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INTRODUCTION

The development of high-precision genome editing tools, such as targeted nucleases, has accelerated
advances in fundamental human medicine, animal science, animal breeding, as well as disease
diagnosis (Doudna and Charpentier, 2014; Kurtz et al., 2021; Rieblinger et al., 2021; Xie et al., 2021).
In particular, the genome editing system known as CRISPR technology has grown rapidly since it was
first reported (Jinek et al., 2012) and has become one of the most popular technologies. CRISPR/Cas9
technology can accurately identify target sequences and achieve efficient DNA cutting, thereby
completing gene knock-outs/knock-ins on a genome-wide scale (Cong et al., 2013; Koike-Yusa et al.,
2014).

However, due to double-strand breaks (DSBs) occurring during the editing process, this
technology often introduces a large number of non-ideal InDel (insertion and deletion)
mutations (Zhao et al., 2019). Subsequently, base editors (BEs), which can achieve precise
editing of a single nucleotide using cytosine deaminase or adenosine deaminase without
inducing DSB were developed (Gaudelli et al., 2017; Rees and Liu, 2018). Recently, prime
editors (PEs) have further expanded the CRISPR-based-edit toolkit to all twelve possible base-
to-base conversions, and insertion and deletion of short DNA fragments. This technology fuses
reverse transcriptase and Cas9 protein, and uses a prime editing guide RNA (pegRNA) as the repair
template to achieve precise gene editing (Anzalone et al., 2019). In this mini-review, we summarize
and discuss recent applications of the CRISPR technology in pigs.

GENE-EDITED PIGS FOR HUMAN BIOMEDICINE

Pigs serve as an important agricultural resource and animal model in biomedical research. A variety
of genetically modified pig models have been successfully generated through CRISPR-based
technologies (Table 1) (Huang et al., 2020; Xu et al., 2020; Gu et al., 2021; Maeng et al., 2021;
Yao et al., 2021; Yue et al., 2021; Xu et al., 2022). Duchenne muscular dystrophy (DMD) is an
incurable X-linked inherited neuromuscular disorder and is caused by mutations in the dystrophin
gene (DMD) (Hoffman et al., 1987). Studies in mdx (X-linked muscular dystrophy) mice, rats, dogs
and monkey provided only a limited understanding of DMD disease mechanisms, as these possess
different pathological manifestations from humans or cost highly (Nakamura et al., 2014; Chen et al.,
2015; Nelson et al., 2016; Amoasii et al., 2018). Pigs (Sus scrofa) are closely related to humans in terms
of anatomy, genetics and physiology. The generation of DMD knockout pig models using CRISPR/
Cas9 technology may potentially pave the way for new treatments for patients (Yu et al., 2016; Zou
et al., 2021).
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GENE-EDITED PIGS FOR AGRICULTURAL
PRODUCTION

CRISPR technology offers a new strategy to combat infectious
diseases in pigs. Porcine reproductive and respiratory syndrome
(PRRS) is one of the most economically important swine
infectious diseases worldwide. CD163 was identified as the
striking receptor in PRRSV entry, and by knocking it out from
the genome or editing the receptor using CRISPR/Cas9, pigs fully
resistant to PRRSV have been produced - a milestone in modern
pig breeding (Whitworth et al., 2016; Burkard et al., 2018; Xu
et al., 2020). Another study reported the construction of genome-
edited pigs with marker-free site-specific knock-in of lactoferrin
gene in the 3′-end of Casein alpha-s1 by CRISPR/Cas9-mediated
homologous recombination (Han et al., 2020). Antibacterial
activity of lactoferrin could potentially improve the survival
rate of piglets in the genome-edited pigs (Han et al., 2020).
There were abundant evidences that CRISPR-based
technologies have great potential in human health and animal
production.

CRISPR-BASED FUNCTIONAL GENOMICS
TO COMBAT INFECTIOUS DISEASES

CRISPR technology provides an easy way to introduce targeted
mutations into mammalian cells to induce loss-of-function
phenotypes (Doudna and Charpentier, 2014; Hsu et al., 2014;
Ruan et al., 2017). Genome-wide CRISPR screen has now been
successfully applied to identify host factors that restrict viral
infections, providing a powerful tool for exploring functional
genomics of virus-host interactions (Shalem et al., 2014;
Hoffmann et al., 2021). To identify novel host-dependent
factors, a porcine genome-scale CRISPR/Cas9 knockout
(PigGeCKO) library was established and successfully used to
identify several key genes (EMC3, CALR, etc.) related to Japanese
encephalitis virus (JEV) infection (Zhao et al., 2020). Several
reports have identified multiple host factors required for the entry
of other viruses and toxins in pigs and humans by using the
CRISPR screening strategy (Hölper et al., 2021; Luo et al., 2021;
Sun et al., 2021; Yu et al., 2021; Zhou et al., 2021).

Emerging coronaviruses (CoVs) pose a severe threat to human
and animal health worldwide. Through CRISPR screening,
transmembrane protein 41B (TMEM41B) was identified as a
critical host-dependency factor required for the replication of
diverse viruses, especially coronaviruses (Sun et al., 2021).
TMEM41B was found to be involved in the formation of
SARS-CoV-2 and transmissible gastroenteritis virus (TGEV)
replicative organelles (Sun et al., 2021). ZDHHC17 (zinc finger
DHHC-type palmitoyltransferase 17) was identified as a potential
drug target for swine acute diarrhea syndrome coronavirus
(SADS-CoV) infection by genome-wide CRISPR knockout
library screening in human HeLa cells (Luo et al., 2021).

Adopting the same strategy, the Golgi apparatus complex
protein (COG8) was identified as a pivotal regulator of
influenza virus infection (Zhou et al., 2021). Host
sphingomyelin synthase 1 (SMS1) was also found to be

involved in pseudorabies virus (PRV) infection when the gD-
mediated entry pathway was blocked (Hölper et al., 2021). In
addition, HBEGF (heparin-binding EGF-like growth factor),
DPH1-5 (diphthamide biosynthesis 1–5), DNAJC24 (Hsp40
member C24), and ZBTB17 were determined as diphtheria
toxin (DT) receptors (Yu et al., 2021). These are the key
factors involved in the biosynthesis of diphthamide, which
serves as the molecular target for DT (Yu et al., 2021). These
data demonstrate that CRISPR screening strategy is a powerful
tool for functional genome in livestock.

Furthermore, CRISPR technology can also be used to
specifically target infectious viruses (Freije and Sabeti, 2021).
African swine fever (ASF) is a highly contagious viral disease
of swine, with a high mortality rate up to 100%. CRISPR/Cas9 has
been successfully used to produce recombinant ASF virus
(ASFV), which could help speed up vaccine production to
combat the infectious virus (Abkallo et al., 2021). Indeed, the
CRISPR/Cas9 in combination with Cre/Lox system has been used
to develop a stable anti-pseudorabies virus (PRV) vaccine of pig
(Liang et al., 2016). Vaccination and challenge experiments
demonstrate that recombinant vaccine candidates generated by
gene editing technology can provide immune protection in pigs
(Liang et al., 2016). These studies showed that development of
virus vaccine can be accelerated via CRISPR and synthetic biology
technologies.

CRISPR-BASED DIAGNOSTICS

The rapid detection of infectious diseases is highly needed in
diagnosis and infection prevention (Pfaller, 2001; Hwang et al.,
2018). CRISPR-based nucleic acid detection methods have
suddenly emerged, with the potential to power the fields of
genetic mutation and pathogen detection (Chen et al., 2018).
This technology mainly employs Cas12, Cas13, and Cas14a,
which have a target-activated trans-cleavage activity and can
efficiently cleave single-stranded DNA (ssDNA) or single-
stranded RNA (ssRNA) sequences (Gootenberg et al., 2017;
Chen et al., 2018; Harrington et al., 2018).

To achieve point-of-care testing (POCT) of ASFV, a variety
of sensitive diagnostic methods based on CRISPR technology
have been established (He et al., 2020; Tao et al., 2020; Wang
X. et al., 2020; Wu et al., 2020; Wei et al., 2022; Xie et al., 2022),
for instance, recombinase-aided amplification (RAA)-Cas12a
combined with lateral flow detection assay (Wang Y. et al.,
2020), CRISPR/Cas12a based universal lateral flow biosensor
assay (Wu et al., 2020), CRISPR/Cas12a enhanced
fluorescence assay (Tao et al., 2020), CRISPR/Cas13
combined with lateral flow strip assay (Wei et al., 2022), as
well as high-throughput and all-solution phase ASFV
detection assay (He et al., 2020). Recently, to simplify the
detection process, the rapid visual CRISPR assay (RAVI-
CRISPR), combining a naked-eye colorimetric detection
method based on CRISPR/Cas12a and a convolutional
neural network was established (Xie et al., 2022). This
RAVI-CRISPR/MagicEye mobile APP system is perhaps the
today’s simplest platform for rapid POCT testing.
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TABLE 1 | Summary of genetic changes introduced into porcine genome by CRISPR system.

Application Gene symbol Full name Modification Disease/Trait References

Pig model for human
biomedicine

DMD Dystrophin knock-out Muscular Dystrophy Yu et al.
(2016)
Zou et al.
(2021)

PPARγ Peroxisome proliferator-activated
receptor gamma

knock-in (MCK promoter-porcine
PPARγ2 cDNA)

Oxidative fiber formation,
intramuscular fat deposition

Gu et al.
(2021)

PBD-2 Porcine β-defensin 2 knock-in (PBD2-T2A-PBD2) Anti-infection Huang et al.
(2020)

MYF5,
MYOD, MYF6

Myogenic Factor 5, myogenic
differentiation 1

knock-out Autologous muscle grafts Maeng et al.
(2021)

myogenic Factor 6
MITF Microphthalmia-associated transcription

factor
Point mutation Waardenburg syndrome 2A Yao et al.

(2021)
Agricultural production CD163 Clusters of differentiation 163 knock-out Porcine reproductive and

respiratory syndrome virus
and Transmissible
gastroenteritis virus infection

Xu et al.
(2020)ANPEP Alanyl Aminopeptidase, Membrane

CD163 Clusters of differentiation 163 knock-out Porcine reproductive and
respiratory syndrome virus
infection

Whitworth
et al., (2016)
Xu et al.
(2020)

CSN1S1 Casein Alpha S1 knock-in (porcine lactoferrin gene) Survival rate of piglets Han et al.
(2020)

ANPEP,
CD163,
MSTN,
MC4R

Alanyl Aminopeptidase, Membrane Targeted mutations Economic traits Wang X.
et al. (2020)Clusters of differentiation 163, myostatin,

melanocortin-4 receptor

Identification of host
factors restricting viral
infection

EMC3, CALR ER Membrane protein complex subunit 3 PigGeCKO library Japanese encephalitis virus
infection

Zhao et al.
(2020)Calreticulin

TMEM41B Transmembrane protein 41B PigGeCKO library Diverse viruses,
Transmissible
gastroenteritis virus,
especially coronaviruses
infection

Sun et al.
(2021)

ZDHHC17 Zinc finger DHHC-type
palmitoyltransferase 17

Human (HeLa cells), GeCKO library
screening

Swine acute diarrhea
syndrome coronavirus

Luo et al.
(2021)

COG8 Golgi apparatus complex protein GeCKO library screening Influenza virus infection Zhou et al.
(2021)

SMS1 Host sphingomyelin synthase 1 GeCKO library screening Pseudorabies virus infection Hölper et al.
(2021)

HBEGF Heparin-binding EGF-like growth factor,
diphthamide biosynthesis 1–5, Hsp40
member C24, Zinc Finger And BTB
Domain Containing 17

GeCKO library screening Diphtheria toxin Yu et al.
(2021)DPH1-5

DNAJC24
ZBTB17

Xenotransplantation GGTA1 Glycoprotein Alpha-
Galactosyltransferase 1

knock-out Immunological barriers Butler et al.
(2016)
Petersen
et al. (2016)
Gao et al.
(2017)
Yue et al.
(2021)

CMAH Cytidine monophospho-N-
acetylneuraminic acid hydroxylase

knock-out Immunological barriers Butler et al.
(2016)
Yue et al.
(2021)
Gao et al.
(2017)

β4galNT2 β-1,4-N-acetyl-
galactosaminyltransferase 2

knock-out Immunological barriers Yue et al.
(2021)

SLA class I class I SLA molecules knock-out Immunological barriers Reyes et al.
(2014)
Martens
et al. (2017)

(Continued on following page)
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TABLE 1 | (Continued) Summary of genetic changes introduced into porcine genome by CRISPR system.

Application Gene symbol Full name Modification Disease/Trait References

iGb3S Alpha 1,3-Galactosyltransferase 2 knock-out Immunological barriers Li et al.
(2015)

ULBP1 UL16 Binding protein 1 knock-out Immunological barriers Joanna et al.
(2018)

CIITA Class II major histocompatibility complex
transactivator

knock-out Immunological barriers Fu et al.
(2020)

B2M Beta-2-Microglobulin knock-out Immunological barriers Fu et al.
(2020)
Fischer et al.
(2020)

P53 Tumor protein P53 knock-out Immunological barriers Li H. et al.
(2021)

A3GALT2 Alpha 1,3-galactosyltransferase 2 knock-out Immunological barriers Shim et al.
(2021)

CD46 CD46 Molecule Human gene knock-in (66 kb 5′
flanking region-CD46 gene-54 kb
3′ flanking region)

Immunological barriers Fischer et al.
(2016)
Fischer et al.
(2020)
Yue et al.
(2021)

CD55 CD55 Molecule Human gene knock-in (10 kb 5′
flanking sequence/1.8 kb CAG
synthetic promoter- CD55
gene—6 kb 3′ flanking region)

Immunological barriers Fischer et al.
(2016)
Fischer et al.
(2020)
Yue et al.
(2021)

CD59 CD59 Molecule Human gene knock-in (10 kb 5′
flanking/promoter region-CD59
gene-37 kb 3′ flanking region)

Immunological barriers Fischer et al.
(2016)
Fischer et al.
(2020)
Yue et al.
(2021)

CD47 CD47 Molecule Human gene knock-in
(PERVKO·3KO·9TG)

Immunological barriers Yue et al.
(2021)

CD39 CD39 Molecule Human gene knock-in
(PERVKO·3KO·9TG)

Immunological barriers Yue et al.
(2021)

HO1 Heme oxygenase-1 Human gene knock-in (SV40-driven
hHO1 cDNA)

Immunological barriers Fischer et al.
(2016)
Fischer et al.
(2020)

A20 TNF Alpha induced protein 3 Human gene knock-in (CAG-driven
hA20 cDNA)

Immunological barriers Fischer et al.
(2016)
Fischer et al.
(2020)

CD2 CD2 Molecule Human gene knock-in (anti-
CD2 mAb)

Immunological barriers Nottle et al.
(2017)

B2M Beta-2-Microglobulin Human gene knock-in
(PERVKO·3KO·9TG)

Immunological barriers Yue et al.
(2021)

HLA-E Major histocompatibility complex, class
I, E

Human gene knock-in
(PERVKO·3KO·9TG)

Immunological barriers Yue et al.
(2021)

THBD Thrombomodulin Human gene knock-in
(PERVKO·3KO·9TG)

Immunological barriers Yue et al.
(2021)

EPCR Endothelial cell protein C receptor Human gene knock-in (0.7-kb
hEPCR cDNA)

Immunological barriers Lee et al.
(2012)

TFPI Tissue factor pathway inhibitor Human gene knock-in
(PERVKO·3KO·9TG)

Immunological barriers Yue et al.
(2021)
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PORCINE GENOME ENGINEERING FOR
XENOTRANSPLANTATION

The extreme shortage of human donor organs for the treatment
of patients with end-stage organ failure is well known. Pig-to-
human xenotransplantation is a most promising strategy to solve
this problem, because domestic pigs are similar to humans in
terms of anatomy, physiology and organ size, and are highly
reproductive and low in maintenance costs (Hryhorowicz et al.,
2017). However, discrepancies between pigs and humans lead to
the development of immune barriers, blocking direct
xenotransplantation (Vadori and Cozzi, 2015).

In the last decade, CRISPR technology accelerated the pace
and extent of modifications to porcine genomes, such as
knockout of major carbohydrate antigens (GGTA1, CMAH,
β4galNT2) and tumor suppressor protein (p53), as well as
knockin of various human complement regulatory proteins
(e.g. CD46, CD55), human coagulation regulatory proteins (e.g.
THBD, EPCR), human anti-inflammatory molecule (HO1), and
human macrophage-inhibitory ligand (CD47), to modulate
human immune response (Cooper et al., 2019; Li H. et al.,
2021). These genetically modified pigs have been used in
preclinical studies and greatly improved survival outcomes of
xenografts of non-human primate recipients (Niu et al., 2021). In
addition, multiplex CRISPR/Cas9 gene editing technology has
enabled multi-fold knockouts of porcine genes in various

combinations. Pigs carrying multi-fold xenoprotective
transgenes and knockouts of xenoreactive antigens have been
generated (Fischer et al., 2016; Zhang et al., 2018; Fischer et al.,
2020; Fu et al., 2020; Shim et al., 2021; Yue et al., 2021), with great
potential to completely eliminate immunological barriers. It
remains a challenge, however, to effectively assess the human
immune response induced by various genetic modifications and
to identify the ideal gene combinations (Li P. et al., 2021).
Recently, the world’s first porcine-to-human transplantation
was performed at the University of Maryland Medical Center,
successfully transplanting a genetically modified porcine heart
into a 57-year-old man with end-stage heart disease, and the
patient lived for two months after the transplant (Shah and Han,
2022). The advent of the CRISPR system has accelerated the field,
bringing the successful application of xenotransplantation closer
to reality.

CONCLUSION AND REGULATION OF
CRISPR DEVELOPMENT

CRISPR, a sequence-specific nuclease able to edit target gene
sequences, has ignited a revolution in the field of genetic
engineering and site-specific editing within malfunctioning
genes (Hsu et al., 2014). The system’s efficiency, robustness,
and affordability allow its application to endless potential

FIGURE 1 | The CRISPR system and its applications.
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genetic targets (Figure 1). The use of CRISPR in genetic
disorders, infectious diseases, defective traits and
immunological barriers via gene knockout, gene knockin and
gene editing has immense potential for the development of
animal production, human medicine and Xenotransplantation
(Doudna and Charpentier, 2014; Hsu et al., 2014; Ruan et al.,
2017; Shah and Han, 2022). CRISPR technology has also been
extensively employed to develop rapid point-of-care detection
methods for viruses (Xie et al., 2022), with great potential in
combating infectious diseases such as CoVs and ASFV.
Additionally, the technology exerts important roles in
clarifying the pathways of virus-host interactions, and
generating recombinant viruses to speed up vaccine
production. Future applications of CRISPR will enhance the
quality and quantity of gene therapy and animal production,
improve human health and animal welfare and will save
countless lives.

Gene editing regulations for animals have not yet been globally
established and vary greatly between countries. China’s
regulations on genetically modified organisms (“GMOs”)
mainly focus on Agricultural GMOs. In the U.S., genetically
modified crops are regulated by the U.S. Department of
Agriculture, which is relaxing its oversight of gene editing.
While animal biotechnology is regulated by the Food and
Drug Administration (FDA) under an unusual reading of the
Federal Food, Drug, and Cosmetic Act of 1938, and gene editing
is very strictly regulated by the FDA. In our opinion, using
CRISPR technology, we can create an advanced animal that is
essentially identical to the original one in all respects.
Nevertheless, it is important to establish sound laws and
regulations on CRISPR in the worldwide scientific community
and between government agencies globally. Despite all risks, we
believe that the application of CRISPR will provide benefits for
everyone in the not far-distant future.

INSIGHTS AND PROSPECTS

The rapid development of life science has brought us from the
“reading” stage of biological genetic information to the post-
genome era, in which “rewriting” and even “new design” of
genomes are gradually becoming a reality. Synthetic biology,
which aims to design and create new living organisms, has
developed rapidly under this background and has shown great
promise for applications in biomedicine, agriculture, vaccines,
manufacturing, and energy. In continuous exploration and
research, gene editing technologies, especially CRISPR, have

evolved from initial reliance on naturally occurring
homologous recombination in cells to targeted cleavage at
almost any site, and even to nucleic acid-based diagnostics.
The simplicity and efficiency of its operation has greatly
facilitated the genetic modification of species and disease
diagnosis. Gene editing provides the means for continued
modification of synthetic life and opens up more possibilities
for the creation of new species through genetic modification. De
novo genome synthesis and the large-scale modifications of
natural genomes belong to the fields of synthetic genomics
and gene editing (Xie et al., 2017), both subjects are current
hot spots topics in synthetic biology research.

Since Science magazine named CRISPR technology the
breakthrough of the year in 2015, this new technology has
taken the gene-editing field by storm. In the past few years,
CRISPR technology has rapidly swept the animal world as a
popular gene editing technique. Although the research and
application of gene editing technology has been developing
rapidly, gene editing technology still faces challenges in terms
of off-target, ethics and safety. The future development of gene
editing technology needs to pay attention to the following aspects:
first, strengthen planning and guidance, and attach great
importance to strengthening research on basic theories and
innovative methods of gene editing; second, strengthen
supervision and scientific guidance, and pay attention to the
applications of gene editing; third, strengthen research on ethical
norms, improve the legal and policy system for gene editing
supervision, and vigorously support the research and
development of animal gene editing products; fourth,
strengthen the popularization of science, let more people
understand and accept gene editing technology, so that gene
editing can better benefit mankind.
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