
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1742  | https://doi.org/10.1038/s41598-021-81273-w

www.nature.com/scientificreports

Linear confinement of generalized 
KG‑oscillator with a uniform 
magnetic field in Kaluza–Klein 
theory and Aharonov–Bohm effect
Faizuddin Ahmed

In this paper, we solve generalized KG‑oscillator interacts with a uniform magnetic field in five‑
dimensional space‑time background produced by topological defects under a linear confining potential 
using the Kaluza–Klein theory. We solve this equation and analyze an analogue of the Aharonov–
Bohm effect for bound states. We observe that the energy level for each radial mode depend on the 
global parameters characterizing the space‑time, the confining potential, and the magnetic field 
which shows a quantum effect.

The first proposal of a unified theory of fundamental interactions was elaborated by  Kaluza1,2 and  Klein3,4 (see 
also, Ref.5). This new proposal established that the electromagnetism can be introduced through an extra (com-
pactified) dimension in the space-time, where the spatial dimension becomes five-dimensional. This geometrical 
unification of gravitation and electromagnetism in five-dimensional version of general relativity gave some 
interesting results. The idea behind introducing additional space-time dimensions has found wide applications 
in quantum field  theory6. Stationary cylindrically symmetric solutions to the five-dimensional Einstein and 
Einstein–Gauss–Bonnet equations has studied in Ref.7. Few examples of these solutions are the five-dimensional 
generalizations of cosmic string, chiral cosmic  string8,9, and magnetic flux  string10 space-times.

The Kaluza–Klein theory (KKT) has investigated in several branches of physics. For example, in Khaler 
 fields11, in the presence of  torsion12,13, in the Grassmannian  context14–16, in the description of geometric phases 
in  graphene17, in Kaluza–Klein reduction of a quadratic curvature  model18, in the presence of  fermions19–21, and 
in studies of the Lorentz symmetry  violation22–24. In addition, the Kaluz–Klein theory has been studied in the 
relativistic quantum mechanics, for example, KG-oscillator on curved background in Ref.25, KG-oscillator field 
interacts with Cornell-type potential in Ref.26, generalized KG-oscillator in the background of magnetic cosmic 
string with scalar potential of Cornell-type in Ref.27, generalized KG-oscillator in the background of magnetic 
cosmic string with a linear confining potential in Ref.28, quantum dynamics of a scalar particle in the background 
of magnetic cosmic string and chiral cosmic string in Refs.29,30, bound states solution for a relativistic scalar par-
ticle subject to Coulomb-type potential in the Minkowski space-time in five dimensions in Ref.31, investigation 
of a scalar particle with position-dependent mass subject to a uniform magnetic field and quantum flux in the 
Minkowski space-time in five dimensions in Ref.32, and quantum dynamics of KG-scalar particle subject to linear 
and Coulomb-type central potentials in the five-dimensional Minkowski space-time33. Furthermore, effects of 
rotation on KG-scalar field subject Coulomb-type interaction and on KG-oscillator using Kaluza–Klein theory 
in the Minkowski space-time in five dimensions has also  investigated34. In order to describe singular behavior 
for a system at large distances in a uniformly rotating frame on the clocks and on a rotating body, Landau et al.36 
made a transformation such that it introduces a uniform rotation in the Minkowski space-time in cylindrical 
system. Non-inertial effects related to rotation have been investigated in several quantum systems, such as, in 
Dirac  particle37, on a neutral  particle38, on the Dirac  oscillator39, in cosmic string space-time40,41, in cosmic 
string space-time with  torsion42. Study of non-inertial effects on KG-oscillator within the Kaluza–Klein theory 
will be our next work.

The Klein–Gordon oscillator (KGO)43,44 was inspired by the Dirac oscillator (DO)45 applied to spin-1
2
 particle. 

Several authors have studied KGO on background space-times, for example, in cosmic string, Gödel-type space-
times etc. (e.g. Refs.46–48). In the context of KKT, the KG-oscillator in five-dimensional cosmic string and mag-
netic cosmic string  background25, under a Cornell-type potential in five-dimensional Minkowski space-time26 
have investigated. In addition, generalized KGO on curved background space-time induced by a spinning cosmic 
string coupled to a magnetic field including quantum  flux49, in magnetic cosmic string background under the 
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effects of Cornell-type  potential27 and a linear confining  potential28 using KKT, in the presence of Coulomb-type 
potential in (1+ 2)-dimensions Gürses space–time50, in cosmic string space-time with a spacelike  dislocation51, 
and in cosmic string space-time52 have investigated.

In this work, we study generalized KGO by introducing a uniform magnetic field in the cosmic string line 
element using  KKT1–5 under the effects of a linear confining potential, and analyze a relativistic analogue of the 
Aharonov–Bohm effect for bound states. The Aharonov–Bohm  effect53–56 is a quantum mechanical phenomena 
that describe phase shifts of the wave-function of a quantum particle due to the presence of a quantum flux 
produced by topological defects space-times. This effect has investigated by several authors in different branches 
of physics, such as, in Newtonian  theory57, in bound states of massive  fermions58, in scattering of dislocated 
wave-fronts59, on position-dependent mass system under torsion  effects42,48,60, in bound states solution of spin-0 
scalar  particles49. In addition, this effect has investigated using KKT with or without interactions of various kind 
in five-dimensional the Minkowski or cosmic string space-time  background25,27–34.

Interactions of generalized KGO with scalar potential using the KKT
The basic idea of the Kaluz–Klein  theory1–5,29 was to postulate one extra compactified space dimension and 
introducing pure gravity in new (1+ 4)-dimensional space-time. It turns out that the five-dimensional gravity 
manifests in our observable (1+ 3)-dimensional space-time as gravitational, electromagnetic and scalar filed. In 
this way, we can work with general relativity in five-dimensions. The information about the electromagnetism 
is given by introducing a gauge potential Aµ in the space-time26,29,30 as

where µ = 0, 1, 2, 3 , x0 = t is the time-coordinate, x4 = y is the coordinate associated with fifth additional dimen-
sion having ranges 0 < y < 2π a where, a is the radius of the compact dimension of y, (x1 = r, x2 = φ, x3 = z) 
are the cylindrical coordinates with the usual ranges, and κ is the gauge coupling or Kaluza  constant29. The 
parameter α = (1− 4µ)61 characterizing the wedge parameter where, µ is the linear mass density of the string. 
We assume the values of the parameter α lies in the range 0 < α < 1.

Based on Refs.25–27,29,31,32, we introduce a uniform magnetic field B0 and quantum flux � through the line-
element of the cosmic string space-time (1) in the following form

where the gauge field given by

gives rise to a uniform magnetic field �B = �∇ × �A = −κ−1 B0 ẑ
62, ẑ is the unitary vector in the z-direction. Here 

� = const is quantum  flux53,62 through the core of the topological  defects63.
The relativistic quantum dynamics of spin-0 scalar particle with a scalar potential S(r) by modifying the mass 

term in the form m → m+ S(r) as done in Refs.27,28,48 in five-dimensional case is described  by26,31–33:

where M,N = 0, 1, 2, 3, 4 , with g = det g = −α2 r2 is the determinant of metric tensor gMN with gMN its inverse 
for the line element (2) and m is rest mass of the particle.

To couple generalized Klein–Gordon oscillator with field, following change in the radial momentum operator 
is  considered27,28,49–52,64

where � is the oscillator frequency and we can write �p 2 → (�p+ i m� f (r)r̂)(�p− i m� f (r)r̂) . Therefore, the 
KG-equation becomes

where XM = (0, f (r), 0, 0, 0).
For the metric (2)

By considering the line-element (2) into the Eq. (6), we obtain the following differential equation:

(1)ds2 = −dt2 + dr2 + α2 r2 dφ2 + dz2 +
[

dy + κ Aµ(x
µ) dxµ

]2
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Since the line-element (2) is independent of t,φ, z, x . One can choose the following ansatz for the function � as:

where E is the total energy of the particle, l = 0,± 1,± 2, . . . ∈ Z , and k, q are constants.
Substituting the ansatz (9) into the Eq. (8), we obtain the following equation:

Linear confining potential. In this work, we consider linear confining potential that studies in the con-
finement of  quarks65, in the relativistic quantum  mechanics28,47,48,66–71, and in atomic and molecular  physics72. 
This potential is given by

where ηL is a constant that characterizes the linear confining potential.
Below, we choose two types of function f(r) for the studies of generalized KG-oscillator in the considered 

relativistic system subject to linear confining potential.
Case A Cornell-type function f (r) = b1 r + b2

r
Substituting Eqs. (3) and (11) into the Eq. (10) and using the above function, we obtain the following equation:

where

Introducing a new variable ρ = √
ω r , Eq. (12) becomes

where

Let us impose the requirement that the wave-function ψ(ρ) → 0 for both ρ → 0 and ρ → ∞ . Suppose the 
possible solution to Eq. (14) is

Substituting the solution Eq. (16) into the Eq. (14), we obtain

where
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Equation (17) is the biconfluent Heun’s differential  equation27,28,48,60,73,74 and H(ρ) is the Heun polynomials.
The above equation (17) can be solved by the Frobenius method. We consider the power series  solution75

Substituting the above power series solution into the Eq. (17), we obtain the following recurrence relation for 
the coefficients:

And the various coefficients are

We must truncate the power series by imposing the following two  conditions27,28,31–33,48,60:

By analyzing the condition � = 2 n , we get the following second degree expression of the energy eigenvalues En,l:

Note that the Eq. (23) does not represent the general expression for eigenvalues. One can obtain the individual 
energy eigenvalues one by one, that is, E1,E2,E3, . . . by imposing the additional recurrence condition Cn+1 = 0 
on the eigenvalue as done in Refs.27,28,48,60. For n = 1 , we have � = 2 and c2 = 0 which implies from Eq. (21)

a constraint on the parameter ω1,l . The relation given in Eq. (24) gives the value of the parameter ω1,l that permit 
us to construct a first degree polynomial solution of H(ρ) for the radial mode n = 1 . Note that the parameter 
ω1,l depends on the linear confining potential ηL and its value changes for each quantum number {n, l} , so we 
have labeled ω → ωn,l and ηL → η1 L . Besides, we have adjusted the magnetic field B1,l0  and the linear confining 
potential η1 L such that Eq. (24) can be satisfied and we have simplified by labelling:

 It is noteworthy that the allowed value of the magnetic field B1,l0  for lowest state of the system given by (25) is 
defined for the radial mode n = 1 . We can note from Eq. (25) that the magnetic field B0 depends on the quantum 
numbers {n, l} of the relativistic system which shows a quantum effect.

Therefore, the ground state energy level for n = 1 is given by
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And the radial wave-functions is

where

Then, by substituting the magnetic field (25) into the Eq. (26), one can obtain the allowed values of the relativistic 
energy level for the radial mode n = 1 of the system. As the values of the wedge parameter α are in the ranges 
0 < α < 1 , thus, the degeneracy of the energy is broken and shifted the energy level in comparison to the case 
of five-dimensional Minkowski space-time.

Case B Coulomb-type function f (r) = b2
r

In that case, the radial wave-equation (12) becomes

where

Introducing a new variable ρ =
√
ω̃ r , Eq. (12) becomes

where

Let the possible solution to Eq. (31) is

Substituting solution Eq. (33) into the Eq. (31), we obtain

where

Equation (34) is the biconfluent Heun’s differential  equation27,28,48,60,73,74 and H(ρ) is the Heun polynomials.
Substituting the above power series solution (19) into the Eq. (34), we obtain the following recurrence rela-

tion for the coefficients:
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And the various coefficients are

We must truncate the power series by imposing the following two  conditions27,28,31–33,48,60:

By analyzing the condition �̃ = 2 n , we get the following second degree expression of the energy eigenvalues En,l:

Following the similar technique as done earlier, we want to find the individual energy level and wave-function. 
For example n = 1 we have � = 2 and c2 = 0 which implies from Eq. (21)

a constraint on the parameter ω̃1,l . The magnetic field B1,l0  is so adjusted that Eq. (24) can be satisfied and we 
have simplified by labelling:

We can see from Eq. (41) that the possible values of the magnetic field B0 depend on the quantum numbers {n, l} 
of the system as well as on the confining potential parameter.

Therefore, the ground state energy level for n = 1 is given by

And the radial wave-functions is

where

Then, by substituting the real solution from Eq. (40) into the Eq. (41), it is possible to obtain the allowed values 
of the relativistic energy levels for the radial mode n = 1 of the system. We can see that the lowest energy state 
defined by Eqs. (40)–(41) plus the expression given in Eqs. (42)–(44) is for the radial mode n = 1 , instead of 
n = 0 . This effect arises due to the presence of linear confining potential in the relativistic system. Since the 
wedge parameter α are in the ranges 0 < α < 1 , thus, the degeneracy of the relativistic energy eigenvalue here 
also is broken and shifted the energy level in comparison to the case of five-dimensional Minkowski space-time.
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Conclusions
In this work, we have investigated generalized Klein-Gordon oscillator with a uniform magnetic field subject to 
a linear confining potential in a topological defect five-dimensional space-time in the context of Kaluza–Klein 
theory. Linear confining potential has many applications such as confinement of quarks in particle physics and 
other branches of physics including relativistic quantum mechanics. For suitable total wave-function, we have 
derived the radial wave-equation for a Cornell-type function in “Linear confining potential” and finally reached 
a biconfluent Heun’s differential equation form. By power series method we have solved this equation and by 
imposing condition we have obtained the non-compact expression of the energy eigenvalues (23). By imposing 
the recurrence condition cn+1 = 0 for each radial mode, for example n = 11 , we have obtained the lowest state 
energy level and wave-function by Eqs. (26)–(28), and others are in the same way.

In “Linear confining potential”, we have considered a Coulomb-type function on the same relativistic system 
with a linear confining potential. Here also we have reached a biconfluent Heun’s equation form and following the 
similar technique as done earlier, we have obtained the non-compact expression of the energy eigenvalues (39). 
By imposing the additional recurrence condition cn+1 = 0 on the eigenvalue, one can obtained the individual 
energy level and the corresponding wave-function, as for example, for the radial mode n = 1 by Eqs. (42)–(44), 
and others are in the same way. In "Linear confining potential", we have seen that the presence of linear confining 
potential allow the formation of bound states solution of the considered relativistic system and hence, the lowest 
energy state is defined by the radial mode n = 1 , instead of n = 0 . Also in gravitation and cosmology, the values 
of the wedge parameter α are in the ranges 0 < α < 1 , and thus, the degeneracy of each energy level is broken 
and shifted the relativistic energy level in comparison to the case of five-dimensional Minkowski space-time. 
When we tries to analyze cn+1 = 0 for the radial mode n = 1 , an observation is noted, where certain parameter 
is constraint, for example, ω1,l that appears in Eq. (24) in "Linear confining potential" (Case A) depend on the 
quantum number {n, l} of the system as well as on linear confining potential ηL . Another interesting observation 
that we made in this work is the quantum effect which arises due to the dependence of the magnetic field Bn,l0  on 
the quantum number {n, l} of the relativistic system.

We have observed in this work that the angular momentum number l of the system is shifted, 
l → l0 = 1

α
(l − q�

2π
) , an effective angular quantum number. Therefore, the relativistic energy eigenvalues 

depends on the geometric quantum  phase53,62. Thus, we have that, En,l(�+�0) = En,l∓τ (�) , where �0 = ± 2π
q τ 

with τ = 0, 1, 2, . . . . This dependence of the relativistic energy level on the geometric quantum phase gives us a 
relativistic analogue of the Aharonov–Bohm effect for bound states.

The Kaluza–Klein theory lead to many new unified field theories, for example, connecting this theory with 
supergravity resulted in improved supersymmetric Kaluza–Klein theory, multi-dimensional unified theories 
using the idea of Kaluza–Klein theory to postulate extra (compactified) space dimensions, superstring theory 
as well as the M-theory75 model using the Kaluza–Klein theory in higher dimensions. In addition, this theory 
has growing interest because of some interesting observations made in Ref.76. Authors pointed out that the five-
dimensional theory yields a geometrical interpretation of the electromagnetic field and electric charge. The rela-
tion of the five-dimensional KKT with the structure of fiber bundles was first made in Ref.77 and the relationship 
between principal fiber bundles and higher dimensional theories is  in78.
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