,
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and they are consistent across languages and speaking style. For
instance, in “The dog chased the cat” and “The cat was chased by
the dog,” the same semantic content is expressed with different
word sequences. Furthermore, there is evidence that thought
disorder is related to disruptions in semantic networks14. Thus,
graphs that utilize the core semantic content may be a more
direct method for representing disrupted brain circuits in
psychosis. Here, we attempt to build speech graphs upon two
semantic relations which have been proposed as universal
linguistic relationships15: (1) Action, which links the actor of the
underlying event to its undergoers (dog→ cat), and (2) predica-
tions, which link the predicate of the utterance to its arguments
(chase→ dog and cat). These relationships capture the core
semantic meaning of the utterance: who does what to whom?
Figure 1a illustrates the structures of sequential and action-
predication graphs.
In this paper, we aim at (1) introducing a new way to produce

semantic speech graphs based on the two universal linguistic
relations of action and predication, (2) verifying the validity of size,
connectedness, and organization as three non-redundant
domains of speech graph features, (3) comparing semantic and
structural graph measures of size, connectedness and organiza-
tion in their associations with the presence of psychosis, and (4)
examining the relationship between graph features and clinically
rated dimensions of psychosis symptoms. The overall goal is to
operationalize semantic speech graph methodology with respect
to studying language disturbance in psychosis and guide
subsequent studies.

RESULTS
Participant characteristics
In total, speech samples of 205 and 201 participants were collected
and transcribed for picture description and open-ended narrative
tasks respectively, corresponding to 81 PS+ and 124 PS−
participants (Table 1). On average, picture descriptions included
110 ± 66 words and narrative responses included 162 ± 121 words;
word counts were not significantly different between PS+ and PS−
(p-values were 0.310 and 0.051 for open-ended narrative and
picture description tasks respectively). As expected, PS+ partici-
pants scored significantly higher in overall psychosis symptoms,
negative symptoms, and demonstrated significantly more abnor-
mal speech per clinical ratings.

Speech graphs formation and measurements
The structural graphs were formed by the sequential connection
of elements of structural graph entry irrespective of utterance
boundaries. The semantic graph representations were created by
first tagging verbs, actor-arguments and undergoer-arguments
using semantic role labeling, and then combining action relations
(actor → undergoer) and predication relations (verb-predicate →
actor and undergoer arguments) within each utterance (Fig. 1a).
Iterations of the same relationships were captured as the edge
weight; the first occurrence was weighted 1 and repetitions added
1 to the edge weight incrementally. The performance of the
semantic role labeler was inspected and did not appear to
demonstrate any biases (Supplementary Table 2). The code for the
formation of semantic graphs is shared in a public repository
(https://github.com/STANG-lab/Semantic-Graphs). A more com-
prehensive illustration of the applied method is presented in
Supplementary Table 2.

● Utterance Example: The kid is grabbing the cookie jar.
● Structural Graph Connections: kid → grab + grab → cookie +

cookie → jar
● Semantic Graph Connections: grab→ kid + grab→ cookie jar +

kid → cookie jar

Size, connectedness, and organization of sequential and action-
predication networks were measured by computing relevant
graph features. Graph size was quantified with straightforward
counts (number of nodes (NN), number of edges (NE)) and
internal-distance measures (diameter, average shortest path
length between any two nodes (ASPL)). Connectedness was
quantified using average weighted degree (i.e., the number of
weighted edges for each node; AWD), graph density (realized
edges divided by possible edges) and number of nodes in the
largest strongly connected component (LSCC). The level of
organization in graphs was estimated by computing the z-score
of ASPL and LSCC relative to 1000 randomly generated graphs of
the same NN and NE. All calculations were performed in Python
using the igraph library16. Random graphs were generated using
the built-in Erdős–Rényi algorithm17.
Static graph features were calculated based on the networks of

the whole response for each task, and averaged across each task
category for each participant (picture description vs. narrative). We
complemented usual static graph features with moving-window
measures introduced by Mota and colleagues12. The length and
moving-step of the window were set to 30-tokens length and
1-token step for the sequential graphs based on the best
performing models in previous studies which explored this
technique8,12,13. Action-predication networks were calculated for
3-utterance segments and 1-utterance steps because these
lengths were the closest equivalents to that of structural graphs,
considering the mean sentence length of ~10 words. Dynamic
graph features were then calculated as the average of graph
features over all windows. In total, 36 graph features (n= 18 for
structural graphs, n= 18 for semantic graphs) were analyzed. The
full list of graph features is included in Supplementary Table 3.
Graph formations and measurements were performed separately
for each response (i.e., each picture or open-ended prompt) and
then averaged across the task for each participant.

The redundancy of graph features
To evaluate the mutual redundancy of different sets of graph
features, we computed variance inflation factors (VIF) at successive
layers of analysis18: first, across domains (size, connectedness, and
organization), then across modes (static and dynamic), then for
each type of graph (structural and semantic), and finally for each
task category—picture description (Table 2) and open-ended
narratives (Supplementary Table 4).
Intra-domain VIF analyses revealed that the information in the

internal-distance measures was not redundant with respect to
general measures of size. All connectedness measures in both
graph types survived in the intra-domain analysis. Dynamic
organization measures of sequential graphs were not mutually
redundant, but only one of the dynamic organization measures
survived in the VIF comparison of the action-predication networks.
Increasing the level of integration did not lead to exclusion of one
entire domain. Notably, dynamic semantic graph features of all
three domains of size, connectedness, and organization remained
in the final sets in both tasks; this was not observed in other types
of graph features.

Speech graph features and psychosis
Associations between graph features and the presence of
psychosis are presented in Table 3. In general, semantic graphs
showed a more task-specific behavior compared to structural
graphs, with more significant associations in picture descriptions.
Structural graphs performed similarly in picture description
compared to open-ended narrative tasks. The moving window
method enhanced the significance and effect size of the relation-
ships for both graph types and for all three domains of size,
connectedness, and organization. In order to account for the
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Fig. 1 Speech graph methodology. a Structural and semantic graph representations of a given text are illustrated. The structural
representation is produced based on sequential relations between lemmatized content words (e.g., I→see→cookie→jar, etc.). The semantic
representation is produced by connecting elements that act upon each other (e.g., I→chair; kid→cookie jar), and linking verb predicates to
their arguments (e.g., see→I; see→chair; grab→kid; grab→cookie jar). b Dynamic graph features are computed by sliding a window of fixed
length throughout each sample to produce n instances of graph representations. Subsequently, each graph feature is calculated as the mean
value of n features each belonging to a particular instance. Successive sequential graphs progress one word at a time in windows of 30 words,
and semantic graphs slide one utterance at a time in windows of three utterances.
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uneven distributions of sex and race in PS+ and PS−, we selected
two subsamples of participants matched for sex and race,
respectively. The correlations between graph measures and
psychosis status were consistent with the overall findings in each
matched subsample (Supplementary Table 5).

Size. Speech from PS+ yielded significantly smaller structural
and semantic graphs as reflected in multiple correlations between
measures of network size and psychosis (Table 3-A). The moving-
window technique improved the correlations in both graph types
with ~0.1 increase in mean RBC for sequential and action-
predication graphs respectively. General measures of the network
size (NE and NN) manifested the strongest and most significant
correlations in psychosis for both graph types and in both tasks.

Connectedness. Psychosis was associated with smaller connected
components and higher graph densities (Table 3-B). This pattern
was observed in both structural and semantic graphs. However,
average weighted degrees were higher in the structural graphs of
psychotic speech and lower in semantic networks compared to
non-psychotic counterparts. The most informative semantic graph
features in this domain were dynamic graph density and LSCC for
open-ended and picture description tasks respectively. Dynamic
density in sequential graphs showed the highest effect size in
both tasks (picture description: p < 0.001, RBC=−0.33; narrative:
p < 0.001, RBC=−0.31).

Organization. Structural and semantic speech graphs showed
different patterns of organization with respect to random graphs
with negative mean z-scores in semantic graphs and positive
z-scores for structural graphs. This pattern was consistent for both
measures (LCCZ and ASPLZ) and in both tasks. These findings
suggest that action-predication graphs of speech are organized in
smaller connected components with shorter inter-nodal pathways
compared to random graphs of the same size. Conversely,
sequential graphs produce larger connected components with

nodes that were further apart. However, in both cases, PS+ graphs
incline toward the more random-like patterns of organizations
compared to those of PS−, i.e., exhibiting higher z-scores in
semantic graphs and lower z-scores in structural graphs (Table
3-C).

Speech graphs and dimensional clinical characteristics
Figure 2a represents task-wise correlation plots for structural and
semantic graph features vs. clinical measures of language
disturbance (TLC speech disorganization and speech poverty
factors), disease severity (BPRS total score) and psychopathologi-
cal dimensions (BPRS anxiety/depression, hostility/suspiciousness,
thought disturbance and withdrawal/psychomotor retardation
factors; SANS affective flattening, alogia, avolition, and asociality/
anhedonia global scores). In general, graph features generated
from the picture description tasks were more closely related to
clinical measures than those from narrative tasks. Within the
picture description task, the dynamic action-predication graph
features outperformed the static features as well as both static and
dynamic sequential graph features (Fig. 2a). Among graph
measures of the narrative task, a dynamic measure of structural
graph organization (D_SEQ LSCCZ) showed the strongest connec-
tions with clinical characteristics.

Clinical measures of speech disturbance. Speech disorganization
was associated with increased connectedness and decreased
organization in both tasks. This relationship is more prominent in
structural features with more Bonferroni survived correlations and
higher correlation coefficients (absolute rho= 0.36–0.39). Speech
poverty was correlated with the density and size of graphs of both
type, with impoverished speech having denser and smaller
graphs; this correlation was more clearly observed in the semantic
networks than in the structural graphs (absolute rho= 0.40–0.41).

Overall disease severity. The strongest correlates of total BPRS
score were dynamic measures of size (rho=−0.54 to −0.58) and
organization (rho= 0.51–0.54) of semantic graphs in the picture
description task. For narratives, the same relationships were
reproduced, but there was a stronger correlation between overall
disease severity (BPRS total score) and the dynamic organization
measure (LSCCZ) of structural graphs (rho=−0.45).

Dimensional measures of psychosis. Figure 2b shows the sig-
nificant relationships among non-redundant graph features and
clinical measures. Patterns were task-dependent. Semantic graph
features derived from picture description tasks were consistently
more informative for dimensional measures of psychosis than
structural features. Multiple connections were observed between
semantic graph features from picture description and multiple
psychopathological dimensions including hostility/suspiciousness,
thought disturbance, withdrawal/psychomotor retardation, affec-
tive flattening, and avolition. Thought disturbance was strongly
correlated with almost all dynamic graph features in the Action-
Predication network (rho=−0.4 to −0.62). Negative factors of
withdrawal/psychomotor retardation and affect flattening were
connected to static and dynamic measures of connectedness in
semantic graphs. Dynamic measure of structural graph organiza-
tion (LCCZ) was connected with multiple clinical dimensions in
open-ended narrative task, including avolition, thought distur-
bance, and hostility/suspiciousness (absolute rho= 0.4–0.45). The
only domain that remained uncorrelated in both tasks for all
graph features was the anxiety/depression factor.

DISCUSSION
Here, we presented an automated speech analysis method that
objectively measured speech quantity, connectedness, and

Table 1. Demographic characteristics of the participants.

Overall PS+ PS− p value

n 205 81 (40%) 124 (60%)

Age 25.9 ± 6.3 25.2 ± 5.9 0.20

Sex <0.01**

Female 118 (58%) 35 83

Male 87 (42%) 46 41

Race <0.01**

African American 53 (26%) 31 22

Asian 24 (12%) 11 13

Caucasian 89 (43%) 20 69

Other 39 (19%) 19 20

Education 14.1 ± 2 15.5 ± 1.9 <0.001***

Caregiver education 14.6 ± 3 15.3 ± 2.3 0.07

BPRS total score 42 ± 14 22 ± 4 <0.001***

SANS total score 30 ± 15 4 ± 4.5 <0.001***

TLC total score 16 ± 14 4 ± 5 <0.001***

The significant associations are tagged by asterisks (*<0.05, **<0.01, and
***<0.001). P-values were calculated using Pearson’s chi-squared test (for
sex and race), and the Mann–Whitney U test (for age, education, caregiver
education, and BPRS, SANS, and TLC total scores).
PS+ individuals with psychosis spectrum disorders, PS− individuals
without psychosis spectrum disorders, BPRS Brief Psychiatric Rating Scale,
SANS scale for assessment of negative symptoms, TLC scale for the
assessment of thought, language, and communication.
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organization using graph metrics. These features were quantita-
tive and objective, and they captured semantic relationships of
action (between actors and undergoers of utterance) and
predication (between the predicate and arguments).
We found that the semantic graph features derived from the

picture description tasks were strongly correlated with psycho-
pathological dimensions of psychosis, with the dynamic features
outperforming the static features. Our findings suggest that
incorporating semantic information in graph modeling of speech
can increase the performance of such models. In the picture
description tasks, only the semantic graph features were
connected to psychopathological dimensions other than language
disturbances, including dimensions such as affect, abolition, and
thought content. There are no other existing reports of the use of
semantic graph methodology in studying psychosis. Therefore,
this finding remains to be replicated.
Speech graphs of PS+ were smaller, less connected, and more

randomly organized compared to those of PS−. This was true for
both semantic and structural graphs in our study, and the finding
is consistent with previous studies using structural speech
graphs11–13. For example, Mota et al. found that schizophrenia
was related to decreased size in terms of the number of nodes11

and measures of internal distances12. The association between
psychosis and decreased speech graph size may reflect a similar

phenomenon as the decreased semantic density found by Rezaii
et al.5 and decreased idea density reported by Moe et al.19. With
regard to measures of connectedness and organization, recent
studies have relied on the LSCC, the largest strongly connected
component, as an absolute and relative quantity with respect to
randomly generated graphs8,20,21. Our findings suggest that
additional information can be captured with other non-
redundant features describing size, connectedness, and organiza-
tion. For example, we found that diameter and average short path
length convey non-redundant information about the expansive-
ness of the network in addition to number of nodes and edges,
network density and average degree can be used along the
connectedness measure of LSCC, and z-score analysis of ASPL can
be considered as a measure of speech graph organization. Each of
these graph metric domains should be included in future efforts to
quantify clinical speech characteristics.
We found that graph features are related to psychosis in a task-

dependent manner. Previous studies reported that dream reports
and picture description tasks are more informative about
psychosis compared to narrations pertaining to everyday life, as
reflected in larger effect sizes for association with psychosis12,13.
Since not all participants are able to recall and report dreams13,
picture descriptions have developed into the preferred source of
speech samples for graph analysis8,20. Accordingly, our findings

Table 2. Survived graph features in sequential VIF comparisons in picture description task.

Graph Features (n = 36) Picture Description Task 

1. Domain 2. Type 3. Task 
Static Action-Predication Graph  
     Size (n = 4) 

S_AP NN, 

S_AP ASPL 

S_AP Density, 

S_AP LSCC, 

D_AP ASPL, 

D_AP Density, 

D_AP LSCC, 

D_AP ASPLZ

S_AP LSCC, 

D_AP ASPL, 

D_AP Density, 

D_AP LSCC, 

D_AP ASPLZ, 

S_SEQ NE, 

S_SEQ Density, 

S_SEQ LSCCZ, 

D_SEQ AWD, 

D_SEQ LSCCZ, 

D_SEQ ASPLZ

Static Action-Predication Graph 
    Connectedness (n = 3) 

S_AP AWD, 

S_AP Density, 

S_AP LSCC 

Static Action-Predication Graph 
    Organization (n = 2) 

S_AP LSCCZ 

Dynamic Action-Predication Graph 
    Size (n = 4) 

D_AP NN, 

D_AP ASPL 

Dynamic Action-Predication Graph 
    Connectedness (n = 3) 

D_AP AWD, 

D_AP Density, 

D_AP LSCC 

Dynamic Action-Predication Graph 
    Organization (n = 2) 

D_AP ASPLZ 

Static Sequential Graph 
    Size (n = 4) 

S_SEQ NE, 

S_SEQ ASPL 

S_SEQ NE, 

S_SEQ Density, 

S_SEQ LSCCZ, 

D_SEQ AWD, 

D_SEQ LSCCZ, 

D_SEQ ASPLZ

Static Sequential Graph 
    Connectedness (n = 3) 

S_SEQ AWD, 

S_SEQ Density, 

S_SEQ LSCC 

Static Sequential Graph 
    Organization (n = 2) 

S_SEQ LSCCZ, 

S_SEQ ASPLZ 

Dynamic Sequential Graph 
    Size (n = 4) 

D_SEQ NE, 

D_SEQ ASPL 

Dynamic Sequential Graph 
    Connectedness (n = 3) 

D_SEQ AWD, 

D_SEQ Density, 

D_SEQ LSCC 

Dynamic Sequential Graph 
    Organization (n = 2) 

D_SEQ LSCCZ, 

D_SEQ ASPLZ 

Columns within each segment accommodate survived graph features. VIF comparison was conducted and features of the highest VIF were excluded
successively until a set of features all showing VIF < 5 was attained. Survived features were then passed to the next column on right for another comparison on
a more integrated level. 1. Domain column shows results of intra-domain comparisons. 2. Type column presents the features integrated on graph-type level,
i.e., semantic vs structural graph features. 3. Task column combines all graph features per each task. For the dynamic semantic graph, features belonging to
three domains of size, connectedness and organization remained in the final set. Graph features of different methods are color coded. VIF comparisons for
open-ended narrative task is provided in Supplementary Table 4. More details on graph features are available in Supplementary Table 3.
S_AP static action-predication graph feature, D_AP dynamic action-predication graph feature, S_SEQ static sequential graph feature, D_SEQ dynamic sequential
graph feature, NN number of nodes, NE number of edges, diameter graph diameter, ASPL average shortest path length, AWD average weighted degree, density
graph density, LSCC size of largest strongly connected component, LSCCZ z-score of LSCC compared to 1000 random graphs, ASPLZ z-score of ASPL compared
to 1000 random graphs.
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suggest better performance of speech graphs based on picture
description tasks compared to open-ended narratives. It may be
the case that the additional structure provided in these tasks is
able to reduce noise—i.e., variations in speech that are not related
to psychopathology, which may be more dependent on the mood
or social status of individual speakers. Furthermore, relative to
open-ended narratives, picture description tasks have a pre-set
common ground between speaker and listener: the picture. This
setting helps navigate the speaker’s response, making it relevant
and informative enough for graph analysis. Although everyday
verbal communications are not directed by specific tasks, picture
descriptions seem suitable for brief speech sampling for
computational language analysis in clinical context. Further
studies with larger open-ended narrative speech samples may
show similar results.
Moreover, we found that controlling the amount of speech

using the moving-window method enhanced the performance of
speech graph models. This is in line with previous studies
conducted by structural speech graphs, where different
approaches attempted to control speech quantity, including using
normalized features (i.e., measuring features per word count)11,

setting time limits for speech recordings8,13,20, and incorporating
moving-window methods (i.e., using dynamic graph fea-
tures)8,12,13. Mota and colleagues reported that measuring graph
features per word count reversed the relationship of graph
features with psychopathological conditions (e.g., the number of
nodes were lower in the speech graph of patients with
schizophrenia compared to that of patients with manic disorder,
but this was reversed when normalized for word count)11.
Therefore, to make the methodology more uniform and applicable
to a variety of samples, we suggest using dynamic graph features
for subsequent studies.
There are several limitations to the current study. The scope of

our comparisons was focused on psychosis as a heterogeneous
and multi-faceted condition. Future studies should evaluate
whether there are more fine-grained relationships between
semantic graph features and psychosis subtypes, as well as
whether the presence of potentially comorbid conditions,
differences in treatment history, and social determinants affect
these measures. In addition, participants of our study were
recruited from both inpatient and outpatient services and
included individuals with and without formal thought disorders.

Table 3. Relationships between structural and semantic graph features and psychosis.

Graph feature Task Static action-predication
graph (S_AP)

Dynamic action-
predication graph (D_AP)

Static sequential
graph (S_Seq)

Dynamic sequential
graph (D_Seq)

A. Size

Number of nodes (NN) Picture 0.17* 0.27*** 0.20* 0.34***

Open-
ended

0.13 0.21* 0.14 0.33***

Number of edges (NE) Picture 0.19* 0.31*** 0.17* 0.27**

Open-
ended

0.12 0.19* 0.11 0.37***

Diameter Picture 0.16 0.23** 0.24** 0.30***

Open-
ended

0.00 0.03 0.28*** 0.25**

Average shortest path
length (ASPL)

Picture 0.11 0.18* 0.24** 0.28**

Open-
ended

0.08 0.17* 0.27** 0.26**

B. Connectedness

Average weighted degree (AWD) Picture 0.15 0.22** −0.05 −0.32***

Open-
ended

−0.03 0.06 −0.13 −0.29***

Density Picture −0.06 −0.15 −0.26** −0.33***

Open-
ended

−0.20* −0.23** −0.21* −0.31***

Size of largest strongly connected
component (LSCC)

Picture 0.15 0.24** 0.20* 0.18*

Open-
ended

0.08 0.13 0.14 0.29***

C. Organization

LSCC z-score (LSCCZ) Picture -0.22** −0.31*** 0.28*** 0.25**

Open-
ended

−0.09 −0.13 0.26** 0.31***

ASPL z-score (ASPLZ) Picture −0.22** −0.30*** −0.02 0.25**

Open-
ended

−0.11 −0.14 0.01 0.24**

Graph features are categorized into three domains of size, connectedness, and psychosis. For each feature rank biserial correlation coefficient (RBC) is reported
for picture description task (Picture) and open-ended narrative (Open-ended) as a measure of effect size. The significant associations are tagged by asterisks
(*<0.05, **<0.01, and ***<0.001). Associations survived in Bonferroni correction are bolded (alpha= 0.0003). Semantic graphs showed a preference for picture
description tasks with higher effect sizes and more significant associations. Structural graphs showed a task-independent relation with psychosis. In overall,
dynamic graph features outperformed static counterparts in both graph types.
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This heterogeneity might have contributed to our dimensional
characterization of clinical symptoms. Future studies should
evaluate the clinical correlates of semantic graph features in
specific subpopulations, for example in early psychosis, acute
hospitalization, chronic psychosis, and other groups. Sampling
methods were not uniform across the entire sample, as further

detailed in the method and supplement. Our primary findings
remained consistent when accounting for these deviations
statistically. Although we utilized lemmatization of words to
merge different inflected forms of lexical units, shared entities that
are addressed by different words stayed detached from each
other. Incorporating an algorithm to identify co-referents can help
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better represent the semantic structure of discourse. Moreover,
devising more sophisticated methods sensitive to the different
senses of each word will be able to enhance the performance of
similar models in future studies. We have limited our semantic
model to the relations between actors and undergoers. However,
semantic theories have identified a variety of more differentiated
semantic roles such as experiencer, instrument, source, and goal
that can be used to produce more fine-grained semantic
representations of speech.
The ultimate goal of computational speech measures in the

context of psychosis is to develop scalable quantitative methods
that improve our understanding of the psychosis disease process
and improve our ability to deliver the right treatment to the right
person at the right time. The development of novel and
informative computational methods moves the field closer to
these goals. Our work suggests that graphical speech measures
based on semantic relationships capture unique and clinically
meaningful aspects of psychosis-related speech disturbances. This
method was particularly informative when combined with a
moving-windows technique and semi-structured tasks. Future
efforts may further refine the semantic graph approach by
incorporating more differentiated semantic categories for com-
prehensive characterization of speech in psychosis spectrum
disorders and by relating these features to clinical outcomes like
relapse risk and treatment response.

METHODS
Data acquisition and clinical assessment
Participants (N= 205) were recruited from the Zucker Hillside Hospital
inpatient and outpatient services; healthy volunteers were recruited based
on prior participation in other studies or through online advertisements.
Primary diagnoses of psychotic disorders were established among 81
individuals (36 schizophrenia, 10 schizoaffective disorder, 5 schizophreni-
form disorder, 18 unspecified psychotic disorder, and 12 mood disorders
with psychotic features). 87 had primary diagnoses of non-psychotic
conditions, and 37 were healthy volunteers. We were interested in the
main effect of psychosis, and so chose to compare PS+ (including
schizophrenia spectrum and mood disorders with psychotic features) with
PS− participants (healthy volunteers and individuals with non-psychotic
disorders). All procedures were approved by the Institutional Review Board
and all participants provided informed consent or assent as minors. Each
participant provided speech samples in response to three picture
description tasks and two open-ended narrative prompts. Open-ended
narrative prompts included “Tell me about yourself.”, “How have things
been going recently?”, and “How have you spent your time recently?”. For
picture description tasks, subjects were prompted to describe scenes with
multiple interacting characters and abstract ink blots, as detailed in
Supplementary Table 1. Participants were encouraged to talk for at least
one minute, but no time limit was imposed on them. The speech samples
were collected via three sampling protocols with different ascertainment
goals and minor differences in procedures, as detailed in Supplementary
Table 1. All assessments and rating scales were completed by the same
team of trained research coordinators (SB, LB). Statistically accounting for
the protocol differences did not change our primary findings. Additional
details on participants and methods are provided in the Supplement.
Clinical measures included the Scale for Assessment of Thought,

Language, and communication (TLC) for speech and language

disturbances22, the Scale for Assessment of Negative Symptoms (SANS)23,
and the Brief Psychiatric Rating Scale (BPRS) for overall psychosis
symptoms24. Two-factor scores were calculated from the TLC based on
the factor model by Peralta et al. speech disorganization (pressure of
speech, tangentiality, derailment, incoherence, illogicality, circumstantial-
ity, and loss of goal) and speech poverty (poverty of speech and poverty of
content)25,26. Global scores were taken from the SANS for affective
flattening, alogia, avolition, and asociality/anhedonia domains of negative
symptoms. BPRS total scores were used as a measure for general
psychopathology, in addition to its four factors describing anxiety/
depression, hostility/suspiciousness, thought disturbance and withdra-
wal/psychomotor retardation24.

Language pre-processing
Utterance boundaries were determined manually based on syntactic
completeness and the presence of pauses. Within each utterance, tokens
were identified by NLTK word-tokenizer27. Each token was tagged for its
part-of-speech (POS) and lemmatized using spaCy modules28. Semantic
role labeling (SRL) was performed using transformer-srl (https://
github.com/Riccorl/transformer-srl), a BERT-based model built as an
extension to AllenNLP and pre-trained on CoNLL 2012 dataset derived
from the OntoNotes v5.0 corpus29–32. Semantic roles in OntoNotes are
span-based and follow the PropBank formalism where a predicate is
annotated with predicate specific, core, or numbered, arguments such as
A0, A1, etc., and adjunct arguments such AM-TMP (temporal), AM-LOC
(location), etc., which are shared across all predicates. Although core
arguments are predicate specific, A0 typically marks the Proto-agent and
A1 (and sometimes A2) mark the Proto-patient. For this study we only used
a subset of core arguments: A0, A1 and A2, where the relationships
between verbs and their arguments captured the predication relationships,
and the relationships between A0 and A1 or A2 captured the action
relationships33.
For structural graphs, we included nouns, pronouns, non-auxiliary verbs,

adjectives, and adverbs. Interjections, filled pauses, articles, and conjunc-
tions (e.g., “yes”, “um”, and “then”) were excluded so as to capture tokens
that contribute to verbal exchanges. The lemmatized forms of the included
tokens were passed to the graph formation step. We chose to lemmatize
the tokens to avoid dissociation of different morphological forms of the
same lexeme in network representations (e.g., “talk”, “talked”, and “talking”
all merged into the same node labeled as “talk”). For action-predication
graphs we tagged verbs, actor-arguments, and undergoer-arguments
using SRL, and the lemmatized forms of them were passed to the graph
formation step further detailed in the Results section.

Statistical analysis
The associations between graph features and psychosis diagnosis as a
dichotomous variable were evaluated using the Mann–Whitney U test.
Rank biserial correlation coefficients (RBC) were used as measures of effect
size34 and the significance level was adjusted for multiple comparisons by
Bonferroni correction (adjusted α= 0.0003). Graph features were corre-
lated with dimensional clinical measures using Spearman’s rank-order test.
The significance threshold was adjusted by Bonferroni correction (adjusted
α= 0.0001). The correlations between graph feature corresponding to
each task and clinical measures were plotted as a heatmap.
Variance inflation factor (VIF) comparison was used to identify

redundant graph features in order to simplify our analysis and generate
a more streamlined set of features for future applications. First, we applied
the method to different features within each domain (size, connectedness,
and organization) for static and dynamic types separately. Features with
the highest VIF were removed successively until all features showed the

Fig. 2 Correlations between structural and semantic graph features and dimensional clinical characteristics. a Heatmap representations of
the Spearman’s correlation coefficient for structural and semantic graph features and clinical measures in picture description and open-ended
narrative tasks across all participants. Significant relationships with uncorrected p values < 0.05 are shaded based on their effect sizes
(Spearman’s rho). Correlations surviving Bonferroni correction are starred. Bar plots of correlation coefficients per clinical dimension are
available in Supplementary Fig. 2. b Network representation of significant relationships between graph features and clinical measures. Multi-
collinearities were separately handled for structural and semantic graph features by stepwise comparison of variance inflation factors and
feature exclusion. Multiple comparisons were accounted for using Bonferroni correction. S_AP static action-predication graph feature, D_AP
dynamic action-predication graph feature, S_SEQ static sequential graph feature, D_SEQ dynamic sequential graph feature, NN number of
nodes, NE number of edges, diameter graph diameter, ASPL average shortest path length, AWD average weighted degree, density graph
density, LSCC size of largest strongly connected component, LSCCZ z-score of LSCC compared to 1000 random graphs, ASPLZ z-score of ASPL
compared to 1000 random graphs. More details on graph features are available in Supplementary Table 3.
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VIF of <518. The remaining static and dynamic graph features were
integrated for each graph type and the same analyses were conducted.
These remaining graph features for structural and semantic graphs were
then combined to produce non-redundant graph feature sets for each
graph type. A final set of graph features were attained by merging all
previously survived features and re-doing VIF analysis over them. The
significant relationships between the ultimately survived features and
clinical measures were demonstrated as a network for each task.
The potentially confounding effect of different sampling protocols on

our results was evaluated by covarying for protocol type in multiple linear
regressions predicting clinical measures with graph features of interest
(survived VIF and Bonferroni tests). All initial findings remained significant.
All statistical analyses and visualizations were done in python using the

Pandas35, NumPy36, Pingouin37, SciPy38, Statsmodels39, Seaborn40,
igraph16, and Matplotlib41 libraries.

DATA AVAILABILITY
The extracted features and clinical ratings for the participants is provided at https://
github.com/STANG-lab/Semantic-Graphs. De-identified raw transcripts can be made
available to interested scientists upon request.

CODE AVAILABILITY
The codes used for language processing, graph formation, and the statistical analyses
are available in a public repository at https://github.com/STANG-lab/Semantic-
Graphs.
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