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Linear confinement of generalized
KG-oscillator with a uniform
magnetic field in Kaluza-Klein
theory and Aharonov-Bohm effect

Faizuddin Ahmed

In this paper, we solve generalized KG-oscillator interacts with a uniform magnetic field in five-
dimensional space-time background produced by topological defects under a linear confining potential
using the Kaluza—Klein theory. We solve this equation and analyze an analogue of the Aharonov-
Bohm effect for bound states. We observe that the energy level for each radial mode depend on the
global parameters characterizing the space-time, the confining potential, and the magnetic field
which shows a quantum effect.

The first proposal of a unified theory of fundamental interactions was elaborated by Kaluza'? and Klein** (see
also, Ref.?). This new proposal established that the electromagnetism can be introduced through an extra (com-
pactified) dimension in the space-time, where the spatial dimension becomes five-dimensional. This geometrical
unification of gravitation and electromagnetism in five-dimensional version of general relativity gave some
interesting results. The idea behind introducing additional space-time dimensions has found wide applications
in quantum field theory®. Stationary cylindrically symmetric solutions to the five-dimensional Einstein and
Einstein-Gauss-Bonnet equations has studied in Ref.”. Few examples of these solutions are the five-dimensional
generalizations of cosmic string, chiral cosmic string®®, and magnetic flux string'® space-times.

The Kaluza-Klein theory (KKT) has investigated in several branches of physics. For example, in Khaler
fields'!, in the presence of torsion'*", in the Grassmannian context'*"'%, in the description of geometric phases
in graphene', in Kaluza-Klein reduction of a quadratic curvature model'?, in the presence of fermions'*~?!, and
in studies of the Lorentz symmetry violation??~?*. In addition, the Kaluz-Klein theory has been studied in the
relativistic quantum mechanics, for example, KG-oscillator on curved background in Ref.?*, KG-oscillator field
interacts with Cornell-type potential in Ref.?, generalized KG-oscillator in the background of magnetic cosmic
string with scalar potential of Cornell-type in Ref.?’, generalized KG-oscillator in the background of magnetic
cosmic string with a linear confining potential in Ref.?¥, quantum dynamics of a scalar particle in the background
of magnetic cosmic string and chiral cosmic string in Refs.?**, bound states solution for a relativistic scalar par-
ticle subject to Coulomb-type potential in the Minkowski space-time in five dimensions in Ref.”!, investigation
of a scalar particle with position-dependent mass subject to a uniform magnetic field and quantum flux in the
Minkowski space-time in five dimensions in Ref.*?, and quantum dynamics of KG-scalar particle subject to linear
and Coulomb-type central potentials in the five-dimensional Minkowski space-time®. Furthermore, effects of
rotation on KG-scalar field subject Coulomb-type interaction and on KG-oscillator using Kaluza-Klein theory
in the Minkowski space-time in five dimensions has also investigated**. In order to describe singular behavior
for a system at large distances in a uniformly rotating frame on the clocks and on a rotating body, Landau et al.*
made a transformation such that it introduces a uniform rotation in the Minkowski space-time in cylindrical
system. Non-inertial effects related to rotation have been investigated in several quantum systems, such as, in
Dirac particle”, on a neutral particle®®, on the Dirac oscillator®, in cosmic string space-time***!, in cosmic
string space-time with torsion*’. Study of non-inertial effects on KG-oscillator within the Kaluza-Klein theory
will be our next work.

The Klein-Gordon oscillator (KGO)*#* was inspired by the Dirac oscillator (DO)** applied to spin-} particle.
Several authors have studied KGO on background space-times, for example, in cosmic string, Godel-type space-
times etc. (e.g. Refs.**"*%). In the context of KKT, the KG-oscillator in five-dimensional cosmic string and mag-
netic cosmic string background®, under a Cornell-type potential in five-dimensional Minkowski space-time*
have investigated. In addition, generalized KGO on curved background space-time induced by a spinning cosmic
string coupled to a magnetic field including quantum flux*, in magnetic cosmic string background under the
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effects of Cornell-type potential*” and a linear confining potential®® using KKT, in the presence of Coulomb-type
potential in (1 + 2)-dimensions Giirses space-time®, in cosmic string space-time with a spacelike dislocation®’,
and in cosmic string space-time® have investigated.

In this work, we study generalized KGO by introducing a uniform magnetic field in the cosmic string line
element using KKT'™ under the effects of a linear confining potential, and analyze a relativistic analogue of the
Aharonov-Bohm effect for bound states. The Aharonov-Bohm effect®*-* is a quantum mechanical phenomena
that describe phase shifts of the wave-function of a quantum particle due to the presence of a quantum flux
produced by topological defects space-times. This effect has investigated by several authors in different branches
of physics, such as, in Newtonian theory*’, in bound states of massive fermions®, in scattering of dislocated
wave-fronts®, on position-dependent mass system under torsion effects*>**, in bound states solution of spin-0
scalar particles®. In addition, this effect has investigated using KKT with or without interactions of various kind
in five-dimensional the Minkowski or cosmic string space-time background?**"-34,

Interactions of generalized KGO with scalar potential using the KKT

The basic idea of the Kaluz-Klein theory'~>% was to postulate one extra compactified space dimension and
introducing pure gravity in new (1 + 4)-dimensional space-time. It turns out that the five-dimensional gravity
manifests in our observable (1 + 3)-dimensional space-time as gravitational, electromagnetic and scalar filed. In
this way, we can work with general relativity in five-dimensions. The information about the electromagnetism
is given by introducing a gauge potential A, in the space-time?>*** as

ds? = —di? + dr? + o? r* d¢? + d2? + [dy + i Ay () dx“}z, (1)

where it = 0,1,2,3,x" = tis the time-coordinate, x* = y is the coordinate associated with fifth additional dimen-
sion having ranges 0 < y < 2 7 a where, a is the radius of the compact dimension of y, (x! = r, x> = ¢, x> = 2)
are the cylindrical coordinates with the usual ranges, and « is the gauge coupling or Kaluza constant®. The
parameter @ = (1 — 4 u)*' characterizing the wedge parameter where, 4 is the linear mass density of the string.
We assume the values of the parameter « lies in the range 0 < @ < 1.

Based on Refs.”>"22%3132 we introduce a uniform magnetic field By and quantum flux ® through the line-
element of the cosmic string space-time (1) in the following form

1 ® ’
ds* = —dt> + dr* + o® r* d¢* + d2* + {dy + (_E o Byr? + 2—) d¢} , (2)
T
where the gauge field given by
A (Lypr s 2
=K —— 1 JR—
¢ 277 o )
gives rise to a uniform magnetic field B=V x A=—«"1By2% zisthe unitary vector in the z-direction. Here

® = const is quantum flux®>%? through the core of the topological defects®.

The relativistic quantum dynamics of spin-0 scalar particle with a scalar potential S(r) by modifying the mass

term in the form m — m + S(r) as done in Refs.?”*** in five-dimensional case is described by?**1-33;
1
—= (/g " In) — (m + 5)2} v =0, (4)
v—8
where M,N =0,1,2,3,4,withg = det g = —a? r2is the determinant of metric tensor gun with gMN its inverse

for the line element (2) and m is rest mass of the particle.
To couple generalized Klein-Gordon oscillator with field, following change in the radial momentum operator
is considered?”28:49-52.64

p—>pHimQf(nNF , 8 — & +mQf(r), (5)

where  is the oscillator frequency and we can write p2 — (p +im Qf(r)7)(p — i m Qf(r)7). Therefore, the
KG-equation becomes

1
V=8

where Xy = (0,f(r),0,0,0).
For the metric (2)

O +mQXa)/—g "N 0y — mQXy) — (m+8)*| ¥ =0, (6)

—-10 0 0 0
01 O 0 0
1 KAy
gMN = 00 aZr? 0 - a?r? (7)
00 O 1
KAg K2 A%

00 — 25501+

By considering the line-element (2) into the Eq. (6), we obtain the following differential equation:
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[ 32+32+1a+1 0 4 2+32+
I I N (N 2 2
a2 " ar2 ' rar | o2r2 \ 3¢ 3y 322 ' ay?
f) —m* Q2 f2(r) — (m+S)2] V(t,r,¢,2,y) = 0.
9)

—mQ 4 + L
z
Since the line-element (2) is independent of ¢, ¢, z, x. One can choose the following ansatz for the function W as:
W (t,r,¢,2,y) = o (CEtHldtkz+qy) v (r),

where E is the total energy of the particle,] = 0,+1,£2,... € Z, and k, q are constants.
Substituting the ansatz (9) into the Eq. (8), we obtain the following equation:
f 2 2 22 (I-Kgq A¢)2
— _
P F2(r) — L o) w0

a2 1d
f——f—Ez—kz—qz—mQ(f/—l—f
.

dr2 v dr
= (m+8* Y (1)
2847486671 ‘and in atomic and molecular physics’2.
(11)

In this work, we consider linear confining potential that studies in the con-

Linear confining potential.
finement of quarks®, in the relativistic quantum mechanics
This potential is given by
S(r)y=mnr,
where 1y, is a constant that characterizes the linear confining potential.
Below, we choose two types of function f{(r) for the studies of generalized KG-oscillator in the considered

relativistic system subject to linear confining potential.
Case A Cornell-type function f(r) = by r + b—rz
Substituting Eqgs. (3) and (11) into the Eq. (10) and using the above function, we obtain the following equation:
@& 1d 2o
where
2_ 2 2 2 - 22
A=E* - — ¢ —m* —2mow, —Z- —2mQb; —2m> Q* by by,

(13)

w:\/mzwf—l—nf—l—mzﬂzb%,

=
ji= > + m? Q2 b3,

B
w, =120,
2m
b=2mn;.
Introducing a new variable p = \/wr, Eq. (12) becomes
j2
= =0p|¥(p) =0,
(15)

{dz +1 d+§
dp?  pdp P

where
Let us impose the requirement that the wave-function ¥ (p) — 0 for both p — 0 and p — o0o. Suppose the
(16)

possible solution to Eq. (14) is
W(p)=ple 2 WP H(p).
(17)

Substituting the solution Eq. (16) into the Eq. (14), we obtain
" Y / B
H'(p)+ |= =0 —2p| H(p) + —;4—@ H(p) =0,

where
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y=1+2j,
92

/3—9(14-2')

_2 -

Equation (17) is the biconfluent Heun’s differential equation*”?#48607374 and H(p) is the Heun polynomials.

The above equation (17) can be solved by the Frobenius method. We consider the power series solution”®
e .
H(p) =) cip' (19)

Substituting the above power series solution into the Eq. (17), we obtain the following recurrence relation for
the coefficients:

1

Cny2 = nt)mt2+2)) {B+6(mn+ D}cprr — (© —2n)cpl. (20)
And the various coeflicients are
a= 4 o
2 (21)
0= T1+)) [(B+6)c1 —Ocl
We must truncate the power series by imposing the following two conditiong?”-?31-3348.60,
®=2n ®=12,...)
(22)

Cn+1 =0.
By analyzing the condition ® = 2 n, we get the following second degree expression of the energy eigenvalues E,, :

) 62 .
—4+——-2(1+j)=2n
w 4

CD)Z

=S Ey =+ +q*+m+20 n+1+\/_a§”+m292b§ (23)

(l—%)_m nL

+2maw, —|—2me1(1+me2)}%.

Note that the Eq. (23) does not represent the general expression for eigenvalues. One can obtain the individual
energy eigenvalues one by one, that is, E1, E, E3, . .. by imposing the additional recurrence condition C, 41 = 0
on the eigenvalue as done in Refs.?”?#46 For n = 1, we have ® = 2 and ¢, = 0 which implies from Eq. (21)

2 0 2

1007 2 8+

=

(24)

1
bZ 3 2.2 3
w1 = {3 <3+2j)} - {% <3+2j>}

a constraint on the parameter w, ;. The relation given in Eq. (24) gives the value of the parameter w, ; that permit
us to construct a first degree polynomial solution of H(p) for the radial mode #n = 1. Note that the parameter
w1, depends on the linear confining potential n;, and its value changes for each quantum number {n, [}, so we
have labeled w — w,,jand 5y, — 1 . Besides, we have adjusted the magnetic field B !and the linear confining
potential 7 1, such that Eq. (24) can be satisfied and we have simplified by labelling:

1 u 2
= Vol =m0 o B = 2ol —ah, — 020} (25)

It is noteworthy that the allowed value of the magnetic field B(l)‘l for lowest state of the system given by (25) is
defined for the radial mode n = 1. We can note from Eq. (25) that the magnetic field By depends on the quantum
numbers {n, I} of the relativistic system which shows a quantum effect.

Therefore, the ground state energy level for n = 1is given by
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1 1%y
Ey ==+ {k2+q2+m2+2w1,l 2+\/§n)+m2§22b%
(26)
[— 4%y 2,2
+2mw3’lw ~ P omQb 1+ mQby)t.
@1
And the radial wave-functions is
_1 | zmn
ﬁwﬁ @ ( ol +p) ’ (27)
Yu=pt e e\ (@+tap),
where
1
a= Cp.
=42y (28)
\/§+\/( 2 w2 Q20

Then, by substituting the magnetic field (25) into the Eq. (26), one can obtain the allowed values of the relativistic
energy level for the radial mode n = 1 of the system. As the values of the wedge parameter « are in the ranges
0 < o < 1, thus, the degeneracy of the energy is broken and shifted the energy level in comparison to the case
of five-dimensional Minkowski space-time.
Case B Coulomb-type function f(r) = b72
In that case, the radial wave-equation (12) becomes

a2 1d - 72 .
{ﬁ pm ﬂ,—';—z—a)zrz—br} Y(r) =0, (29)
where
} - 12
A:Ez—kz—qz—mz—mecw,
o (30)
@& =\/m2 w? +n}.
Introducing a new variable p = Jor, Eq. (12) becomes
a2 14 - 2 5, =
a7 ;%‘F(—;—P —0p| ¥(p)=0, (31)
where
- -~ b
w 2
Let the possible solution to Eq. (31) is
(o) = p e 2 TP H(p). (33)
Substituting solution Eq. (33) into the Eq. (31), we obtain
H"(p) + E -6- 24 H'(p) + —g + 0| H(p) =0, (34)
where
. . 62
O=C+ - —20+)),
. (35)

- 0 .
B=—-01+42j)).
2
Equation (34) is the biconfluent Heun’s differential equation?”?48607374 and H(p) is the Heun polynomials.
Substituting the above power series solution (19) into the Eq. (34), we obtain the following recurrence rela-
tion for the coefficients:

1 - ~
— 61+ }u = @ =2m ),
w2 = g a iy WP HIeHD an —© -2 (36)
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And the various coefficients are

6
1 = 7 Co»
2
1 o ; (37)
0=—: + 9) 1 — O¢).
2= 104y [</3 1 ol
We must truncate the power series by imposing the following two conditions?”2831-3348.60;
©=2n (n=12...
( ) (38)

cnt+1 =0.

By analyzing the condition ® = 2, we get the following second degree expression of the energy eigenvalues E,,

P .
S 204 =2n
[— 1%y2
=SEy=x{+¢+m*+20 n+1+\/a§”)+m292b§ (39)
[}
1-12) m’n}
+2ma)572”— 5)2L}2'

Following the similar technique as done earlier, we want to find the individual energy level and wave-function.
For example n = 1we have ® = 2 and ¢, = 0 which implies from Eq. (21)

2
== = C
B+

2
B+6

:>§
c - =
1 0 2

1 (40)

b2
w1 = {g 3+ 2])}

a constraint on the parameter @, ;. The magnetic field B(l)’Z is so adjusted that Eq. (24) can be satisfied and we

have simplified by labelling:
- 2
@} —nt < By' = 7V GRS (41)

We can see from Eq. (41) that the possible values of the magnetic field By depend on the quantum numbers {#, I}
of the system as well as on the confining potential parameter.
Therefore, the ground state energy level for n = 1is given by

_ 9%y
El,l ==+ {k2+q2+m2+2&)1,[ 2—|—\/(§”)+m292b%
o
(42)
w =5 e
—|—2me’ — — T}Z.
o @11
And the radial wave-functions is
_1 | 2mnL
[ ( o p) ? (43)
Yu=pt e e A\ (co+ 1),
where
1
a= [/
_9%y2 (44)
\/§+\/(’;;>+m2szzbg

Then, by substituting the real solution from Eq. (40) into the Eq. (41), it is possible to obtain the allowed values
of the relativistic energy levels for the radial mode n = 1 of the system. We can see that the lowest energy state
defined by Eqs. (40)-(41) plus the expression given in Eqs. (42)-(44) is for the radial mode n = 1, instead of
n = 0. This effect arises due to the presence of linear confining potential in the relativistic system. Since the
wedge parameter « are in the ranges 0 < o < 1, thus, the degeneracy of the relativistic energy eigenvalue here
also is broken and shifted the energy level in comparison to the case of five-dimensional Minkowski space-time.
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Conclusions

In this work, we have investigated generalized Klein-Gordon oscillator with a uniform magnetic field subject to
a linear confining potential in a topological defect five-dimensional space-time in the context of Kaluza-Klein
theory. Linear confining potential has many applications such as confinement of quarks in particle physics and
other branches of physics including relativistic quantum mechanics. For suitable total wave-function, we have
derived the radial wave-equation for a Cornell-type function in “Linear confining potential” and finally reached
a biconfluent Heun’s differential equation form. By power series method we have solved this equation and by
imposing condition we have obtained the non-compact expression of the energy eigenvalues (23). By imposing
the recurrence condition ¢,4; = 0 for each radial mode, for example n = 11, we have obtained the lowest state
energy level and wave-function by Egs. (26)-(28), and others are in the same way.

In “Linear confining potential’, we have considered a Coulomb-type function on the same relativistic system
with a linear confining potential. Here also we have reached a biconfluent Heun’s equation form and following the
similar technique as done earlier, we have obtained the non-compact expression of the energy eigenvalues (39).
By imposing the additional recurrence condition ¢,+; = 0 on the eigenvalue, one can obtained the individual
energy level and the corresponding wave-function, as for example, for the radial mode n = 1by Eqgs. (42)-(44),
and others are in the same way. In "Linear confining potential", we have seen that the presence of linear confining
potential allow the formation of bound states solution of the considered relativistic system and hence, the lowest
energy state is defined by the radial mode n = 1, instead of n = 0. Also in gravitation and cosmology, the values
of the wedge parameter « are in the ranges 0 < « < 1, and thus, the degeneracy of each energy level is broken
and shifted the relativistic energy level in comparison to the case of five-dimensional Minkowski space-time.
When we tries to analyze c¢,4; = 0 for the radial mode n = 1, an observation is noted, where certain parameter
is constraint, for example, w; that appears in Eq. (24) in "Linear confining potential" (Case A) depend on the
quantum number {#, I} of the system as well as on linear confining potential ;. Another interesting observation
that we made in this work is the quantum effect which arises due to the dependence of the magnetic field By on
the quantum number {#, I} of the relativistic system.

We have observed in this work that the angular momentum number [ of the system is shifted,
I—-1= é (I — 12), an effective angular quantum number. Therefore, the relativistic energy eigenvalues
depends on the geometric quantum phase®>%. Thus, we have that, E,, ;(® + ®¢) = Ej, i, (D), where @y = £ 27” T
witht =0, 1,2,.... This dependence of the relativistic energy level on the geometric quantum phase gives us a
relativistic analogue of the Aharonov-Bohm effect for bound states.

The Kaluza-Klein theory lead to many new unified field theories, for example, connecting this theory with
supergravity resulted in improved supersymmetric Kaluza-Klein theory, multi-dimensional unified theories
using the idea of Kaluza-Klein theory to postulate extra (compactified) space dimensions, superstring theory
as well as the M-theory” model using the Kaluza-Klein theory in higher dimensions. In addition, this theory
has growing interest because of some interesting observations made in Ref.”s. Authors pointed out that the five-
dimensional theory yields a geometrical interpretation of the electromagnetic field and electric charge. The rela-
tion of the five-dimensional KKT with the structure of fiber bundles was first made in Ref.”” and the relationship
between principal fiber bundles and higher dimensional theories is in”®.
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